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AN ASYMPTOTIC LOWER BOUND FOR THE LOCAL MINIMAX
REGRET IN SEQUENTIAL POINT ESTIMATION

By MoHAMED TAHIR
The University of Michigan

Let Q be an interval and let F,, w € Q, denote a one-parameter exponen-
tial family of probability distributions on % = (— o0, ), each of which has a
finite mean 0, depending on some unknown parameter w € Q. The main
results of this paper determine an asymptotic lower bound for the local
minimax regret, under a general smooth loss function and for a general class
of estimators of 8. This bound is obtained by first determining the limit of
the Bayes regret and then maximizing with respect to the prior distribution
of w. *

1. Introduction. Let @ be an interval and let F, »w € Q, denote a one-

parameter exponential family of probability distributions on #; that is,

F{dx} = exp{wx — ¥(w)}A{dx}

for —o0 < x < o0 and w € 2, where A is a nondegenerate, sigma-finite measure
on Z, exp{Y(w)} = [e“*A{dx} and @ is the set of all w for which this integral is
finite. Recall that the mean and the variance of F, are § = y/(w) and 62 = y""(w)
for each w € QF, the interior of 2, where the prime denotes differentiation. Next,
set ® = Y’(Q°) and let K be a nonnegative function on ® X O, satisfying the
following conditions:

1.
2.
3.

K(6,8) = 0 for all 6.

K(0, a) is decreasing in a < @ and increasing in a > 8, for fixed 6.

K (8, a) is continuous in 6, four times continuously differentiable with respect
to a and K (8, a) > 0 for all a in a neighborhood of 6, where

9 i+j
K..= - g
Y 960'da’ K
denote the partial derivatives of K.

. There are constants C > 0 and g > 2 for which

K(8,a) <C[1+16 - a|?]

for all # € ® and all @ € ©. Finally, let X,, X,,... be independent and
identically distributed random variables with common distribution F,, under
a probability measure P,, for some unknown w € .

Suppose that X,, X,,... may be observed sequentially, that observation must

cease at some (possibly random) time n, that the population mean 6 is estimated
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1336 M. TAHIR

by 6, and that if observation is terminated at time n, then the loss incurred is of
the form

(1.1) Ly(n,0) = AK(6,8,) + n

for w € Q, where A > 0 and §, is an estimator of 8. The parameter A determines
the importance of estimation error relative to the cost of a single observation.

Recall that a stopping time ¢ is a positive, extended, integer-valued random
variable for which the event {¢ = n} is determined by X, ..., X, for each n > 1.
If ¢ is a stopping time, then the risk function is defined to be

R,(t,w) = Ew[LA(t’ "-’)],

where E, denotes expectation with respect to the probability measure P,. If ¢ is
a fixed sample size, say t =n, K(0,a) = (8 — a)? and 6, = X, is the sample
mean, then

A
R,(n,w) = -7:02 +n>2/Ao.

The regret of a stopping time ¢ is defined to be the additional risk incurred by
using ¢ instead of the best fixed sample size, that is,

s e ) = Ryt ) 20
for w € @ and A > 0. Let
r=inf{n>m:n > VAS,},

where m > 1 is an initial sample size and 62, n > 2, is the sequence of maximum
likelihood estimators of o2. When F, is the normal distribution, Starr (1966)
shows that R,(r,w)/2/A6 > 1 as A > oo for all we Q if m>3, and
Woodroofe (1977) shows that ry(7,w) = ; as A = oo for all w € Q if m > 6.

Woodroofe (1985) introduced an optimality property called asymptotic local
minimax regret. A family ¢=1¢,, A >0, of stopping times is said to have
asymptotic local minimax regret if and only if

énln limsup [ M,(¢,9,) — M,(2,)] =0,
1V @ A-> oo

for all w € © and compact subsets 2, ¢ £° where

My(2,9,) = sup ry(t, ©)

weQ,

and
(1.3) M,(Q,) = infM,(s,Q,).

(Here the infimum is taken over stopping times s.) He derived an asymptotic
lower bound for M,(£,) for multiparameter exponential families and the non-
parametric case, under a weighted squared error loss.

In the sequential context, X, may be a biased estimator of §. For example,
suppose that F, is the normal distribution with mean 6 = w and unit variance
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and let
t= inf{n >1:1S,| = ay/r?}

for a > 0, where S, = X, + -+ +X,,. Also, let m be a positive integer and set
T = min{m, t}. Then

(%] - |

as a —» oo and m — oo in such a way that a = ,/m, for some 8, > 0. To reduce
the order of magnitude of the bias, define

. {X,/(1 +2/a%) ift<m,

8(1 + 2/a?) + o(1/a?) if |0] > 6,,
0+ o(1/a%) if 16| < 6,,

X, if t > m.

m

Then Ew[ﬁ 1= 0+ o(1/a?) for all 8 +# 6, [see Siegmund (1978)]. More generally,
let b,, n>1, be a sequence of bounded, continuous functions on %, which
converges to a continuously differentiable function b, uniformly on compact
subsets of £, and such that

sup|B,(x)] = o(¥)

xXER

as n — oo. Then consider estimators of the mean 6 of the form

PO 1

(14) 0,=X,- —b(X,)

n
for n > 1. These estimators have been considered by Ghosh, Sinha and Wieand
(1980) for nonrandom sample sizes. These authors prove an asymptotic, second
order complete class theorem for such estimators.

The formulation of the problem assumes that there are potential observations
X,, X,,... which are independent and identically distributed with common
distribution F,, for some unknown w € @, and that the mean 6 is to be
estimated by estimators 8, of the form (1.4) with the loss function given by (1.1).
Thus, a Taylor series expansion suggests that the risk of a fixed sample size
procedure, say t = n, is approximately

A
Ry(n,w) = %Koz(o, 0)y"(w) + n > 2/Ay(w)
for all sufficiently large n, by minimizing with respect to n, where

(15) Y(0) = {TK(8,0)9" ()

for w € Q. The regret of a stopping time is as in (1.2) with o replaced by 7.
The main results of the present paper determine an asymptotic lower bound,

as A — oo, for the minimax regret, M ,(2,), defined by (1.3). In order to do so, it

is convenient to consider some related Bayesian optimal stopping problems. If =
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is a prior distribution for which f;yds < oo, let

ot ) = fﬂrA(t,w)dw(w)

and

Fo(7) = infr,(¢, =)
t

for A > 0, where the infimum is taken over stopping times ¢. Then it follows
from the minimax theorem that

My(Q,) = sup{7s(7): =(Q,) = 1}

for all A > 0 and all compact @, € @. Thus, an asymptotic lower bound for
M,(Q,), as A - oo, may be obtained by determining the limit of 7,(7) as
A — oo and then maximizing with respect to 7.

Throughout this paper 7 denotes a prior distribution for which [pyd7 < o
and E” denotes expectation with respect to a probability measure P” under
which @ has distribution # and X, X,,... are conditionally independent and
identically distributed random variables with common distribution F,, given w.

2. Preliminaries. In this section, asymptotic expansions are obtained for
the Bayes regret of a stopping time. This result requires the following proposi-
tion which is adapted from Rehailia (1983).

ProrosITION 2.1. Suppose that © has a k-times continuously differentiable
density ¢ with compact support in Q@ and let e be a nonnegative function for
which e£ is a k times continuously differentiable function on Q. Next, let

L) ¥\, 7
Mn,k(e) =E {e(w)(o - Xn) |Xn>

for k > 0 and n > 1. Then for k = 2,

k-1 k _] - 4// 1 (e‘S)(k)
M, ,(e) = ,§1 TMn,k—j—l[(eg)(] )? + ;;Mn,o[ :
and
m i) Y u k 1 Y =J
Efe()(0-8)"1%) = X (5] 7510 F] M o)
with

M, (e) = %Mn,o[(eg)']

for all n > 1, where f ) denotes the jth derivative of the function f with respect
to w.
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A Taylor series expansion for K about a = 6 shows that the Bayes regret,
Ta(¢, m), of a stopping time ¢ with respect to the prior distribution = may be
written as

Fa(t,m) = E"[AK(6,8,) + t — 2/A y(w)]

= E"[%AKoz(ﬂ, 6)(9,-6)" +t- 2fzy(w)]

1 ) 1 ]
+ 5!—AE"[K03(0, 0)(4,- 0)°] + Z!—AE”[KM(O, 6:)(d,- 6)",

where §,* is an intermediate point between 6, and 6. Next, let

2.1 1 & [lK 0,0)¢( JI ‘ 0
. ; = ——|= >

( ) gt(w) g(w) dotl 2 02( ’ )g w) {g(w) }

for i = 1,2, § = y'(v) and w € Q, where I{-} denotes the indicator function of
the set {-}. Then conditioning on X, and applying Proposition 2.1 with e(w) =
K (6, 0) yields

b(X,)

E"[Koz(ﬂ,ﬂ)(ﬂ - Xt)@] = 2E”['T1E”{§1(“’) |Xt}]

and
E"[%Km(ﬂ, 0)(6 - )?t)z] = E"[;E"{yz(w) |.Y,}] + E"[%E"{&z(w) |Xt}]
w.p. 1 (P7), where y is defined by (1.5). Now let
U,=E"{y(v)|X,},
V.=E"{y()|X,},
(22) M, = E*{g(0) + 2b,(X,)6(0) + 1Ku(9, 0)b3(X,) | X,},
W, = E{Ky(6,0)(d, - 6)’| X,),
R, = E"{K(0,0%)(8,- 0)"| X},
for n > 1. Then since E"[V,] = E"[y(w)], it follows easily that

A A 1
Fa(t, ) = E"[—;(m - V2) + FM+ (VA - )
(2.3) '
: 1 1
+ §AE"[W,] + Z!—AE"[R,]

for any stopping time ¢. The following two lemmas are proved in Section 4.
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LEMMA 2.1. Let ¢ be any positive constant and let
* = n?K ., (0,6*)(8, — 0)" du,
[y Kai(0:02)(8, - 0)"dm ()

for n > 1, where 7, denotes the posterior distribution of w, given X, If 7 has a
four times continuously differentiable density, then R}, n > 1, are uniformly
integrable with respect to P™ and R} — 3K (0, 0)[¢"(w)]> w.p. 1 (P") as
n — oo.

LEMMA 2.2. Suppose that b,, n > 1, satisfy the conditions listed in Section 1.
If = has compact support in Q, then E™ sup, . |b,(X;)|P < oo forallp > 1.

3. An asymptotic lower bound for the minimax regret. This section
provides an asymptotic lower bound for the minimax regret defined by (1.3). In
the remainder of this paper, II will denote the class of prior distributions =
having a twice continuously differentiable density ¢ with compact support
Qo = [wy, w,], where —o0 < w, < w,; < o0 and such that inf, g £x(w) > — 0.
Also, 0, = ¢'(2y) = [b,, 0,] with 0, = J'(w;) for i = 0, 1.

THEOREM 3.1. Suppose that K satisfies the conditions listed in Section 1 and
that K(0, a) is convex in a for fixed 8. Suppose also that = € I1 has a density §
of the form

(3.1) §(w) = (v~ “’0)‘:(‘*’1 - "-’)ﬂ‘so(‘*’)

for some p > 2 and all w € Q, where (f).= max{f,0} and §, is a positive,
twice continuously differentiable function on ). Then there are stopping times
s = s(A, m) which minimize r,(t, w) with respect to stopping times t for A > 0
and satisfy the following:

(i) There exists a constant § = 8(w) > 0 for which s > VA w.p.1(P7) for
all A > 0.

(i) If, in addition, ¢ is four times continuously differentiable, then s/ VA — vy
in P"-probability as A — oo.

The proof of this theorem is presented in Section 5.

THEOREM 3.2. Suppose that the hypotheses of Theorem 3.1 are satisfied and
that £ is four times continuously differentiable. Then

(3.2) liminf7,(r) = jﬂ G(w)7(dw),
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where

1 [v]?
G=_2[Y]

1 d?
— |~y —2
y ‘PH + 2K02(0’0)dw2 [‘Y ]

d 1 b2
-Kdmﬂ—%r%WH— 33 dowuww+¢;
* Koa(f* V' [7‘2] + Koa(o 0)—[v-2¢"l
1
+§7Kdmmwﬂz
for 6 = Y'(w) and w € Q, with y being defined by (1.5)."

PROOF. Let s be as in Theorem 3.1. Then there exists a sequence 4, n > 1,
along which A — oo, the liminf in (3.2) is attained and s/ VA — y w.p. 1 (P")
as A — oo. Attention is restricted to such a sequence. It follows from (2.3) that

A A
;mﬂzE";ag—W)+E"?M;

3.3 1 1
( ) +§AE"[VV;] + 4—'AE"[RS]

= Quu t+ @oa + Qaa + Quas
say, where U,, V,, M,, W, and R, are defined by (2.2). Now

(3.4) l‘iAIr_l_)i:.}leA 2[ Y2(0) [;IY/,,((‘:))] §(w) do.

See the proof of Theorem 1 of Woodroofe (1985). Next,

b*(8)

V'(w) |
w.p.1(P7) as A - oo, by Theorem 3.1, the martingale convergence theorem and
the conditions imposed on b,, n > 1. Moreover, AM,/s2, A > 0, are uniformly
integrable since A/s% A > 0, are bounded [see assertion (i) of Theorem 3.1] and
M,, n > 1, are uniformly integrable. The uniform integrability of M, n=>1,
follows from the definition of M, and Lemma 2.2. Thus,

2 (@)
Qa4 ™ f 2( ) [gz("-’) +2b(0)é(w) + v (w)¢,,( )]‘f(“’) dw

AM ——1——[ + 2b(6 + y?
Mg 72(“’) 52(“’) ( )gl(w) Y (w)

S

(35) =4kx@mm;gh*wn—Kamwzﬂr%wawl

*(0)

V(J“de
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as A — o0, by an integration by parts. Also, Proposition 2.1 implies that

R |- 8,06 (@) + %Koa(a,ow"(w)%[r%w)]

+ K03(0 9) ['Y 2(“’)‘V’(“’)] {(w)do
as A — o0, by an integration by parts. Finally,

(57) Qi 3 [ =z Kol 0. O (@) e(0) do

as A — oo, by Lemma 2.1, Theorem 3.1 and the martingale convergence theo-
rem. The theorem now follows by taking the liminf in (3.3) and using (3.4)—(3.7).
O

COROLLARY 3.1. Suppose that the hypotheses of Theorem 3.2 are satisfied.
If Q, is an open set with compact closure in Q, then

liminfM,(9,) = sup G(w),

we

where G is as in Theorem 3.2.

Proor. The proof is similar to that of Corollary 1 of Woodroofe (1985) and is
therefore omitted. O

ExaMmpLE. This example provides an asymptotic lower bound for the mini-
max regret under a weighted squared error loss. In fact, suppose that K is of the
form

K(8,a) = v§(w)(a - 6)*
for 6 = J'(w), w € Q and a € O, where Yo is a positive, twice continuously
differentiable function on Q. Then, clearly K satisfies all the conditions listed in
Section 1 and therefore, it follows from Theorem 3.2 that

1 [vT
Yy
where yZ = y2y”.

b*(8)
v

d——[ v7?] - 270&—[Y_2b(0)]

4. Proofs of Lemmas 2.1 and 2.2. The proof of Lemma 2.1 makes use of the
following result.

LEMMA 4.1. If € is any positive constant, then
f nz(én—0)4d77n(w) -0
16,-81>¢

w.p. 1 (P7) as n = oo, where 7, denotes the posterior distribution of w, given
X,, forn>1.
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PROOF. Since sup, |b(x)| = o(Vn) as n — oo, it suffices to show that

4.1 %X, -6)'d -0

(41) [y (%= 0) dm(e)

w.p. 1 (P") as n = 0. So, let H(w, §,) = Y(w) — \l/(w ) — (0 — &,)¥'(&,), for
w € Q, where &, satisfies the equation y'(&,) = X,,, for all sufficiently large n.
Then

[0 2% X, — 6)" exp{ —nH(w, 8,)}£(0) dw N,

Vn Joexp{ —nH(w, &,) }£(©) dw D’
say, where § denotes the density of 7. Next, it can easily be shown that

D, - Br /¥ (") ("),
w.p. 1 (P,.) for fixed w*, as n — o0. To estimate N,, first observe that H(w, &,)
can be rewritten as H(w, &,) = 1¢"(w*) (@ — &,)?, where * is an intermediate
point between &, and w, and note that H(w, &,) is convex in w, for fixed &,,
since y” is positive on Q°. Also, for any a > 0, X, € [0, — a, 0, + a], for all
sufficiently large n, where 6, = y’(w,). Furthermore, the convexity of H in w
and the continuity of y” imply that for any # > 0, H(w, &,) > #n whenever
|0 — 0| >¢and X, €[6,— a 0, + a], for all sufficiently large n. Thus, there

exists a constant ¢ > 0 for which

N, < en®/ '"’f(ﬂ“ +1)¢(w) dw

LHS (4.1) =

for all sufficiently large n and therefore N,/D, - 0 w.p. 1 (P™) as n - o0. O

ProoF OF LEMMA 2.1. Since sup, |b,(x)| = o(Vn), it is enough to prove the
uniform integrability of

4.2 n?K o (8,6)(X, — 6)" dm(w).

(42) [, . Eoi0,62)(X, — 6)"dm ()

Let M denote an upper bound for K, on {(6, a): § € O, |a — 6| < &}. Then
ILHS (42)| < Mn?E7((X,, - 0)"| X,}

w.p. 1 (P7) for all n > 1. Next, applying Proposition 2.1 with e =1 and %, = 4
yields

EY(0-X,)"IX,} = ;f— E{[v"()]*| X}

(@) | (€@ (@)
. +n3E{ o) 7 e
4.3
£/(0)9"(w) |-
M P }

£9(0)
L { £w)

&
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w.p. 1 (P7) for all n > 1, after some algebra. Hence, it is easily seen from
(4.3) that n’E™((0 — X,)*|X,}, n> 1, are uniformly integrable. This com-
pletes the proof of the first assertion. To establish the second assertion, let
n be an arbitrary positive constant and let a« > 0 be so small that
|Ko4(0,6%) — Ko(0,0)] <n whenever |§* — 6| < a for all § € ®,. Then the
region of integration |§ — d,| < ¢ may be replaced by |6 — ,] < a, by Lemma
4.1. With this change

R} < n?E7[Ko\(6,0) + 9] (6, - 0)'| X,)
= n*E"(Ko,(9,8)(8, - o)“u?,,} +n*nE7{(6, - 0)"| X,}.

Next, applying Proposition 2.1 with e(w) = K,(0, 8) to the first term on the
right side of the last equality and (4.3) to the second yields
limsup R} < 3[K,(8,0) + 9] [¢"(w)]%

A similar argument yields
liminfR} > 3[Ko,(6,0) — 0][v"(«)]".

The last assertion of the lemma now follows by letting 7 go to zero in the lim sup
and lim inf above. O

ProoF oF LEMMA 2.2. Let Q, denote the support of 7. Then there is a
constant 8 > 0 for which
(4.4) P{(|X,— 0] > ¢} < e fn¢
for sufficiently small ¢ > 0 and sufficiently large n. Next, choose & > 0 so small
that A, = {|X, — 0| < ¢} c ©. Also, let B, denote an upper bound for b, on A,
and let B, be an upper bound for b,/n on @, for n > 1. Then
sup|bn()?n)|" <BF+BfY n"I(f\n)
nx1 n>1
for all p > 0, where o denotes the complement of the event /. Therefore, there
exists a constant C > 0 for which
E"sup|b,(X,)IP<C+CY nPP”(]in) < 00
nx1 nx>1

for all p > 0, by (4.4). O

5. Proof of Theorem 3.1. The proof of assertion (i) of the theorem is similar
to that of the second assertion of Lemma 2 of Woodroofe (1985), although some
of the details are slightly different [see Tahir (1987)]. However, the proof of
assertion (ii) requires the following result.

- LEmMaA 5.1.  If = has compact support in Q, then ry(7) = o(YA) as A — .

ProOF. Let @, denote the support of = and let m = m, be an integer such
that m ~ AY* as A — o0. Also, let

t=t, = max{m, [\/X'y(ém)] + 1},
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where &, denotes the maximum likelihood estimator of w, restricted to 2,, and
[-] denotes the greatest integer function. Then ¢/ VA — y(w) w.p. 1 as A — oo
and t/VA, A > 0, are bounded below. Next, let ©, be a neighborhood of 0,
with compact closure in . Then

(5.1) %FA(W) = E"[%\/ZKM(o,ot*)(@t - 9)21{@ €0}

+E"[ ; ]_2E”[Y(w)] + VAE"[K(0,6)1{b. ¢ 6,}],

VA
where 6,* is an intermediate point between # and 6, The second term on the
right side of (5.1) is o(1), by condition 4 on K (See Section 1), Schwarz’s
inequality and Lemma 1 of Woodroofe (1985). Furthermore, for fixed w,

1 N 2 A 1 ¥"(w)

'2"/XK02(0’ 0z*)(0z - 0) I{ot & @1} - §K02(0, 0)WZ2 =y(w)Z®
in distribution with respect to P,, as A — oo, where Z is a random variable
having the standard normal distribution. Moreover, by conditioning on
X,,..., X,,, it is easy to see that the higher moments are bounded. Hence

E"[4VAKy(0,67)(8,~ 0)'I{b, € 0,}] > E"[4(w)]

as A — oo, since YA /t, A >0, are bounded and (S,— ¢0)%/t, A >0, are
uniformly integrable. The lemma now follows by taking the limit as A — oo in
(5.1). O

To establish assertion (ii) of Theorem 3.1, let s be as in assertion (i). Then it
follows from (2.3) and Lemma 5.1 that

o(VA) > E"[%Ms] + E"E(JVS B 8)2]

52 1 1
(5-2) +§AE"[WS] + 4—'AE"[RS]

=N +T,+T,+ T,

say. Next, it is easy to see that T} > O(1) as A — oo since A/s%, A > 0, are
bounded by assertion (i) and £, is bounded below. Also, 7} is O(1), by Schwarz’s
inequality, Proposition 2.1 and the boundedness of (YA /s)” for all r > 0.
Finally, T, = O(1) by assertion (i) and Lemma 2.1. It follows from these observa-
tions and (5.2) that T,/ VA = 0(1) as A — oo, which requires s/VA -y in
mean square as A — oo. [ ‘
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