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A COUNTEREXAMPLE TO A CORRELATION INEQUALITY IN
FINITE SAMPLING!

By KENNETH S. ALEXANDER

University of Southern California

Each individual in a population of size n is assigned a positive number as

its weight. & of the n are sampled without replacement, with the individuals

. remaining at the time of each selection chosen with probabilities proportional

to their weights. It is shown that for two fixed individuals, the events that
each is in the sample can be positively correlated.

Consider the following situation: Lottery tickets numbered 1 through n are
sold. Various entrants, including ourselves, buy ore or more tickets. £ winning
numbers are then selected at random, but with the provision that no person is
allowed to win more than one prize—numbers are drawn until % distinct
individuals are winners. The drawing is held, and before learning of our fortune,
we find out that a particular individual, whom we will call the Rival, was not one
of the 2 winners. Our reaction is to say, “Fine with us; having the Rival out of
the picture can only improve our chances of winning.”

However, we would be wrong.

In fact, it is possible to allocate the tickets among the contestants in such a
way that our chances of winning given that the Rival lost are actually smaller
than our unconditional chance of winning.

More generally, consider the problem of weighted sampling from a finite
population. Each of the n individuals is assigned a positive number as its weight.
k of the n are then sampled without replacement; whatever individuals remain
before each of the k selections are chosen with a probability proportional to
their weight. This is called successive sampling. Fix two individuals and censider
the events that each is in the sample. The surprising fact is that these two events
can be positively correlated. Such sampling schemes are discussed by Hajek
[(1981), Chapter 9] and Rao (1963), among many others. Sampford (1969) gives
reasons why it is desirable to choose sampling schemes in which the correlation is
negative, so our result perhaps reduces the desirability for theoretical purposes
of successive sampling in comparison to other weighted sampling techniques.

Here is another formulation of the problem. Balls are placed at random in n
bins. The placements are done independently, with each ball having probability
p; of being put in bin j for j < n. We say a bin is occupied if it contains at least
one ball. We can then list the bins in the order in which they become occupied
and define r(A) to be the rank of bin A on this list, for each bin A. Thus, for
example, r(A) = 3 if A is the third bin to become occupied. A plausible (to us)
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conjecture might be that if we know that a given bin A has a small rank, this
reduces the probability that any fixed second bin B has small rank, i.e.,

(1) P[r(A) <kir(B) <k] <P[r(A) <k] forall distinct bins A, B.

But intuition is not necessarily a good guide, for in this note we will show that
such a conjecture is false.

A third formulation of this problem, due to Gordon (1983) and readily seen to
be equivalent, is the following. It will be useful for analyzing certain limiting
cases. Let (S, &, n) be a probability space, let A denote Lebesgue measure on
R*, and let N be a Poisson process on R*Xx S with intensity measure A X p. For
brevity, set

N(¢, A) = N([0,¢] xA), Aes.
If N(¢t,{x}) = 1 we say a point appears at x at time ¢. Define
T, = min{¢ > 0: N(¢, A) > 0},

with T, = oo if there is no such ¢. We think of T, as the time at which A
becomes occupied. Let & be a partition of S into disjoint measurable sets and set
re(F) :=card{E € &: Ty < Ty} for F€é&.

Thus as in the bin formulation r,(F) =k if F is the kth set in & to become
occupied. The conjecture (1) now becomes

@) P[rs(A) < k,rs(B) < k| <P[rs(A) < k| P[rs(B) < k] .
for every finite &, every distinct A, B in & and every k& > 1.

To violate (2), we must first consider a limiting case in which the partition is
infinite. Take (S, %, n) to be an atomless probability space in which single
points are measureable (the unit interval will do fine) and partition S into three
sets A, B and C. For brevity we write a, b and ¢ for u(A), p(B) and p(C).
Later we will further divide C into a large number of small sets. For now, we
approximate this by completely pulverizing C; that is, we define the partition

F={A,B} U {{x}:x€C)
and set
7= min{¢ > 0: N(¢,C) = j}.
Then
Plrg(A) < k,14(B) < k] = P[r,_, > max(Ty, Ty)]
=1-Plr,_,<T,] - P[r,_, < Ts]
+P[1,_, < min(Ty, Ty)].

Now [7,_, < T,] is (as.) the event that the first £ — 1 points to appear
in AUC all fall in C, which has probability (c/(a + c¢))*~'. Similarly,
Pl7,_y < Tgl = (c/(b+ c))F . Also [7,_, < min(T,, Tp)] is the event that the
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first £ — 1 points anywhere all fall in C, which has probability ¢*~!. Thus

c k-1 c k-1
Plrg(A) <k,rg(B)<k]=1- (Ha) - (c+ b) + k1,
Second,
P[rg(A) <k] = P[Ty < m_,] + P[1,_, < Ty < min(Ty, 7,)].

This last event is the event that the first 2 — 1 points anywhere all fall in C and
the kth falls in A. This has probability ac*~! and P[T, < ,_,] was determined
above, so ‘

Plrg(A) <k]=1- ( )k_l + ack1.

c+a
Similarly,

c
c+b

P[rgs(B) <k] =1- ( )k_l + bck 1.

Combining, we obtain
P[rg(A) < k,rgz(B) < k] — P[rg(A) < k| P[rs(B) < k]
=(a+¢) *V(b+c)
x{ck(a+e)* (b + )
—c* (1 —a(a+¢)* ") (1 - b(b+ ) )}

Now take & > 3,s0 k£ < 2k — 2. Then fix a, and b, in (0,1) with a, + b, = 1.
Let a > a, b— b, and ¢ —» 0 in such a way that ¢ + b+ ¢ = 1. When ¢
becomes sufficiently small, the right side of (3) is clearly positive.

We now approximate this situation with a finite partition. Choose a, b and ¢
so that (3) is a positive number ¢ and fix an integer m > k2 /e. Divide C into m
sets C,...,C, each of probability c¢/m and let & be the partition
{A, B,C,,...,C,}. Then

(3)

Plrg(A) < k] = P[r,(A) < k] - P[I}lsa;(tN(Tk_l,C) > 1]

> P[ry(A) <k] - m_l(k o 1)

2
> Plry(A) < k] — /2
and similarly for B, so that
P[rs(A) < k,re(B) < k] = P[rg(A) <k, rs(B) < k]
=P[rg(A) <k]|P[rs(B) <k] +¢
> P[ry(A) < k] P[ry(B) < k].
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As a numerical example, we can take a = b = 0.45, ¢ = 0.1 and k = 3. Then
P[rgz(A) < k,rg(B) < k] = 0.94388,
P[rg(A) < k] P[rz(B) < k1 = 0.94370.

If m = 100,000, then (2) is violated. In our original lottery example, this means
that if there are to be three winners, if the Rival and ourselves each hold 450,000
tickets, and if 100,000 other people hold one ticket each, we should be disap-
pointed to learn that the Rival was not a winner, since this fact reduces our own
chances.

REMARK 1. To understand this result, which at first sight may seem surpris-
ing, we return to the balls-in-urns formulation. Consider the following way of
allocating balls to bins A, B and C independently with probabilities a, b and ¢
each, respectively. First, a list is made, with independent random entries “B”
and “C,” with probabilities b/(b + ¢) and ¢/(b + ¢), respectively, for each
entry. Then balls are allocated independently between bin A and a temporary
holding bin “B U C” with probabilities ¢ and b + ¢, respectively. (As before,
a + b + ¢ = 1.) Each time the ball enters “B U C” the next entry B or C is read
from the list and the ball is moved to the corresponding bin. C consists of
infinitely many subbins C,, C,,..., each of which can hold only one ball; these
become occupied sequentially.

Suppose now that we have placed a bet that A will be one of the first 2 bins
(among A, B, C,,C,,...) to become occupied. We would then hope that the list
starts off with lots of B’s and few C’s, since the second, third, fourth, etc., balls
to fall in B are harmless to our cause, unlike those in C. Imagine learning that B
was not among the first £ bins occupied. This would tell us that the list started
off with at least £ — 1 C’s, which is bad news! This makes it plausible that the
events, “A is among the first £ occupied” and “B is among the first 2 occupied”
are positively correlated.
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