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NOTE ON SOME ¢,-OPTIMAL DESIGNS FOR
POLYNOMIAL REGRESSION?

By W. J. STUDDEN
Purdue University

In a recent paper of Gaffke an example was given regarding the ¢,-opti-
mal designs for the highest two coefficients in a one dimensional polynomial
regression. The purpose of this paper is to supply a direct proof of this result
using the theory of canonical moments and orthogonal polynomials.

1. Introduction. Consider a simple polynomial regression model on [ —1,1].
Thus for each x € [—1,1] an observation may be observed with mean value
m 0:x* and constant variance o?, independent of x. The parameters 6’ =
(6y,-.-,0,) and ¢? are unknown. An experimental design is a probability mea-
sure ¢ on [—1,1]. If N uncorrelated observations are taken and ¢ has mass
£&i)=n,N"' at x;, i=1,...,r, then n; observations are taken at x;. The
covariance matrix of the least squares estimates of # is given by (o2/N)M~1(¢)
where M(¢) is the information matrix of the design ¢ given by

(1.1) mi;= j_llxiﬂ' dt(x).

Generally speaking the design £ is chosen to “maximize” M(§) or “minimize”
M~Y(¢). Amongst criteria for this minimization are Kiefer’s ¢, -criteria [see
Kiefer (1974), (4.18) or Kiefer (1975), page 337]. The function ¢, is the “p-mean”
of M~1(¢) given by

8, (M) = ((m + 1) wm2(5)}”

where the A, are the eigenvalues of M(£) and —1 <p < .
If one is only interested in a subset of the parameters, say the highest s
parameters, then we write

M, M
M= 1 12 ) )
(le M,,

where M,, is s X s. The information matrix regarding these parameters is given
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by

(1.3) A(§) = A = My, — My My "M,
The corresponding ¢,-criterion is to minimize

(1.4) $,(A) = (s 1 trA P}

The values p = 0, 1 and oo are usually singled out. These values correspond to
(det A~1)/5, tr(A~1)/s and the maximum eigenvalue of A~ respectively. Since
all the optimal designs we encounter have m + 1 support points for which M is
nonsingular, we shall not discuss nonsingular M here. See Gaffke (1987) or
Pukelsheim (1980) for details and further references on this question.

The present paper is concerned with the case s = 2.for polynomial regression.
The ¢,-optimal designs were given rather explicitly in a recent paper of Gaffke
(1987) which considers general regression models and is concerned with “the
characterizations of design optimality and admissibility for partial parameter
estimation.” The special case m = 2 was considered by Pukelsheim (1980). The
result in question is stated in the following theorem. The polynomials T},(x) and
U,(x) denote the usual Tchebycheff polynomials of the first and second kind;
see, e.g., Abramowitz and Stegun (1964).

THEOREM 1 (Gaffke). The ¢,-optimal design for the highest two coefficients
in polynomial regression of degree m on [ —1, 1] concentrates mass at the m + 1

zerosxo= —1<x, < -+ <x, ,<x,=1o0f
(1.5) 1 = 2*)(Up-s(x) + BU,_5(x)),
where U _, is defined to be zero and f is the root of
1— p+1
(1.6) (———2—'8) -B=0, 0<B<1.

The corresponding weights are given by

(17) &(x;) = (1-82)/{(m-1)(1 - B2) + (1 + B)* - 4BT2_\(x,)}
forj=1,...,m—1and

(18) &(-1)=4(+1) =301 - p*)/{(m-1)(1 - B*) + (1 - B)}.

The proof of Theorem 1 as given in Gaffke (1987) is rather elaborate and
ingenious and is an application of more general results concerning partial
parameter estimation. The purpose of this paper is to give a more direct proof.
The proof deals directly with the moments or rather the canonical moments of
the design £ The theory of canonical moments allows us to “identify” the
¢,-0ptimal design rather quickly. The identification or equivalence with the form
in Theorem 1 is then “straightforward” but somewhat algebraically involved.
For the theory of canonical moments the reader is referred to Lau (1983); see
also Lau and Studden (1985), Studden (1980, 1982) and Skibinsky (1968).
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2. Proof of Theorem 1. In order to prove the theorem a short description of
the canonical moments and a statement of some of the results is needed. For an
arbitrary design § the information matrix M(£), and hence also A(§), depends on
the moments

¢, = /‘ xidé(x), i=1,2,...,2m.
-1

The canonical moments are defined as follows. For a given set of moments
Cos C15--+» C;_1 let ¢ denote the maximum of the ith moment [x’du(x) over the
set of all probability measures p having moments c,, c,, ..., ¢;_;. Similarly let
¢; denote the corresponding minimum. The canonical moments are defined by

c;— ¢ . )
(2'1) b= —T/——, i1=1,2,....

¢ —c

Note that 0 < p; < 1. We will have 0 < p; < 1 whenever c,, c,, ..., ¢c; is in the
interior of the corresponding moment space. Whenever p;, = 0 or 1 the subse-
quent p,, k > i, are left undefined. As an example consider the Jacobi measure
with density proportional to (1 + x)*(1'— x)? (a > —1, 8 > —1). For this mea-

sure

k
= k>0
Pzt a+pB+2k+1’° ’
at+k+1
k> 0.

Dokt = R ok + 2

The uniform measure (a = 8 = 0) has p,,,, = 1, k> 0 and p,, = k/(2k + 1).
The arc-sin distribution (a = 8 = — }) has p, = ; for all .

Since the underlying interval is [—1,1] and ¢,(A) is convex in M and
invariant under reflexion of the design we may assume that any ¢,-optimal
design is symmetric. In this case all the odd moments of £ are zero and A(£)
reduces to

A = My, — My MM,
(2.2) B (mm_1 0 )

0 a

m

where a, = [PX(x)d&(x), k=m — 1, m and {P,} is the sequence of polynomi-
als, with leading coefficient 1, which are orthogonal to d¢(x). The fact that A(§)
is diagonal follows from elementary matrix calculations. The formula for the two
components a,, k=m —1,m is the Ly(¢) squared norm of x* minus its
" projection onto the linear space spanned by 1, x, ..., x™ 2 For 2 = m — 1 this is
the defining property of P, , and hence a,_, = [P2_,d¢. Since the odd
moments of £ are zero the projection of x™ does not “involve” x™ ! so that
a,, = [PZd¢. In terms of the canonical moments a,,_, and a,, are given (for
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symmetric §) by
L k
(2.3) [ P¥(x) dt(x) = T1Pudeu-v,
-1 i+1

where ¢; =1 —p;, 1 <i <k, and g, = 1. Equation (2.3) follows from Theorem
2.4.8 of Lau (1983) where we use the fact that if the measure £ has odd moments
zero then p,; . ; = 1 whenever it is defined.

To obtain the ¢, = optimal design in terms of the p; we may now minimize

(a2, + a,?)"”

with respect to p;. This leads immediately to the following lemma. For p =
we are simply maximizing a,, since clearly a,,_, > a,,.

LEMMA 2.1. The ¢,-optimal design §, is given by p,, =1, p;= 3, i=
1,2,...,2m —1,i+# 2m — 2 and p,,,,_, = (1 + B)/2 where B satisfies (1.6).

Lemma 2.1 gives, in a sense, a complete solution to the ¢,-optimal design
problem in the present situation. It is, however, relatively straightforward to go
from the form given in Lemma 2.1 in terms of the canonical moments to the
support and weights of the design £, given by Gaffke in Theorem 1. The
remainder of the proof is a brief description of procedure.

In the case that p,, =1 it is known that the corresponding measure has
support at +1 and m — 1 points on the interor (—1,1) [see, e.g., Karlin and
Studden (1966), Chapter 4]. The m — 1 interior points are the roots of the
polynomial @, _, where {Q,} is the sequence of polynomials orthogonal to
a-x? d§,. If £, is symmetric, then py;,, = 1 for all i and these polynomials
(with leading coefficient equal to 1) are defined recursively by

(2.4) Q%) = xQp(%) — P2sGor+2Qk—1 k>1,

where @, = 1 and ¢, = 1 — p; [see Lau (1983), Remark 2.4.4, page 31].
We now note (as remarked earlier) that the sequence p; = § for all i > 1
corresponds to the arcsin measure

du. = dx
Ho ﬂVl—xz.

The corresponding orthogonal polynomials are the Tchebycheff polynomials
T,(x) of the first kind. The polynomials orthogonal to (1 — x%) dp, correspond
to the Tchebycheff polynomials of the second kind denoted by Uy(x). [Ux(x) has
leading coefficient 2*.] Since £, has canonical moments p; = § for i < 2m — 3, it
follows that, for i < m — 2, U(x) = 2'Q,(x). Inserting £ = m — 2 in (2.4) we find
that

(2.5) 2m71Q,,_1(%) = U,_\(x) + BU,_5(x).



622 W.J. STUDDEN

Thus the support of £, is on the zeros to (1 — x%)[U,_(x) + BU,,_4x)] as
stated in Theorem 1.

The remaining question concerns the weights £, (x ;) given in Theorem 1. For
the interior points we use the fact that

(2.6) ) = (1) T (@),

where @ are orthonormal with respect to (1 — x2) d§,(x). The weight at +1 is
given by

(2.7) £,(+1) = 2:@:(12,:‘(1)}2,

where R} are orthonormal with respect to (1 + x) d£,(x). Formulas (2.6) and
(2.7) are given in Karlin and Studden [(1966), Chapter 4, pages 115 and 116].
Equation (2.7) is the last equation in Theorem 3.1, while (2.6) is the second to
last formula on page 116. Both equations require transforming results from [0, 1]
onto [—1,1].

To convert (2.6) to (1.7) we use the fact that [UZ(x)1 — x2) dp, = 1. Then
Q}(x) = V2 Uy(x) for k < m — 3. Note that the normalizing factor for @,,_,
uses Po,,_o =1 — @y,,_o. It can be shown that

(Q:;—z)z = U73—2(x)/q2m—2‘

Using a number of trigonometric formulas (2.6) will reduce to (1.7). The details of
this reduction are omitted. The considerations of (2.7) are somewhat similar and
are also omitted. O

Acknowledgments. Thanks go to the editors and referees for a very careful
reading of this paper.
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