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EQUIVARIANT ESTIMATION IN A MODEL WITH AN
ANCILLARY STATISTIC!

By TAKEAKI KARIYA
Hitotsubashi University

This paper reformulates a result of Hora and Buehler on best equivari-
ant estimators to treat a model admitting an ancillary statistic. The ap-
proach itself was established by Pitman, Girshick and Savage and Kiefer, and
expanded by Zidek. The model considered in this paper is assumed to be
generated as an orbit under a group acting on the parameter space. The
general result obtained here is applied to a model in the Nile problem, a
model with a known variation coefficient, a circle model and the GMANOVA
model, and best equivariant estimators (BEE’s) are derived. In the first two
models, the BEE’s dominate the MLE’s uniformly.

1. Introduction. As is well known, an ancillary statistic is defined to be a
statistic which is a part of a minimal sufficient statistic and whose marginal
distribution is parameter-free. In this paper, in line with Pitman (1938), Girshick
and Savage (1951), Kiefer (1957), Hora and Buehler (1966), Zidek (1969), Berger
[(1980), page 245], Eaton [(1983), Proposition 7.12] and Lehmann [(1983), Chap-
ter 3] among others, we formulate an invariance approach to estimation in a
model admitting an ancillary statistic. A model in our formulation is assumed to
be generated as an orbit under an induced group acting on the parameter space
and there an ancillary statistic is realized as a maximal invariant. The approach
here provides a systematic method for finding a best equivariant estimator
(BEE) in such a model. A feature of our formulation will lie in the usefulness in
applications rather than in its novelty. In fact, in Sections 3-5 the approach is
applied to finding the BEE’s in (1) a model of the Nile problem [see Fisher
(1973)], (2) a model with a known variation coefficient [see Efron (1975), Cox and
Hinkley (1974) and Hinkley (1977)], (3) a circle model [see Fisher (1973) and
Amari (1982)] and (4) the GMANOVA (general MANOVA) model [see Gleser
and Olkin (1970) and Kariya (1978, 1985)]. Since an MLE is equivariant under a
mild condition in general [see Eaton (1983)], a BEE dominates the MLE
uniformly unless the MLE is a BEE. The MLE’s in the cases of (1) and (2) are
not the BEE’s and hence inadmissible.

Our results are also related to the work of Efron (1975, 1978) and
Barndorff-Nielsen (1980).

2. A main result. Let z be a random variable taking on values in a
measurable space 2 and let #(0) = {P)|0 € 8} be a class of probability
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measures on £, where the parameter space © is a measurable space such that
for 8, # 0, in ©, P, +# P, . Further let

(2.1) @={0c0|0=y(n),neT)
be a subspace of © parametrized by 7, where T is a measurable space_and
¢: T — 0 is a known bimeasurable bijection from T onto its image ¥(T) C 6. 1In

apphcatlons, it is often the case that ® c R? and T c R? with ¢ < p so that ©
is regarded as a “surface” of .

AssUMPTION 2.1. There exists a topological group ¢ acting measurably on 9"
such that #(0) is invariant under ¥ [i.e., gP(0) = #(0) with gP, = Pjo g™}
for all g € ¢] and such that for a max1mal invariant parameter A(8) under the
induced group ¢ acting on ), the subspace © in (2.1) is expressed as

(2.2) ® = {6 € BA(0) = A},

where A, is a known value in the space of A(f) and the map g —> g is
measurable.

The condition (2.2) means that the subspace © in (2.1) is realized as the orbit
of a point in ® under the induced group . Since (2.2) together with (2.1) implies
8¢y(n) € O for any g € @ and n € T or equivalently g0 = © for all g € Z and
since y(+) is injective, we can define a group acting on T by
(2.3) 9={gg=V gy forge g}.

Then ¢ is a homomorphic image of ¢ and so of ¢ and hence the subfamily
P(0) = {Py,|n € T} is invariant under 4. Further it is easily shown that the
action of Z on 7T is transitive.

Next, let u = u(z) be a maximal invariant under ¢. Then the distribution of
u depends on 8 € © only through A(#) and hence from (2.2) it depends only on

the known value A, for the subfamily #(0). Consequently u(z) is an ancillary
statistic if z is minimally sufficient for #(0).

AssuMPTION 2.2. There is a bijective bimeasurable map = from £ onto
@ X % such that if 7(z) = (h(2), u(z2)), then (gz) = (gh(z), u(z)), where % is
a measurable space.

Under this assumption, the map A(z) from Z onto ¢ is measurable and
equivariant, i.e., 2(gz) = gh(z) and u(z) is regarded as a maximal invariant.

Now we consider the problem of estimating n with an invariant measurable
loss L: T X T — R satisfying

(2.4) L(ga,gn) = L(a,n) foranyge Ganda,neT,

where L(a,n) > 0. Hence the problem is left invariant. Define the risk of an
estimator 7 as

(25) R(ﬁ’ T’) =E¢(W)L(ﬁ(z)’ T’)
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and let 2, denote the class of equivariant estimators of 7. Regarding an
estimator as a function of «(2) by Assumption 2.2, §j € 95, if and only if

(2.6) f(gh(2),u(2)) = &i(h(z),u(z)) forallge Zand z € Z.
Since A(2) € %, (2.6) implies
(2.7) A(h(2), u(2)) = h(2)7(e, u(z)) for § € Dy,

where e is the unit element of ¢. Note that by (2.3), A(z) = ¢~ 'A(z)¥ and so
h(z) does not depend on .

THEOREM 2.1. Under Assumptions 2.1 and 2.2, a BEE, when it exists, is
given by ,(h(2), u(z)) = h(z)nl(e u(z)) with (e, u(z)) minimizing the condi-
tional expectation

(2.8) Ey o [L(R(2)i(e, u(2)), 10)lu(2)],

where 7, is any fixed value in T for which R(#,n,) < oo for some % € D,

PROOF. Since ¢ acts transitively on T, for a given § € 25 and for any
n € T, R(#, 1) = R(H, n,). Hence the minimum of R(f), n) is attained by % € 25
which minimizes (2.8), completing the proof. O

COROLLARY 2.1. Suppose T C R'. Then under Assumptions 2.1 and 2.2, the
estimator

(2.9) f(z) = h(2) = Bo[A(2)lu(z)] (e R
is a BEE for the loss L(a,n) = (a — 1)?, and the estimator

(2.10)  fy(2) = A(2)Ey[h(2)u(2)] /E,[ A(2)u(z)] (e RY)
is a BEE for the loss L(a,n) = (a — )% /7%

These results are regarded as a modification of Hora and Buehler (1966) for a
model with an ancillary statistic. The arguments used above are rather similar to
Girshick and Savage (1951) and Kiefer (1957). In Kiefer (1957), Condition NR on
page 579 states that ¢ rather than & acts transitively on ©. The case ® = @
with ¢ the identity is reduced to Kiefer’s result.

Two remarks follow. First, the existence of a bimeasurable bijection between
Z and ¢ X % in Assumption 2.2 means that ¢ acts freely on 2 (ie., g+ e
implies gz # z for any z € ). Sometimes a model admits a larger group whose
action is not free. In such a case, it is usually possible to choose a smaller group
so that Assumptions 2.1 and 2.2 will be satisfied. It is noted that the smaller the
group is, the larger the class of equivariant estimators 9. Second, as shown in
Eaton (1983), the MLE is an equivariant estimator under a mild condition on the
pdf. Hence the above approach provides a systematic method for making a
uniform improvement on the MLE.
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3. Applications.

3.1. The Nile Problem. Let (x;, y;)’s be iid from the pdf (ne ")(n"le~2/"),
i=1,...,n, where n > 0 and x, y > 0. This is the model in the Nile problem
considered by Fisher [see Fisher (1973) or Buehler (1980)]. Clearly the mean
(X, ¥) = (2, 2,) = z is a minimal sufficient statistic with

(3.1) E(2) = (n7"m) = (¢1(n), ¥o(n)) = ¥(n) = (6,,6,) = 0.
The pdf of z is given by
Py(dz) = cb7 "6, "(nz,)" ' (nzy)" "

Xexp[ —(nz,/8,) - (nz2/02‘)] dz, dz,.
Here let =0 = (R,)’,T =R, and
(3.3) 0={0e6|0=y(n),neTr),

where R, = {a > 0}. Then #(0) = {P;|0 € ©} is a subfamily or curved model
of #(0) = (P,|6 € 6). In fact, O is a hyperbola: © = {8 € 80,6, = 1}.

To apply our approach to the estimation of 7, let the group ¥= R, act on &
by z = (2, 25) = 82 = (8~ 121, 82,), which in turn induces the group 4= R,
acting on ® by 6 = 0,90, - g0 = (&7'0,, 80,). Then A\(0) = 6,0, is a maximal
invariant under ¢ and so © is realized as an orbit: © = {0 € OIA(8) = 1}.

Further with ¢(7) in (3 1), 9= (81=v 8¢, € 9} acts on T by n — gn.
Hence Assumption 2.1 is satisfied. Next, observe that the map

(34) m(2) = (h(2), u(2)) = ((22/2)"" (2122)"),

which is in one-one correspondence with z, gives a measurable isomorphism
between 2 and ¥ X %: = I X %. In fact, h(z) satisfies h(gz) = gh(z) and
u(z) is a maximal invariant. Hence Assumption 2.2 is satisfied. Therefore, taking
the loss L(a, n) = (a — 1)2/7* = (a/n — 1)%, by Corollary 2.1 the unique BEE is
given by (2.10), and using the conditional pdf of A given u [see Fisher (1973)], it
is evaluated as

(3.5) iy = h(2)Ky(2nu)/Ky(2nu)
since E,[h|lu] = K,(2nu)/K(2nu), i = 1,2, where

(3.2)

K,(w) = wa*‘l exp[— fw(x + x7V)] dx

is the modified Bessel function of the third kind with index A [see Abramowitz
and Stegun (1965)].

The MLE is given by A(z) in (3.4), which belongs to 2, and hence it is
dominated by the BEE in (3.5). Further the bias-corrected MLE is given by

oo = h(2) — b(h(2)) = {2 - [T(n — 3)T(n + 1) /T(n)’] }A(2)
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since the bias of the MLE A(z) is computed as

b(n) = {[T(n = )(n + 3)/1(n)"] = 1}n.
Hence 1y, € 25 and it is uniformly dominated by the BEE 4.

3.2. Normal model with known variational coefficient. Let x,,..., x, be iid
from N(7, an?) withn € T = R, where a > 0 is known and so it is assumed to
be one below. This example was originally considered by Fisher and is treated in
Efron (1975), Amari (1982), Cox and Hinkley (1974) and Hinkley (1977). Clearly
z = (2, 29) = (%,X(x; — %)?) is sufficient for

P(0) = {N(6,,6,)10 = (6,,6,) € ®} with® = (R,)’
and for #(0) as well, where )
(3.6) ©={0e6|6=y(n)=(n17°),neT}.

Then group ¥= R, acts on =R X R, by (2, 2,) = (&2, 8%2,), u(z) =

2,/ \/z«2 is a maximal invariant under ¢ and )\(0) = 02/0, is a maximal invariant
parameter under the group g = ¢ induced on ©. Consequently © in (3.6) is
expressed as © = {§ € OIA\(0) = 1} and G= {(gl§ = ¥ '8¢, & € 9} = ¥, which
acts on T by n —» &7. Hence Assumption 2.1 is satisfied. Further, taking A(z) =
\/2—2 , m(2) = (h(2),u(z)) gives a homeomorphism from % onto ¥ X % and
Assumption 2.2 is satisfied. Therefore taking the loss L(a,7) = (a — 7)?/%%, by
Corollary 2.1 the unique BEE is given by (2.10) and it is directly shown to be
evaluated as

(3.7) i = 25 B[22 lu] /B[ 2,)u],

where the conditional expectations are given by

N e e

with v = nu2/%/(nu? + 1)2.
On the other hand, the MLE is given by

(3.9) fio= —(%/2) + [s® + 5%%/4]"* with s2 = z,/n

and it is equivariant. Hence the MLE is uniformly dominated by the BEE.
Similarly the bias-corrected MLE and the dual MLE proposed by Amari (1982)
are inadmissible. Hinkley (1977) investigated some properties of the model.

3.3. Circle model. As an example for a non-location-scale model, we here
consider the circle model treated in Fisher (1973). Let (x;, ¥;)’s be iid from the
normal distribution N(0, L), i = 1,..., n, where

(3.10) 6=1(6,,6,) =¢(n) = (cosm,sing)’ withne T =(—=,n].
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Clearly z = (z,, 2,) = (%, ¥) is sufficient. Let 2= R? — {0}, ® = R? and
(3.11) 0= {0066 +62=1}.

Naturally 2(0) = {N(8,(1/n)1,)|0 € ©). In this setup we consider the problem
of estimating 7 in (3.10). As is well known, the MLE of 7 is given by
tan~Y(z,/z2,) €(0, 7] for z, > 0,

tan~Y(2,/2,) €(—=,0] forz <0,

/2 forz; = 0and 2z, > 0,

—7w/2 for z; = 0 and 2z, < 0.

(8.12) flo(2) =

It is noted that f(z) is a bijection from £ onto T = (— w,w] A group ¢
yielding ©® in (3.11) as an orbit under its induced group & is the special
orthogonal group 0, (2),

cosT —sinT
(3.13) Y= {g|g— (sin'r cos ™ ),7 e( 7r,7r]}.
Then ¢ acts homeomorphically on & by z - gz, 9= ¥ and ¥ = (818 =¥ '8¢,
Z € 9), which is identified with the group (—=,7] acting on T by 7 —
n+7 [mod(277)] Hence ¢ is denoted by &= (—m,«]. Further, u(z)=
(22 + 22)'/? is a maximal invariant under ¢ and A(0) =02+ 02)? is a
mammal invariant parameter under 9. Consequently O in (3.11) is expressed as
={0e OIN8) = 1} and so Assumption 2.1 is satisfied.

Next, with A(z) = fj(2) in (4.3) and = R, n(z) = (h(2), u(2)) provides a
homeomorphism from' & onto (—, #] X %, which is identified with 0, (2) X %.
Since gz = (z;cos T — 2z, 8in T, 2, 8inT + 2,cos 7Y,

(3.14) h(gz) = tan"![tan(@l, + 7)] = @l + 7, mod(27).

Therefore Assumption 2.2 is satisfied.
Now taking the loss L(a,n) = (a - 7)?, mod(27) by Theorem 2.1 with
= 0, the unique BEE is given by

(2) = fie(2) — Eo[ﬁo(z)lu(z)L

To evaluate E[#,(z)|u(2)], note that the conditional pdf of %, given u is given
by

q(folu, 1) = exP[uCOS(ﬁo - n)]/f:exp[ucos(ﬁo - "1)] diio,

which is known as the pdf of the von Mises distribution. Then E,[fjolu] = n for
any u (a.e.), implying E,[#,|z] = 0. Thus in this model the MLE 4, in (4.3) is
the BEE. Furthermore, since ¢ is compact, not only is it minimax in the class 2
of all estimators but also it is admissible in & [see Ferguson (1967), pages
154-157].

The reader may be referred to Efron (1978) and Amari (1982) for some recent
studies on this model.
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4. Applications: The GMANOVA model. A canonical form of the
GMANOVA model with sufficiency reduction is derived by Gleser and Olkin
(1970) as

(4'1) Z= (ZI’Z2) - N((“1»0)9 I,® 2) and V-~ mlﬂ;g(z’ n),

where Z: m X (p, + p,) and V: (p; + p,) X (p, + p,) are independent and
Wy(Z, n) denotes the b-dimensional Wishart distribution with mean nX and
degrees of freedon n. Since E(Z,) = 0, the model is incomplete but (Z, V) is
minimally sufficient. To find an ancillary statistic, let V = (V;,) with V,: p, X p,,
2 =(g;;) with 2,2 p,Xp;, i, j=1,2, and E(Z) = (p, py) = p with p, = 0.
Then the model (4.1) is rewritten as

Z, given Z,~ N(Fl + Z222_21221’ I,® Zn.z),

Z,~N(0,I,®Z%,),
(4~2) Viie = Vi — V12V2_21V21 = VVpl(Eu.z, n —pz),

B=V,Vp,! given V,, ~ N(,B, V! ® 211~2) with 8= 3,35},

‘/22 ~ vvp2(222, n);
where 3, , = 3,; — 3,353, and V,, , is independent of all the other statis-
tics. To make the model fit the situation described in Section 2, let 2= 0 =

R™P14P2) x P(p, + p,) and © = {§ € 8|0 = (4, =), py = 0}, where F(q) de-
notes the set of ¢ X ¢ positive definite matrices. Further let ¥ = o/ X R™P: with

A A
o= {A=( 1 12)eGU(p1+p2)},
0 A,

where GU(q) denotes the group of ¢ X ¢ upper triangular matrices with
positive diagonal elements. Then ¢ acts on (Z,V) by (Z,V) = (ZA’ + (F,0),
AVAI) or on (Zb Z2, ‘/11~2, 39 ‘,22) by

Z, > Z,AL + Z,A + F, Zy > ZyAb,, Vire = AV 4L,

(43)\ -1 -1 ’
B > A BAy' + AjpAg and Vi o Ay Al

where (A, F) € 4. Then a maximal invariant under ¢ is u = u(Z, V) = Z,,S;,,
where V' = S},S,,, where S,, € GU(p,) and a maximal invariant parameter
under = ¢ is A(0) = pyh,, where S3! = Yoy, with ¥y, € GU(p,). Hence
0={(0e O|A(#) =0} and u is ancillary. Further it is easy to see that
(Z,, u, Vi1.9, B, Sy5) is in one-one correspondence with (Z, V) and so it is mini-
mally sufficient. Note that ¢ acts on S,, by S,, = S,, A"

Now consider the problem of estimating p,. The loss function we adopt here is
matrix-valued, :

(4.4) L(fiy, 1) = (A — p) 200 — 1) m X m.

Then it is easy to see that the problem is left invariant under ¢. From
0=vy(p, 2) =((p,0),2) €0, =9 acts transitively on T = {(g,, 2)}. Fur-
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ther letting

R V.S

where V!, = R'R with R € GU(p,), m(Z,V)=(MZ,V), w(Z,V)) gives a
bimeasurable bijection from 2 onto ¥ X % where % is the space of u and
Assumptions 2.1 and 2.2 are satisfied. Therefore a BEE is an estimator of the
form

(4.5) iF(h,u) = hp¥(e,u) = if(e,u)R + Z, — Z,B’,
which minimizes the ¢onditional risk
Eo 1[(Z, - Z,B’ + fiy(e, u)R')(Z, — Z,B’ + ji(e, u)R') |u].

Using E, 1)[Z, — Z,B’|u] = 0, this is minimized in the ordering of nonnegative
definiteness if and only if (e, u) = 0. Thus,

(4.6) BH(Z,V) =2, - Z,B' = 2, = Z,Vy,' Vi

is the unique BEE. In fact, it is the MLE. Consequently in the problem of
estimating p,, the MLE is the BEE under the matrix loss (4.4).

Next, let us consider the problem of estimating =,,. For simplicity we assume
p, =1 and write Vy, = vy, and 2y, = 0,,. Then under the loss L(Gy, 05) =
(635 — 053)%/0%, the problem is left invariant under ¢. Arguing similarly, an
equivariant estimator is shown to be of the form

(4.7) 622(Z, V) = vyya(u).

Then by checking Assumptions 2.1 and 2.2, it follows from Corollary 2.1 that a
BEE is given by

(4-8) Gy = vzzE[Uzzlu]/E [nglu] ,
which is shown to be different from the MLE
(4.9) byy = (Z32Zy + vy) /(n + m).

Since 6,, is equivariant, the BEE 65 dominates the MLE uniformly. The
evaluation of (4.8) is similar to the case of the model N(7, an?) in Section 3 and
is omitted here. A corresponding result for a general p, > 1 is obtained if an
invariant loss is adopted.

. A special case of some interest is the model with p, =p, =1 and p, =
[a,...,a], where a € R. This model is regarded as a canonical form of the
model appearing in discriminant analysis with covariates [see, e.g., Kariya
(1985)]. The above results are of course effective in this model.
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