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MINIMAX PROPERTIES OF M-, R- AND L-ESTIMATORS OF
LOCATION IN LEVY NEIGHBOURHOODS!

By JouN CoLLINS AND DouGLAS WIENS
University of Calgary and University of Alberta

In the context of Huber’s theory of robust estimation of a location
parameter, the literature on minimax properties of M-, R- and L-estimators
is surveyed. New results are obtained for the model in which the unknown
error distribution is assumed to lie in a Lévy neighbourhood of a symmetric
distribution G: £, §(G) = {F|G(x — 8) — e < F(x) < G(x + &) + ¢ for all
x}. Under reasonably general conditions on G, the distribution F in 2, 4G)
which minimizes Fisher information for location is found. Huber’s minimax
property for M-estimators is shown to hold for R-estimators but to fail for
L-estimators in Lévy neighbourhoods. The latter is proved by constructing a
subneighbourhood of distributions %, with F, € %, € 2, (@), such that the
asymptotic variance of the L-estimator which is asymptotically efficient at F,
is minimized over %, at K.

1. Introduction and summary. In the context of robust estimation of a
location parameter, Huber (1964) found a general asymptotic minimax property
for the class of M-estimators. In this section we survey the subsequent literature
on the following two related problems: (1) finding the form of the minimax
variance M-estimator corresponding to particular relevant models for the un-
known neighbourhood of error distributions; and (2) ascertaining whether or not
Huber’s minimax variance property also holds for R-estimators and L-estimators
in each such neighbourhood. We carry out programs (1) and (2) for the important
Lévy neighbourhood model in Sections 2 and 3, respectively.

First we summarize Huber’s minimax variance theory. Let X,,..., X, be a
random sample from a distribution F(x — ), where 6§ is an unknown location
parameter. Here F' is an unknown member of a specified convex, vaguely
compact neighbourhood, &, of a fixed “ideal” distribution G which is symmetric
about 0. Let % denote a class of estimators of #—such as the M-estimators,
R-estimators or L-estimators. If {T},} is a sequence of estimators in €, then under
mild regularity conditions, n'/%(T, — 6) converges in distribution to the normal
law with mean 0 and variance V(T, F).

Huber’s (1964) minimax property for M-estimators is as follows. Let F, be the
distribution which minimizes Fisher information for location,

I(F) f [(7)%/f] dx, if F has an absolutely continuous density f,

= o0, otherwise,
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328 J. COLLINS AND D. WIENS

over all F in #. If T, denotes the M-estimator which is asymptotically efficient
[i.e, V(T,, F,) = 1/I(F,)] at F,, then the minimum value of sup{V(T, F):
F e #} is 1/1(F,), attained at T,. Thus problem (1) reduces to the problem of
finding the minimum information F, in %. For other classes of estimators,
however, whether or not the minimax property holds [problem (2)] depends on
the neighbourhood % as well as upon the class % of estimators. For L- and
R-estimators, problem (2) consists of determining whether or not

(11 sup{V(T;, F)|F € #} = 1/1(F),

where T, € ¢ is asymptotically efficient for F,. The dual statement
inf(V(T, F))|T € ¢} = 1/I(F,) is, for each class of estimators, an easy conse-
quence of the Cauchy-Schwarz inequality. See Section 4.7 of Huber (1981) for
further background.

The neighbourhood model % which has been most thoroughly studied is the
gross error or e-contamination model %= (F: F = (1 — ¢)G + eH for some
distribution H}, where ¢ is fixed, 0 <e <1, and G is a fixed distribution
symmetric about 0. Complete results have been obtained for problems (1) and (2)
in the special case where G has a strongly unimodal density. See Huber (1964) or
Example 5.2 on page 84 of Huber (1981) for details of the least informative F,
and the corresponding minimax M-estimator in this case. Jaeckel (1971) proved
that the minimax property holds for both L- and R-estimators when G has a
strongly unimodal density. When the condition of strong unimodality of G is
dropped, the results are not as complete. Collins and Wiens (1985) found least
informative distributions in the e-contamination model when G is quite general,
but the corresponding question of whether the minimax property holds for L-
and R-estimators is open and under investigation.

The only other neighbourhood model which has received extensive study is
the Kolmogorov model #= (F|G(x) — ¢ < F(x) < G(x) + ¢ for all x}, where G
is a fixed distribution symmetric about 0 and ¢ > 0 is fixed. The most complete
results pertain to the special case where G is the standard normal distribution ®.
When G = @, the least informative distribution was found by Huber (1964) for
e < 0.0303 and by Sacks and Ylvisaker (1972) for ¢ > 0.0303. In the same paper
Sacks and Ylvisaker also discovered that the minimax property fails for the class
of L-estimators when & > 0.07. Collins (1983) showed that, for the class of
R-estimators, the minimax property holds for all ¢ € (0, ). For the case of G
being a nonnormal distribution, Wiens (1985, 1986) obtained least informative
distributions in Kolmogorov neighbourhoods of nonnormal G, subject to various
regularity conditions.

In Sections 2 and 3, we study minimax variance properties of M-, L- and
R-estimators when # = 2, (G), a Lévy neighbourhood of a distribution G:
(12) 2. 4G)={FIG(x-8)—e<F(x) <G(x+8)+eforall x}.

Here ¢ and § are assumed to be fixed, with 0 < e < ! and § > 0; G is a fixed
distribution symmetric about 0.

The Lévy model, discussed in Chapter 2 of Huber (1981), is an important
neighbourhood structure in robust estimation theory. It is based on the “Lévy
distance,” which metrizes the weak topology [Theorem 3.3 of Huber (1981)].
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From the point of view of practical application, the two-parameter family

2, §(G) allows wide flexibility in modelling the possible departures from G
agalnst which one wishes to protect. The choice § = 0 yields, of course, the
Kolmogorov neighbourhood model as a special case. The choice &¢ = 0 yields a
Lévy band about G whose width at x decreases to 0 as x approaches + co; this
may be a more realistic model than the fixed-width Kolmogorov band.

In Section 2 the distribution F, is found which minimizes Fisher information
over all F in 2 4G). This is carrled out, for all choices of & and 8, under
regularity condltlons on G which are only slightly stronger than strong uni-
modality and which include the normal distribution and the logistic distribution
as special cases. The minimum information F is also found under some less
restrictive conditions on G. The Cauchy and ¢-distributions are then included as
special cases, although the solutions require restrictions on the choice of ¢ and 4.
The minimum information distributions obtained are, not surprisingly, qualita-
tively similar to solutions previously obtained in the special case of Kolmogorov
neighbourhoods by Huber (1964) and Sacks and Ylvisaker (1972) when G = @
and by Wiens (1986) for more general G.

In Section 3, we investigate whether the minimax property also holds for the
R- and L-estimators that are asymptotically efficient at the minimum informa-
tion Fj in 2, s(G). Under the conditions on G of Section 2, it is shown that the
minimax property does hold for R-estimators but fails for L-estimators. The
proof for R-estimators is a direct generalization of Collins’ (1983) proof for the
special case G = ® and 8 = 0. But the proof of the failure of the minimax
property for L-estimators is quite different from the proof of the special case
G = ®, § =0, ¢ > 0.07 given by Sacks and Ylvisaker (1972). Their method was
to show that thereis an F, € £, O((I>) for which V(L,, F,) < V(L,, F,), where L,
denotes the L-estimator whlch is asymptotically efficient at F,. Their method
entails numerical approximations that do not generalize eas1ly Our method
requires no approximations: We show that there is a subset %, C &, (G) over
which V(L,, F) is nonconstant and attains its minimum value at Fj,. The proof
is based on a simple comparison of the influence curve of L, at F;, and at other
F e #,.

In summary, results on the structure of minimum information distributions
and on the minimax property for R- and L-estimators are now fairly complete
for both the e-contamination model and the Lévy neighbourhood model (includ-
ing the special case of the Kolmogorov neighbourhood model). A conspicuous gap
involves the investigation of the minimax property for L- and R-estimators in
e-contamination neighbourhoods of nonstrongly unimodal distributions. A fur-
ther area of useful research is the extension of results on the minimax property
to other neighbourhoods and to other classes of estimators besides M-, L- and
R-estimators. An example of another class, €, of location parameter estimators,
large enough to contain an asymptotically efficient member corresponding to
each F in %, is the class of Cramér—von Mises estimators—see Boos (1981) or
Parr and de Wet (1981) for details. Wiens (1987) has recently proved that the
minimax property holds for € when % is an e-contamination neighbourhood of
a strongly unimodal distribution.
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Another area for further research is to find general conditions on classes of
estimators, %, and on classes of distributions, %, under which the minimax
property holds or fails to hold. This general problem is posed in a paper by Sacks
and Ylvisaker (1982), in which a neighbourhood % is constructed for which the
minimax property fails for both the classes of L-estimators and R-estimators.
Some progress has been made toward obtaining general answers by generalizing
a method implicit in the proof of our Theorem 4.

2. Minimum information distributions in £, ;. Throughout this paper
2, (G) denotes a Lévy neighbourhood as defined by (1 2). We shall assume

AssUMPTION A. The distribution function G(x) is symmetric about 0 and
proper (G(o0) = 1), with an absolutely continuous density g(x) and twice contin-
uously differentiable (except possibly at 0) score function £(x) = —g'(x)/g(x).

In Theorem 1 below, we shall as well assume

AssuMPTION B. The function J(§¢)(x) = 2¢'(x) — £2(x) is strictly decreasing
on (0,0) and £07) > 0.

In Theorem 2, we assume either Assumption B or

AssumpTION C. (i) £(x) is positive and x£(x) is strictly increasing, on (0, ),
(ii) £(x)/x is nonincreasing on (0, c0) and (iii) £{(x) has no local minima in
(A, ), where A is defined by A£(A) = 1.

As in Lemma 1 of Wiens (1986), Assumption B implies that ¢ is positive and
strictly increasing on (0, c0), so that g is strongly unimodal.

Examples of distributions satisfying Assumption B are the logistic, normal
and more generally those with densities g,(x) proportional to exp(— |x|*/k),
1 < k < 2. Some distributions satisfying Assumption C but not Assumption B
are the Student’s ¢ and those with densities g,(x), £ < 1.

The motivation behind Theorems 1 and 2 below is discussed in Wiens (1985,
1986), where they were proved for 8 = 0. Recall [Huber (1981)] that the neces-
sary and sufficient condition for F, € 2, ; to minimize information there is

(2.1) [~ ) () d(F = B)(x) = 0

for all F € Z, ; with I(F) < oo, where ¥y = —f/fo.

The proofs of Theorems 1 and 2, together with some tables of numerical
values of the constants in the case G = ®, may be found in a technical report by
Collins and Wiens (1986). The proofs consist of showing that, in each case, the
exhibited F, exists, belongs to &, ; and satisfies (2.1).

THEOREM 1. Make Assumptions A and B. Then there is a positive number
ex, depending upon G, and a function 8.(¢), such that for 0 < e <&, and
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0 < 8 < 84(¢), the minimum information F, € 2, (G) has density f, and score
function ¥, = —f /f, given by
gla=8) s
cos?(A,a/2) s x€[0,a],
folx) = fo(—x) =

g(x —9), x € (a,b),
g(b - 8)exp(—Ay(x — b)), x€[b, ),
and
Ax
A, tan - x €0, a],
Yo(x) = —¢o(—x) = £(x - 8), xe'(a,b), .
A, x€[b,o),

where Ay, = £(b — 9).

The three constants a, b and A, (b > a > §, A\| > 0) are determined in terms
of 8§ and e by the conditions

) Fya) = G(a—3) —¢,
(ii) Fy(e0) = 1,

\a
(iii) )\ltanT =¢(a - 9).

The curve 8 ,(¢) is decreasing from oo at e = 0 to 0 at ¢ = ¢, and is defined by
(1)—(iii) together with b = a.

THEOREM 2. Make Assumption A and either Assumption B or Assumption
C. Then there is a positive number ¢,, depending upon G, such that for all
€ € [e4, 3] and all § € [0, ), the minimum information F, € Z, (G) has den-
sity and score function given by

gla —39) 2>‘1x
—5 T Cos —,

fo(x) = fo(=x) = { cos*(A,a/2) 2
gla — 8)exp(—A(x — a)), x € (a,»),

x€[0,a],

and

A ta A [0,a]
— e
box) = —volx) = (Mg weloal

A, x € (a, ),

where A = X\ tan(\,a/2). The constants a and A, are determined by (i) Fy(a) =
G(a — 8) — e and (i) Fy(o) =1 and satisfy as well (ili") A, tan(A;a/2) <
£(a — 0).
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If Assumption B holds, then this e, coincides with that of Theorem 1. The
solution is then also valid for 0 < & < ¢4, 84(¢) < &8 < oo, where 8,(¢) is as in
Theorem 1.

COROLLARY 1. Under Assumptions A and B, the minimum information
Fy, € 2, 5 is as described by Theorem 1, for 0 < e < ¢, 0 < § < 8,(¢), and by
Theorem 2, for all remaining ¢ < 3, 8 < oo.

REMARK 1. In both Theorems 1 and 2, the minimum information F, has the
property that on each interval of x’s for which Fy(x) does not coincide with a
boundary of the Lévy band, the corresponding ¢ (x) is a solution to a differen-
tial equation of form J(y,) = 2y} — ¢2 = constant. The minimum information
distributions of Theorems 1 and 2 share the following common feature with the
cases discussed in Section 1: namely, that Huber’s variational condition (2.1)
forces J(¢,) to be constant on each interval where F, can vary freely.

REMARK 2. In the proof of each of Theorem 1 and Theorem 2, the easy part
is the verification that the exhibited F satisfies (2.1); the hard part is showing
that F, lies in &, ;. For this part, the assumptions on G (Assumption A, along
with either Assumption B or Assumption C) are strongly required in the proof.
Although these sufficient conditions on G may not be necessary, one can easily
construct G’s for which the assumptions are violated and the conclusions of the
theorems fail.

REMARK 3. Corollary 1 applies to the logistic and normal distributions and
more generally to those with densities g,(x), 1 < 2 < 2. For the Laplace distri-
bution (& = 1) it applies as well, with ¢, = 0.

REMARK 4. For the special case P, (@), the solution is as in Theorem 1 for
e < gy = 0.02556, and as in Theorem 2for e € [£0, 3]. For € < ¢, this was also
proved by Kabatepe (1985), who as well correctly conjectured the form of the
solution for ¢ > ¢,.

3. Minimax properties of M-, R- and L-estimators. Consider the M-, R-
and L-estimators of 6 which are asymptotically efficient at the minimum
information K, in 2, (G). Using the definitions and notation of Chapter 3 of
Huber (1981), the eﬂiment M-, R- and L-estimators have score functions

Yo(x) = —fg'(x)/fo(x),
Jo(u) = bo( By '(w))
and
mo(u) = ¥o[Fs {(w)] /1(Fy),
respectively. It follows from general theory (see the introductory remarks) that

the minimum possible value (among all M-estimators of #) of the supremum of
the asymptotic variance as F ranges over 2, s 18 1/I(F,), attained by ¢, at K.



MINIMAX PROPERTIES OF ESTIMATORS 333

We now check whether this minimax property also holds for the R- and
L-estimators which are asymptotically efficient at F,. Throughout this section
we shall use the usual formulas for the asymptotic variances of R- and L-estima-
tors without discussion of the regularity conditions under which asymptotic
normality holds. For such regularity conditions, see Huber (1981) or Serfling
(1980).

Consider first the R-estimator with score function Jy(u) = Yo(Fy (u)),
0 < u < 1. Its asymptotic variance, under those distributions F in 2, G) with
absolutely continuous density f, is given by

JIRF(x)] f(x) dx

(3.1) V(y, F) = —.
[—fJolF(x)] f'(x) dx

THEOREM 3. Suppose that F, is the minimum information distribution in
2, 5(G) which is either: (i) given by Theorem 1 under Assumptions A and B or
(ii) given by Theorem 2 under Assumption A and either Assumption B or
Assumption C. Then, with J;, defined by J(u) = Y[ Fy '(v)], V(Jy, F) is maxi-
mized over 2, G) at F,, so that (1.1) and the minimax property hold.

PROOF. See the proof of Theorem 3 in Collins and Wiens (1986). We remark
that the omitted proof is closely patterned after the proof of the special case
G = @, § = 0 on page 1193 of Collins (1983). O

Now consider the L-estimator with' score function my(u) = y{[ Fy Y(u)]/I(F,)
for u € (0,1). The asymptotic variance of this estimator under F € 2 5G)is

V(m,, F) = fIC?(x; F) dF,
where the influence curve IC(x; F') is given by

10(x; F) = [* mo(F(»)dy ~ [* [1 = F()]m(F(5)) db.

Note that V(m,, F) can be written as EpIC* X; F) = VaryIC(X; F), where X
is a random variable with distribution F, since E IC(X; F) =0 for all F €
2, 5(G). A useful alternative version is

IC(F\(u); F) = —/1{I[u <t] - t)my(t) dF-(¢).
0
If F is continuous, we then have

V(mq, F) = Var, [IC(F~(U); F)],

where U denotes a uniform random variable on [0,1]. Note also that
IC(Fy Y(u); Fy) = (Fy (w)/I(Fy), with V(m, Fy) = 1/1(F,).
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THEOREM 4. Suppose that F, is the minimum information distribution in
2, (G) under the conditions of either Theorem 1 or Theorem 2. Then with
mo(u) = W[ Fy (w)]/I(Fy), we have that

sup{V(m,, F): Fe2? (G)} > V(my, F,),

so that (1.1) and the minimax property fail for L-estimators.

Proor. Under the conditions of either Theorem 1 or Theorem 2, define a
subset #, of Z, 4(G) as follows:

Fy = {F € 2, (G)|F is continuous and F(x) = Fy(x) whenever |x| > a}.

We will show that V(m,, F) is nonconstant on %, and attains its minimum
value there at F,. The first part of the proof will be to show that, for all F € %,

(3:2) Cov[IC(F ' (U); F), IC(Fy'(U); Ry)] = Var[ IC(F; (U); Fy)].
Then (3.2) immediately implies that
(33) V(my, Fy) = 05V(mo, F),

where py is the correlation between IC(Fy Y(U); F,) and IC(F~YU); F). The
second part, completing the proof of the theorem, will be to show that p% = 1 for
an F €%, if and only if F = F.

To show that (3.2) holds for all F in %, we first set

w(u,t) = —{Ifu < t] - thmo(2).

Then for F € %,, we calculate that
[1(F)]*{Cov[IC(F~\(U); F), IC(F; \(U); )] — Var[IC(Fy (U); R}
= I*(Fy) [ IC(Fy(w); B){IC(F(); F) — IC(Fy(w); Fy) ) du
Gay = PE) [ ol s)dB ) ['aw 0 d(F(0) - F(0) da
= P(R) ['{ 1 ) [ ', 5) dFs o) daf d(F(0) = F(0)
- I(FO)/Ol{fOln(u, £ ol Fy Y(u) du} d(F(t) - F;\(2)).

The second-to-last step in (3.4) follows from Fubini’s theorem. The change of
variables ¢t = F(z) and u = F(z) yields that (3.4) is equal to

[~ K(z)d(ai'(z) - 2),
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where g5 (z) = F~Y(Fy(z)) and

K(2) = I(E) [~ n(Fy(x), Fy(2))o(x) dFy(x)
= [ i)z < 2) - Fy2)] dx

= ¥5(2) fo(2)-
So to show that (3.2) holds for all F € %, it suffices to show that
(3.5) | w2 (2)d(gr'(z) —2) =0

for all F € %,. But (3.5) follows immediately from the fact that y{(z)f,(z) = C,
for |z| < a and that qz(z) = z for |z| > a by the definition of %,.

Now suppose that F is a member of %, for which p% = 1. We need to show
that this implies that F = F,. But p% = 1, together with E[IC(F~Y(u); F)] =
E[IC(F;Y(u); F)]=0 lmphes that IC(F~Yu); F) = IC(F; ((u); F,) ae. u e
[0, 1], or equivalently,

[lmo() d(F(t) - Fy'(2))
(3.6) 0

- flmo(t) d(F~\(t) - Fy(t)) ae.ue[0,1].

Letting u — 1 shows that the right s1de of (3.6)is 0 a.e. u € [0, 1]. The change of
variable t = Fi(z) then yields

(3.7) j:lu%(z)d(q;l(z) —2)=0 ae uel[0,1].

But since ¢z '(2) = z for |z| > @ and y{(2) > 0 for |z| < a, (3.7) forces gz (2) =
z for |z| < a. Thus F(z) = F(z) for all z, and this completes the proof of the
theorem. O
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