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EMPIRICAL PROCESSES BASED UPON RESIDUALS FROM
ERRORS-IN-VARIABLES REGRESSIONS!

By STEPHEN M. MILLER
U.S. Bureau of Labor Statistics

Multivariate errors-in-variables regression models with normal errors are
considered and residuals, similar to those calculated from ordinary least
_squares regressions, are defined for these models. It is shown that under the
assumption of a n!/2-consistent estimator of the vector of regression coeffi-
cients, certain empirical processes based upon the residuals converge to the
same Gaussian process as that of an infinite sequence of normal random
variables standardized by their sample mean sample variance.

1. Introduction. There has been considerable interest during the last ten
years in the behavior of empirical distribution functions based on regression
residuals. Much of this interest stems from the desire to use residuals in place of
unobservable experimental errors in goodness-of-fit tests, often with a specific
interest in tests of normality. The early work of Durbin (1973), Rao and
Sethuraman (1975), and Neuhaus (1976) set the stage by examining empirical
processes when parameters of the underlying distribution function were esti-
mated. Mugantseva (1977) and Pierce and Kopecky (1979) were the first to
derive the limiting distribution of the sample empirical process based on least
squares residuals. Shorack (1984) extended these results to the general class of
residuals based on n!/2-consistent estimators of the regression coefficients. [See
also Section 4.6 in Shorack and Wellner (1986).] Wood (1984, 1981a) had earlier
examined the special cases of ridge regression and multiple regression. Portnoy
(1986) has examined the situation where the number of regression parameters is
large and Loynes (1980) looked at the weak convergence of processes based on
generalized residuals defined by Cox and Snell (1968). In all of these papers the
authors have concentrated on regression models with only one dependent vari-
able and where the independent variables are measured without error, though
they did not always assume normally distributed equation errors as we will in
the present, more complicated situation.

In this paper we further generalize the theory of empirical processes based on
residuals to the case of multivariate errors-in-variables regression models. These
models are defined by 4

Yt
(1.1) X,

x,B+e,

=Xx,+u, t=1,...,n,
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where Y, and X, are observable random vectors of dimensions 1 X r and 1 X k&,
respectively. The & X r matrix B contains the unknown regression coefficients.
We assume that k and r are fixed. The sequence of 1 X k true vectors x, (the
values of which may vary with the sample size) is not directly observable because
of the 1 X k vectors of unobservable measurement errors u,. The presence of the
measurement errors u, distinguishes model (1.1) from the usual multivariate
regression model which assumes that the true x, are observed directly. The 1 X r
vectors e, are also unobservable and can arise from both measurement error and
equation error. Equation error represents the fact that the linear relation
between Y, and x, in (1.1) may not hold exactly.
We can write model (1.1) as

(1.2) Y=XB+v

v,=e,—u,p, t=1,...,n.
In this formulation the model looks like the usual multivariate regression model,
except that X, and v, are correlated due to the measurement error in X,. As in
the usual multivariate regression model if B is known, the vector v, becomes
observable since

(1.3) v,=Y,-XB, ¢t=1,...,n.
In practice we can only obtain an estimate B of B, so we define
(1.4) 4,=Y,-XpB, t=1,...,n,

and call these the residual vectors from models (1.1) and (1.2). These residuals
have been suggested by Fuller (1987) for model checking, and the limiting
behavior of several diagnostic procedures based on (1.4) have been examined by
Miller (1986a). In this paper we examine the limiting behavior of empirical
processes based upon the residuals of (1.4). Applications of our results to
composite goodness-of-fit tests for normality are briefly discussed in Section 4
and have been previously discussed in Miller (1986b).

In the next section we present our assumptions, and define some additional
notation. The main theorems are presented in Section 3 and additional technical
results are given in the Appendix.

2. Assumptions and notation. We begin by stating our assumptions about
the distribution of the errors in (1.1), the properties of the vectors x, and the
estimator B used in defining (1.4).

AssuMPTION 1. Let e, = (e, u,) and p =k + r. The ¢, are independent
N,(0, £.,) random vectors.

Assumption 1 implies that the vectors v, are independent N, (0, Z,,) random
vectors, where

zvv = 2ee - B/Eue - zeuB + B,EuuB’

(2.1) 2 — [Eee zeu]
3. =

€€
ue uu



284 S. M. MILLER

We allow 2, to be singular, but require 2, to be positive definite. An example
involving singular 2, is when the model contains an intercept, so =, contains a
corresponding row and column of 0’s.

AssuMPTION 2. The x, are independent of the & ; for all ¢t and j and the
sequence of vectors x, satisfies the condition

(2.2) m, —>m, as.,

where m_, is a finite 2 X & nonnegative definite matrix and
: n

m,=(n-1)" ¥ (x,~ X(x,~ %),

t=1

x=n'} x,

(2.3)

Throughout this paper, m,, denotes the corrected cross product matrix with
divisor (n — 1) for any sequence of vectors a, and b,, t = 1,..., n.

Assumption 2 allows the x, vectors to be quite general, with the possibility of
having both fixed and random components as well as correlation between
observations. The most common cases are the functional model (fixed x,), the
structural model (random x,) and the wuitrastructural model (random x, with
possibly different means). As examples, the usual multivariate regression model
is a special case of the functional model with ,, = 0 and the factor model is a
special case of the structural model with =, a diagonal matrix.

AssuMPTION 3. B is any estimator such that f — B = O, (n~1?).

Methods for producing n'/2-consistent estimators can be found in Fuller
(1987), Amemiya and Fuller (1984) and Gleser (1981).
It will be useful to define two additional random vectors, namely,
x,=X,-vZE I3 , t=1,...,n,

(24)

.. _ _1 _ .
X=X, — vtiowiiED(i)u, t=1,...,n,1=1,...,r,

where = = E{v/u,}, 0,,,; = V{v,} and 2 iyu = E{v,u,}. Both random vectors
are predictors of the true vector x,. The vector %, is constructed by subtracting
from X, the best predictor, under normality, of u, given the entire vector v,,
while %,;, is constructed by subtracting the best predictor of u, given only v,,.
From Assumptions 1 and 2 it follows that %, and v, are independent for all ¢ and
J, while %, ;) and v;; are independent for all ¢ and j given i =1,..., r.

Finally we define the sample covariance matrix of the residual vectors for
n > k by

n

S, =(n—k)" X (8- 9)(%,- %),

t=1
n
=n"! Z \/
t=1

(2.5)

<l
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and we define the marginally standardized residual vectors by
(2.6) so¥(6,—%,), t=1,...,n,i=1,...,r,

oou

where s,,;; = (S,,);;- We also define the jointly standardized residual vectors by
(2.7) (%, - 9)82%,  t=1,...,n

Throughout this paper, M!/2 denotes the symmetric square root of the matrix M.
Finally, we define diag(M) to be a matrix with diagonal elements equal to those
of M but with off-diagonal elements equal to 0.

3. Main results. We first present two lemmas which give representations of
the marginally standardized and jointly standardized residual vectors. While
interesting in their own right, these lemmas will later form the basis for the
proofs of our main theorems.

LEMMA 3.1. The marginally standardized residuals can be represented as

Sovoluﬂ(vn - 5;) = (Uu‘ - 6')m;vli{2(1 + ani) + (it(i) - jt(i))Bni:

a.. = m/2 ~1/2[1 sl (Bl_ B;)] -1,

ni vvu voll Opovii o(i)u

ni ;vlu/2(B - B )
where B,, = O,(n"'?), @p = 0y(n71%), m,; = (m,,); and B, B; are the ith
columns of B, B, respectively.

o}
II

Proor. We can write

0, =Y, — X,B

(3.1) = v, — X,(B, - 8)
= Uti[l vvuzv(t)u(B - Bz)] - j.(t(i)(ﬁi - B;)

The representation in terms of a,;, and B,; now follows by algebra. The order
result for B,; follows from Assumption 3. Using (3.1) we can write

OruiSoirul B = B)]” + 0,(n712),

voil [ Opvii o()u

(3.2) Sppii = M

ool

where we used the fact that the sample covariance between x «iy and vy is 0,(1),
in determining the order of the remainder. The order result for a,; now follows
from (3.2). O

LEMMA 3.2. The jointly standardized residuals can be represented as
(%, — ¥)8;12 = (v, - ¥)m; V21, + A ) + (%, — %)B,,
A, =m[l - 2)%,(B - B)]s; - 1,
B, = —(B-B)S,.'?
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where B, = O, (n"'/?) and A, has off-diagonal elements which are O, )(n= %)
and dzagonal elements which are o (n'l/ 2.

ProOF. We can write the residual vectors as
% =Y,-Xp
(33) =v,~X,(B-B)
=v[L, - 232,,(B - B)] - %(B - B).

The representation in terms of A, and B, now follows by algebra. The result
B, = O,(n~'/?) follows by Assumption 3. By (3.3) we can write

(3.4) 8, = [1, = T2 (B - B)'m, [T, - Z2,.(B - B)] + 0,(n %),

where we used the fact that the sample covariance between %, and v, is 0,(1), in
determining the order of the remainder. Now define

(3'5) 1/2 [I vu( Q - B )] Sv_vl/2'

It follows that Q, = I, + 0,(n~ 1/"’) and by (34), Q,Q, =1, + o,(n"'/?). By
Lemma A in the Appendix, it follows that diag(Q, —I,) =o (n 1/2), Since
A, =Q, — I, the order results for A, are established. O

The key result of Lemma 3.2 is that the stochastic order of the diagonal
elements of the matrix A, is o,(n~ 172y which is of smaller order than the rest of
the matrix. This is a generahzatlon of the o,(n~"/?) result for a,; from Lemma
3.1.

Before presenting our main theorems we need to introduce the Gaussian
process W. Let R,,..., R, be independent N(p,o?) random variables with
62 > 0. Define for w € [0, 1],

w)=n"12 3 <w|l—w
(3.6) B,(w) t§1{1[(b(zt) ] -},
Z,=s"(R,—R), t=1,...,n

where 1(-) is the indicator function, ® is the standard normal distribution
function and s?> = (n — 1)"'?_ (R, — R)% Then B, -, W as n — o, where
—, denotes weak convergence in the Skorohod space D[0,1] and W is a
Gaussian process on [0, 1] with mean and covariance function given by

E{W(w)} =0 forwe[0,1],
E{W(w)W(w,)} = min(w;, w,) — 0w,
—[1+ 527X (0) 2 ()]
x¢[@ 7 (w))]o[@ ()]

for w,, w, € [0,1], where ¢ is the standard normal density function. This result
can be found in Kac, Kiefer and Wolfowitz (1955).

(3.7)
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We are now ready to present our main theorems. Theorem 3.1 describes the
limiting behavior of empirical processes based on the components of the margi-
nally standardized residual vectors.

THEOREM 3.1. Denote the marginally standardized residuals by

Zy;
and for w € [0,1] define

_ o—1/2( A A _ -
=5V (vti—vi), t=1,...,n,i=1,...,r,

W(w) =n"12Y (1[®(Z,) < 0] - «}, i=1,...,r.
t=1
Then W,;, >, Wasn — o fori=1,...,r.

Proor. By Lemma 3.1 the marginally standardized residuals for i = 1,..., r
have a representation which satisfies the conditions of Theorem A in the
Appendix, so the result follows by that theorem in conjunction with the result of
Kac, Kiefer and Wolfowitz (1955) mentioned above. O

Note that Theorem 3.1 deals with the convergence of each of the process W,;
separately and does not describe their joint behavior. While each process individ-
ually has the same limiting distribution, when treated jointly the limiting
processes are correlated. This joint correlation disappears in our next Theorem
3.2 where we consider the limiting behavior of processes based on the compo-
nents of the jointly standardized residual vectors.

THEOREM 3.2. Denote the jointly standardized residuals by
Z,=(%,-9)8; V%,  t=1,..,n,
where Z,= (Z,,...,Z,.) and for v € [0,1] define
W,(w) =n"2Y (1[®(Z,) < ] - «}, i=1,...,r.
t=1

Then W,,—», W as n > oo for i=1,...,r and the limiting processes are
independent.

ProoF. Define the random vector |
(3.8) g =v212 =1,...,n,

so that £, are independent N,(0,I,) random vectors. Using Lemma 3.2 we can
write

Z,= (gt - é)me_sl/ZQn(Ir +A,)+ (it - X)Bn’

_ l/egl 2. —-1/2 _ -1/2 —12\V2(g1/2... - 1/2
Qn_ g/gzo{)m / _(zoo/m 2 /) (20{)11’1 /)'

vY oL v oY

(3.9)

Notice that Q,, is an orthogonal matrix converging in probability to I, at the
rate O,(n~'/?). For notational convenience we write the (i, /)th element of the
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matrix m;'/?Q,(I, + A,) as

(310) [me_&l/2Qn(Ir + An)] il = Z Z mt*jqjk(skl + akl)a

j=1k=1
where a,,, q; and m} are elements of the matrices A,, Q, and mg'/?
respectively, and 8,, = 1 if 2 = [/ and 0 otherwise. First examine the case where
i = [. Then

(311) [mg_fl/an(Ir + An)] Z (1 + au)mU(Iﬂ + Z Z ml_]qjkakl
J=1Fk=*i

From Lemma 3.2 a; = o, (n~ 1/2) and a,; = O(n~'/?) when k +# i. From the
definition of mp/ 2" e have m} = 0,(n"Y 2) when i #j and by applying
Lemma A to the matrix m;'/2 {dlag(mgé)}l/ 2 weobtain m} = mgl/? + 0,(n”"'/?),
where m,i/? is the reciprocal of the square root of the sample variance of £,
t=1,...,n. From the definition of Q, and by Lemma A we have g =
1+ op(n‘l/ %) and q;; = O, (n"'/?) when i # j. Thus there exist random vari-
ables c,; such that

(3'12) [mg§1/2Qn(Ir + An)] 0 (1 + cni)mg_s%i/zy i= 1,. PR A
where ¢,; = 0,(n~'/?). Returning to (3.9) we define the random variables d
(3.13) dur = [mz2Q, (L + A, i+l

and note that d,; = O,(n~'/?) for i # L. Letting b,; denote the ith column of
B,,, we can represent the components of Z, as

by

nil

(8.14) Z;= (1 +c,)mpi* (4, — &) + X dnji(gtj - 5_1) ~ (%~ %)b,;,
J#i
fort=1,...,nand i=1,...,r.
Since £, is independent of %X, and §,; for j# i the convergence result
W, =29 Wior i=1,..., r follows from Theorem A in the Appendix (using the
order properties established for ¢, ;, d_ .. and b ,) in conjunction with the Kac,

ni» “nij
Kiefer and Wolfowitz (1955) result mentioned prior to Theorem 3.1. The inde-
pendence of the limiting processes follows from the independence of &,,,..., &,,.
O

Theorem 3.2 has an interesting corolla}y. Let % be a fixed subset of {1,..., r}
and let m be the number of elements of &. Using the notation of Theorem 3.2,
define for w € [1,0]

(3.15) Wop(w) =m™2 Y W,(w)

ies
Then W, —, W as n = oo. In the special case &= {1,..., r} we get that

(3.16) (m) 2 Y T (1[8(Z) < 0] - @) =0 W

i=1¢t=1
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This is similar to a result by Wood (1981b) who proved (3.16) for the case
when Z,; is the ith component of

(3.17) Z,=myy/3(Y,-Y), t=1,...,n,
and Y,,...,Y, are independent N,(p, ) random vectors with positive definite =.

4. Applications to tests of normality. A consequence of Theorem 3.1 and
Theorem 3.2 is that we can easily construct weak convergence results for
functions of D[0, 1] which are continuous with respect to the Skorohod topology
(except at possibly a set of probability 0 with respect to the distribution of the
limiting process W). In particular, if T is such a function and W, is one of the
sample processes in either Theorem 3.1 or Theorem 3.2, then T(W,) —, T(W).
Many tests of normality, based on residuals, can be written as functions of
sample processes and their theoretical limiting distributions can be expressed in
this way. Fortunately, tables have already been constructed which contain
percentage points for the limiting distributions of the most commonly used tests.

In practice we have used the marginally standardized residuals to construct
tests of marginal normality for components of the vectors v, and sometimes
combined these tests by using Bonferroni’s inequality to test for multivariate
normality. We have also used the jointly standardized residuals to test for
multivariate normality of the vectors v, by combining components into groups as
described in (3.15) and (3.16). The most common choice of groupings has been to
either combine all the components together into a single group or form r groups
based upon each component separately. Our overall recommendation is that if
someone is comfortable with using a particular large sample test in the usual
regression setting, then they should also feel comfortable with the same test
when applied to errors-in-variables residuals.

APPENDIX

LEMMA A. Let Q, be a random r X r matrix such that Q, =1, + O, (a,)
and diag(Q,Q,) = I, + o,(a,) for a sequence of positive real numbers {a,};_,
decreasing to 0. Then diag(Q, — I,) = 0,(a,).

Proor. Let A, =Q, —I,. Then
so diag(4), + A,) = o,(a,) since diag(A7,A,) = O,(a2). Thus
2diag(Q, — I,) = diag(4d, + A,) = o,(a,). O
THEOREM A. Let §,,..., &, be independent N(p, 02) random variables with

0% > 0 and independent of the random 1 X k vectors (n,,...,n,) where m, -
m, a.s., and m,, is a nonnegative definite matrix. Let B, be a random k X 1
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vector such that B, = O,(n"'/?) and a, a random variable such that a, =
0,(n~'?). Define fort=1,...,n,

Zt = (1 + an)mggl/2(£t - g_) + (nt - ﬁ)Bna
;= mg_sl/z(gt - g_)
and define for w € [0,1]

W(0) =n2 Y (1[8(2,) < o] - o},

Wx(w) =n"2 ) {1[®(Z}*) < 0] — w}.

Then
sup |W;*(w) — W(w)l = 0,(1).

we([0,1]

Proor. We sketch the proof which is given in detail in Miller (1986a). For
w € [0,1] we can write

Wy(w) =n"12 é{l[mggﬂ(g, —E)<(1+c)? o)

(A.2)

+(T|t - ﬁ)Dn] - w} + Op(1)1
where ¢, = 0 and D, =0 when @, = —1and ¢, = —(1 + a,) 'a, = o(n"/?),
D,= -1 +a,) 'B,=0,(n"'/?) when a, # —1. The remainder is 0,(1) uni-

formly over w € [0,1] since P{(1 + a,) < 0} = 0 as n — co. After some algebra
we can write

(A3)  Wy(w) = W) + W(0) + Wp,(0) = Wa,(w) + 0,(1),

where the remainder is 0,(1) uniformly over w € [0,1] and the other terms are
given by

Win(w) =n 2 3 (®[z(0)] — @[ 5n()]),

Wy () = n-1/2 éh{u < 0[zp(w)])
~1{T, 2 6} - B[z(0)] + o],

(A4)  Wy(w)=n2 T [1{U, = [ 5(e)])

~1{U, < 0} = @[y(0)] + o],
Yo(w) =07 H(E—p) + (o_2m§§)l/2(l>‘1(w),
2i(@) = y(w) + [(D_l(w)cn + (m, — ?|)Dn](o_2m&e
U= ®[o7'(¢,— w)].

We will next show that sup, g 13| W;(w)| = 0,(1) for i =1,2,3 which will
complete the proof.

)1/2

b
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By Taylor’s theorem we can write
Win(©) = /%9 3,(0)] @ (w) (0~ my

+n~1/2 é 1/ [v2(0){® N(w)e, + (n, — 7)D,} (07 2mg),

)1/2

(A5)

where v,*(w) is a random variable on the line segment joining z,,(w) and y,(w).
The result sup,, ¢ g, 13| Wi.(@)| = 0,(1) follows after tedious algebra by repeatedly
using the bound

(A.6) sup [x?p(a + bx)| < |b|P(ja| + 4p)”
x€ER

(for positive integer p and real numbers a¢ and b # 0) and the fact that

n~t Y i(n, = )D,|?=0,(n"V?) forg=1
(A7) t=1

=0,(n7") forg=2,3,....
The bound in (A.6) is from Miller (1986a) and can be derived by differentiating
and maximizing the left-hand side.

We next examine W, (w) and W,,(w). Note that W, (w) is a special case of
W,,(w) since W, (w) reduces to W;,(w) if ¢, and D, are uniquely 0. Thus we are
done if we can show that sup, ¢ g, 13 W.(@)| = 0,(1), since this would imply the
same result for W,,(w). Our method of proof will involve only a slight modifica-
tion to the approach of Rao and Sethuraman (1975). First define

(A.8) Zn(@38) =& + (1 +8)2 7 Hw) + (m, — W),
where § = ({1, {5, §3) and { € R**2 By analogy also define W,,(w; {) in terms of
z,(w; §). Note that z,,(w) = z,,(w; f) and W,,(w) = W,,(w; f), where
fl = o_l(g_ - I-"):
(A.9) =0+ cn)(o_2m&)l/2 -1,
g, = Dn(0_2m$£)1/2.

For ¢ > 0 we can find an L, > 0 such that for all n, P§ € C,,) > 1 —¢,
where C,, is a hypercube in R%*2 centered at the origin with sides of length
2L .n"1'/2 Now note that

(A10) P{ sup [Wy(0) > ef <P{ sup sup [Wy,(@;§) > e} +e.
wel0,1] w€[0,1]1 ¥ €C,,

We will be done if we can show that the right-hand side of (A.10) converges to
as n — oo. Further, we are done if we can show that

(a11)  P| sup sup|vv2,,<w;c>|>s|{n,}:‘:1]—+o as n - oo
wel0,11¢€C,,

for almost every sequence {n,}2;. In fact the proof (A.11) only requires the
almost sure convergence m, — m, which was part of the statement of



292 S. M. MILLER

Theorem A. Now (A.11) follows by exactly the same method used to prove
Lemma 1 of Loynes (1980), so we do not repeat it here.

Acknowledgments. I would like to thank two referees and an Associate
Editor for their helpful comments. I would also like to thank Wayne Fuller for
suggesting the topic to me and for his help while conducting the research.

REFERENCES

AMEMIYA, Y. and FULLER, W. A. (1984). Estimation for the multivariate errors-in-variables model
with estimated error covariance matrix. Ann. Statist. 12 497-509.

Cox, D. R. and SNELL, E. J. (1968). A general definition of residuals (with discussion). <J. Roy.
Statist. Soc. Ser. B 30 248-275.

DURBIN, J. (1973). Weak convergence of the sample distribution function when parameters are
estimated. Ann. Statist. 1 279-290.

FULLER, W. A. (1987). Measurement Error Models. Wiley, New York.

GLESER, L. J. (1981). Estimation in a multivariate errors-in-variables regression model: Large sample
results. Ann. Statist. 9 24-44.

Kac, M., KIEFER, J. and WOLFOWITZ, J. (1955). On tests of normality and other tests of goodness-of-
fit based on distance methods. Ann. Math. Statist. 26 189-211.

LoyNEs, R. M. (1980). The empirical distribution function of residuals from generalised regression.
Ann. Statist. 8 285-298.

MILLER, S. M. (1986a). The limiting behavior of residuals from measurement error regressions. Ph.D.
dissertation, lowa State Univ.

MILLER, S. M. (1986b). Tests for normality in errors-in-variables regression models. Proc. Bus.
Econ. Statist. Sec. 567-571. Amer. Statist. Assoc., Washington.

MUGANTSEVA, L. A. (1977). Testing normality in one dimensional and multi-dimensional linear
regression. Theory Probab. Appl. 22 591-602.

NEUHAUS, G. (1976). Weak convergence under contiguous alternatives of the empirical process when
parameters are estimated: The D, approach. Empirical Distributions and Processes.
Lecture Notes in Math. 566 68—82. Springer, New York.

PIERCE, D. and KoPECKY, K. (1979). Testing goodness-of-fit for the distribution of errors in
regression models. Biometrika 66 1-6.

PORTNOY, S. (1986). Asymptotic behavior of the empiric distribution of M-estimated residuals from
a regression model with many parameters. Ann. Statist. 14 1152-1170.

Rao, J. S. and SETHURAMAN, J. (1975). Weak convergence of empirical distribution functions of
random variables subject to perturbations and scale factors. Ann. Statist. 3 299-313.

SHORACK, G. R. (1984). Empirical and rank processes of observations and residuals. Canad. J.
Statist. 12 319-332.

SHORACK, G. R. and WELLNER, J. A. (1986). Empirical Processes with Applications to Statistics.
Wiley, New York.

Woop, C. L. (1981a). On tests for normality of experimental error in multiple regression. Technical
Report 185, Dept. Statistics, Univ. Kentucky.

Woobp, C. L. (1981b). Goodness-of-fit for multivariate normality. Technical Report 182, Dept.
Statistics, Univ. Kentucky.

Woop, C. L. (1984). On test of normality of experimental error in ridge regression. <J. Statist. Plann.
Inference 9 367-374.

OFFICE OF RESEARCH AND EVALUATION
BUREAU OF LABOR STATISTICS

U.S. DEPARTMENT OF LABOR

441 G STREET N.W.

WasHINGTON, D.C. 20212



