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ON THE STRUCTURE OF TRANSFORMATION MODELS

By NiELs CHRISTIAN BANG JESPERSEN
Institute of Mathematical Statistics, University of Copenhagen

In this paper we characterize transformation models by means of the
functional form of the densities. We discuss sufficiency of the pair (¢, 7)
where ¢ is an equivariant estimator and = is a maximal invariant. Further-
more, we introduce and discuss the algebraic concept of structural sufficiency.
This gives rise to an example of a transformation model where (t,m) is
nonsufficient.

1. Introduction. In the analysis of statistical models it is sometimes con-
venient to make use of invariance properties of the model in question. For
instance, the invariance principle (see Lehmann [20] or Hall, Wijsman and
Ghosh [16]) is a widely accepted and frequently used statistical tool. Closely
related to this concept is the notion of transformation models. Let £ be a
sample space, © a parameter set and G a group acting on E and . In our setup
a transformation model is a family of probability measures (Py), ¢ with the
property

(1.1) V€O VgeG: Py(A) = Pg'A)

for measurable sets A. .

Though much attention has been given to the study of particular transforma-
tion models (see, e.g., Andersson, Brens and Jensen [5], Andersson and Perlman
[4], Eriksen [14] or Jensen [18]) a more general treatment of transformation
models has only been given in some special cases (see, e.g., Barndorff-Nielsen,
Blaesild, Jensen and Jergensen [8], Eaton [12], Eriksen [13], Fraser [15], Roy [22]
and Rukhin [23]) using different setups. The aim of this paper is to introduce a
basic setup for general transformation models. In this setup we will characterize
the models (1.1) by means of their densities. Furthermore we will discuss the
concept of unique maximum likelihood estimation. If t: E — ©® is a MLE and 7
is a maximal invariant it is sometimes assumed that (¢, 7) is sufficient (see, e.g.,
Barndorff-Nielsen [6] and [7] and Barndorff-Nielsen, Blesild, Jensen and
Jergensen [8]). We will give conditions ensuring (¢, 7) to be sufficient and, by a
nontrivial example, show that (¢, 7) is indeed not always sufficient.

In this paper we will make some apparently harmless topological regularity
assumptions. These assumptions are nevertheless strong enough to imply that
the results, proofs, etc., almost only depend on the algebraic structure of the
groups and actions involved. We will rely heavily on the theory of invariant
measures and group theory at a fairly elementary level. For an extensive
exposition of the theory of invariant measures see Bourbaki [10] or Reiter [21].
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196 N. C. B. JESPERSEN

For a more introductory exposition see Andersson [2]. In the theory of invariant
measures the notion of a proper action appears naturally. For more comments on
proper actions see Andersson [3] and Wijsman [25].

It should be stressed that readers not familiar with topology and the theory of
invariant measures can read the paper disregarding the details and still be able
to understand the main results.

2. Characterization of transformation models. At first, we will state the
basic assumptions used throughout this paper and introduce some notation. A
locally compact topological space (group) with a denumerable basis for the
topology is usually called a LCD space (group). A LCD space is in fact a locally
compact Polish space so it is indeed o-compact, metrizable with a complete
metric and there exists a countable dense subset.

Let E denote the sample space, ® the parameter set and G a group. We will
assume that G is a LCD group acting continuously on the LCD spaces £ and ©
(both actions being left actions). The action on E induces an action on the set
of probability measures on E by gP(A) = P(g"'A). Let m: E—> G\ E,
#:E X ® - G \ E X 0 denote the orbit projections under G’s action on E,
respectively, G’s diagonal action on E X 0, i.e., g(x, #) = (gx, g¢). The orbit
space G \ E is the set of orbits Gx, x € E and correspondingly G \ E X 0 is
the set of orbits G(x, #),(x, 3) € E X ©® under the action of G on E X 0. We
equip the orbit spaces with the finest topology making w, respectively, #
continuous. Sometimes we will assume that G acts properly on O, i.e., the
inverse of compact sets under the mapping (g, ¢) — (&, g%) are compacts too. It
is worth noting that the orbit space in this case is a LCD space as well (see, e.g.,
Bourbaki [9] or [10]).

We will restrict the attention to statistical models P = (Py), ¢ Which are
dominated by a measure p, being relatively invariant with multiplier x: G - R _,
le.,Vge G: u(gA) = x(g)n(A) for measurable sets A. For convenience we will
assume that u has support E. We will assume that the densities f4(x) are jointly
continuous in ¥ and x.

In the paper we will use the concept of a modulator m: ® - R, for the
multiplier x. A modulator is a continuous function with the property V g € G,
Vi € ©: m(g?) = x(g)m(¥#). Note that if G acts properly on ©, a modulator
for x does exist (see Bourbaki [10]).

First, we need an easy but fundamental lemma.

LEMMA 2.1. (Py)gco, Py = fo1, is a transformation model if and only if

(21)  VOecOVgEGVreE:  fyx) = fuler)x(s).

PROOF. gP, has density fy(g 'x) wrt. gu = x(g) ', ie, )‘0(‘.¢;"‘1;vc)x(g)‘1
w.r.t. p. Now (Py)sce is a transformation model if and only if gP; equals P,,,

i.e., if and only if f,4(x) = fys(g 'x)x(g)~" which is equivalent to (2.1). O

The following theorem gives the basic structure of transformation models.
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THEOREM 2.1. If (Py)yce, Py = fsp, is a transformation model and
m: © > R, is a modulator for x, then there exists a continuous function
p:G N EXO >R, with

(2.2) Vée®,VaeE:  fyx)=p(#(x,d))/m(9),

(2.3) Vieo: /Ep(ﬁ(x, 9)) du(x) = m(9).

On the other hand, if p: G \ E X ® - R, is a continuous function so that
(2.4) Ve o: /Ep(fﬁ(x, 9)) dp(x) < + oo

and m(%) = [ p(F(x, #)) du(x) is continuous, then it is in fact a modulator and
(2.2) defines the densities of a transformation model.

PRrROOF. Let (Py),c¢ be a transformation model and m: ® - R, a modula-
tor for x. Lemma 2.1 shows that fy(x) = f25(8x)X(8) = fo9(8x)m(gd)/m({) so
the mapping y: E X ® —» R, defined by y(x, #) = fo(x)m(?) is invariant
under the diagonal action of G on E X 0, i.e., ¢ factorizes through the orbit
projection %,y = p o7, where p: G \ E X ® - R, is continuous. This estab-
lishes (2.2) and (2.3) is trivial. On the other hand, if p: G N\ EX©® >R, isa
continuous function fulfilling (2.4), then m: ® —» R, defined by m(?®) =
[ep(7(x, #)) du(x) is continuous, by definition, and

m(gd) = [ p(#(x, £9)) du(x) = [ p(#(g 'z, 9)) du()

= [p(#(x, 9)) dg7u(x) = [ p(#(x, 9)x(g) di(x)

= x(g)m(d),

showing that m is a modulator. Furthermore fy’s defined by (2.2) obviously
satisfies (2.1) and, by assumption, the fy’s are densities. O

REMARK. If G acts transitively and properly on ©, then m, as defined in the
second half of the proposition, is automatically continuous.

DEFINITION 2.1. If (Py), ¢ is a transformation model we will denote by p
the associated model function.

If G acts properly on © (2.3) and (2.4) can be formulated in a more natural
way. If G acts properly on © the diagonal action of G on E X © is proper as
well (see Bourbaki [9], Chapter 3, Section 4, Exercise 10c), i.e., G \ E X 0 is
locally compact and the orbit projection #: E X ® - G \ E X © is proper.
g: E > G \ E X O defined by #y(x) = #(x, #) is a composition of the two
proper mappings x — (x, ¢) and 7 and hence a proper mapping. Therefore 74(n)
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is a well-defined measure on G \ E X O so (2.3) and (2.4) can be reformulated
as

(2.3) Video: / pda,(p) = m(9),
G \ Ex0®

(2.4) vico: | pdiy(p) < +oo.
G \ Ex0

This shows that if G acts properly on ® transformation models can be con-
structed ad libitum by choosing model functions being #,(p)-integrable . If #y(p)
is not a well-defined Radon measure it sure is possible that no transformation
model exist. Take, for instance, ® = {9,}, the action on ® being the trivial
action (V g € G: g8, = &,). A transformation model, in this context, is simply
an invariant probability measure. But an invariant measure does not always
exist (see Example 2.1). When applying Theorem 2.1 the main obstacle is to
identify the orbit space G \ E X © and, in the case of a proper action, to
identify the measures 74(p). These identifications are simplified when dealing
with spaces having the following structure.

DEFINITION 2.2. E is a TT-space if E is Homeomorphic to a product space
E, X E, so that G acts triviallyon E,,ie,Vge G,Vx, € E;: gx, =x, and G
acts transitively on E,, ie.,V x,, ¥, € E;, 3 g € G: x, = gy,.

REMARK. TT is an abbreviation for trivial transitive.

Note that if G acts transitively on E, then E is a TT-space (take E,
degenerate). Likewise, if G acts freely on E, i.e., gx = hx = g = h, and there
exists a homeomorphic orbit representation of G \ E, then E is a TT-space
(take E, = G \ E, E, = G). The notion of TT-spaces covers thus the simple
cases of transitive respective free actions.

TT-spaces have some nice properties. If E = E, X E, is a TT-space, then
G \ E is homeomorphic to E; and E, is a homogeneous space. The latter means
that E, is homeomorphic to a quotient space G/K where K is a closed
subgroup of G, take K = G, = {g € Glgx, = x,} for an x, € E,. Note that
relatively invariant measures on homogeneous spaces are equivalent and rela-
tively invariant measures with the same multiplier are proportional (see, e.g.,
Bourbaki [10]). If p is a relatively invariant measure on E, then for A C E,,
B C E,, measurable sets, p(A X gB) = u(gA X gB) = u(g(A X B)) =
x(&)(A X B) showing that the measures on E, v,: B - u(A X B) are rela-
tively invariant with the same multiplier x and hence proportional, i.e.,
w(A X B) = k(A)r(B), where k(A) is a proportionality factor and » is a rela-
tively invariant measure with multiplier x. It is easily shown that « is a measure
and hence p = k ® ». Noting that the measures k and p are determined uniquely
up to a norming factor we see that the relatively invariant measures on E have a
very simple form.

Finally, G acts properly on E if and only if G acts properly on E, = G/K.
Now, it is easily shown that G acts properly on G/K if and only if K is compact
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so G acts properly on E if and only if the isotropic groups are compacts. The
“only if” part of this statement is trivial whereas the “if” part is a special and
very useful feature for T'T-spaces.

PRroPOSITION 2.1. Let E = E, X E, be a TT-space and assume that G acts
transitively on ©. Fix 9, € © and letL Gy, = {8 € Glgd, = b)), the isotropic
group of 9. G\EX@ is homeomorphzc to LN\E (=E, X L\E,).
(L \ E denotes the orbit space under L’s action on E.)

PRrOOF. Since E, and ® are homogeneous spaces it is obviously enough to
show that, say, G \ G/K X G/L is homeomorphic to L \ G/K where K and
L are subgroups of G. Define

(2.5) v:G/KxG/L—>L~\G/K, (gK,gL)=Lg gk,

¥ is easily seen to be well-defined, invariant, onto and continuous (using the
relevant quotient topologies). To see that { is maximal invariant let g, &, A, he
G with y(gK, L) = Y(hK, hL). Then Lg gK = Lh WK = g 'g € Lh™ 'hK,
ie, 31 L,3 ke K, with §'g =1k 'hk. This implies gK = glh~'hkK =
glh \hK and gL = glh~'hl~ 1L glh 1AL, showing that (gK, L) ~ (hK, hL)
and hence that ¢ is maximal invariant. To see that L \ G/K and
G \ G/K X G/L are homeomorphic it remains to show that the mapping
LgK — #(gK, L) is continuous but this is trivial. O

REMARK. Fix x, € E and set K = G,. By symmetry we have
G \ E X © =E, X K\ 0. This can be a useful observation.

Now we can formulate Theorem 2.1 for T'T-spaces.

THEOREM 2.2. Assume that G acts properly and transitively on © and that
E = E, X E, is a TT-space. Fix 9, € © and set L = G, . If (Py)sce, Py = [k,
p =k ® v, is a transformation model then there exists a continuous functton
p: E; X L\E2—>R+with

(28) VYV, €E,Vx,€E, Vg€ G  fo(xy, %) =p(x, Leg'x,)/x(&),

(2.7) [pdx® di(v) < +oo.
(7,: E, > L \ E, is the orbit projection.) On the other hand, if
pE, X LNE,»R,
is continuous satisfying (2.7), then, possibly after a normalization of p, (2.6)
defines a transformation model.

REMARK. Note that L is compact so m(gd,) = x(g) is a well-defined
continuous function and is easily seen to be a modulator for x. This is the reason
why x and not m appears in the formula (2.6). Under the assumptions in the
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theorem one can construct transformation models ad libitum as soon as L = G,
L \ E, and ,(») have been identified.

We will comment a little bit on unique maximum likelihood estimation. If
(Py)sco> Py = fyu is a transformation model admitting unique maximum likeli-
hood estimation, then the maximum likelihood estimator (MLE) ¢: E — @ is
well known to be equivariant, i.e., V g € G,V x € E: t(gx) = gt(x). In this case
G, € Gy,,. Therefore, if G acts properly on © the isotropic group Gy is
compact and hence G, is compact. If E is a TT-space we can then conclude that
G acts properly on E and an invariant measure exists. It is thus no restriction to
assume that p = k ® » is invariant. Fix £, € E, and let K = G;,. According to
Theorem 2.2 and the remark to Theorem 2.2 the densities have the form
fo(x,, 8%;) = p(x,, Kg~'#), where p: E; X K\ ® - R, is continuous. We
then get the following result.

PROPOSITION 2.2. Assume that E is a TT-space and G acts transitively and
properly on ©. Let (Py)y.q, Py=fs k ® v, be a transformation model with
fo(x,, 8%5) = p(x;, K& '¥). (Py)y o admits unique maximum likelihood estima-
tion if and only if for each x, € E, the mapping K& — p(x,, K®) has a unique
maximum at, say, K(x,) with K§(x,) degenerate, i.e., K C G5z, In this
case the MLE is given by t(x,, g%,) = g5(x1).

ProoF. Straightforward. O

We will close this section with some applications of Theorem 2.2 and Proposi-
tion 2.2.

ExaMpLE 2.1 (Multivariate location and scale parameter models). Take
E=R% O =H"(d)XR? and G = AG(d). AG(d) = {[A, a]|A € GL(d),
a € R%)} is the affine group of order d and H*(d) is the set of positive definite
d X d matrices. The composition rule in AG(d) is defined as follows
[A,a][B,B]=[AB, AB + a], [A,a] ' =[A~!, —A " 'a] the unity being [I,0].
The actions are given by

AG(d) x R? > R¢,
([A4,a],x) > Ax + a,
AG(d) x (H*(d) X R?) » H*(d) x R?,

([A, al,(Z,£)) > (ASA*, AL + a).

(2.8)

(2.9)

% = (2, £) should be thought of as the covariance and the mean, respectively.
Both actions are transitive, (2.9) is proper, the isotropic groups being homeomor-
phic to O(d) and hence compact, whereas (2.8) is nonproper, the isotropic groups
being homeomorphic to GL(d) and hence noncompact. There exists no invariant
measure on R? under AG(d), but the Lebesgue measure p is relatively invariant
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with multiplier x(A4, a) = |det(A)| Take 4, = (I 0). We thus have to identify
L=Gy, LN R ¢, the mapping (x, gt‘}o) - Lg x and finally the measure #,(p).

Now, L = O(d) and O(d) \ R? is well known to be homeomorphic to
[0, + o[ via the identification Lx = ||x||? = x*x. Let (I, ¢) = (AA*, §) =
[A, £](1,0) € © then L[A, ] 'x ~ |[A, §] x| = [|[A7x — A7Y|® =
(x — (A H*A Y x— &) =(x— &)*T Yx — £). It thus remains to identify
#,(p). Letting y denote the left-translation on the group (R, -) we see that
y(s~ Y (n) = s9%F,(u) so 'rrL(,u) is relatively invariant with multlpher s — s4/2
and hence having density s%/2~! w.r.t. Lebesgue measure on R .,

We can thus conclude that the transformation models on R¢ with parameter
set H*(d) x R? are exactly those of the form Py , = = fs ¢4, 1 Lebesgue mea-
sure, where f5 ,(x) = p((x — £)*="(x — £))/det(2)"/? and p: [0, + o[ > R, is
a continuous function with [Pp(s)s?/2~'ds < + 0.

This is a well-known result (see, e.g., Kelker [19]) and distributions with
densities of this form are called elliptic distributions. Note finally that if (Ps ;)
is a statistical model parametrized by the covariance and the mean, then it is a
transformation model under the affine group and hence an elliptic distribution.
Conversely, it is possible to show that if (Ps .) is a transformation model with
finite expectation and covariance, then the expectation equals ¢ and the covari-
ance is proportional to .

ExaMPLE 2.2. Take E=0 = H"(d) and G = GL(d) the general linear
group of order d. The action is given by

. GL(d) x H*(d) » H*(d),

(A,3) - ASA*.

This action is transitive and proper, the invariant measure on H*(d) has
density S — (det §)~¢*Y/2 w.r.t. Lebesgue measure on H*(d). We are thus
covered by Theorem 2.2. Take &, = I, then L = G; = O(d) and O(d) \ H*(d)
can be represented by A, = {(}\1, Ay ERYA, > -+ = A, > 0} using the
identification O(d)S = the vector of ordered eigenvalues of S (see, e.g., Bourbaki
[9]). Let = = AA* € H*(d), then O(d)A 'S(A~1)* = the vector of ordered
eigenvalues of S w.r.t. £ which we will denote E(S; X). According to Anderson
([1], Theorem 3.3), #;(p) has density w.r.t. Lebesgue measure on A, and the
density is given by

d

8(Ap-sAg) = TIA;E@ D2 T (A, —A)).

i=1 l1<i<j<d

We can thus conclude that the transformation models on H"(d) are those
of the form Py = fyp, p Lebesgue measure on H*(d), with fs(S) =
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P(E(S; 2))(det S)~@*D/2 where p: A, — R, is a continuous function with
d

d
[ PO M) TIAT4 D2 TT (A= X)) d(Ayye,Ay) < +o0.
Ay i=1

l<i<j<d

It can be shown that the only O(d) orbits of H*(d) consisting of one point
only are those corresponding to AI;,, A > 0. This facts shows, according to
Proposition 2.2, that (Ps)y ¢ 4+ (4, admits unique maximum likelihood estimation
if and only if the associated model function p has a unique maximum at a point
of the form (A,...,A) € A, and the MLE is then given by #S) = AS. Letting

d
P(A, .. Ay) = [IN2%e" 22 m>d,

=1

we see that p has a unique maximum at (m,..., m) and p satisfies the
integrability condition so p is the associated model function of a transformation
model with unique MLE {(S) = mS, namely, the d-dimensional Wishart distri-
bution with m degrees of freedom and unknown parameter 3.

ExaMPLE 2.3 (Transformation model on the unit hyperboloid). Let ¢ =
diag(1, -1, —1,..., —1) be a d X d matrix and let ¢, denote the corresponding
bilinear form on R% The unit hyperboloid is defined as H, = {(x,,..., x,)* €
R9x, > 0, ¢ (x, x) = 1} and the group of hyperbolic transformations is

SH,= {A € GL(d)|a,; > 0,det(A) = 1, A*g,A = q,).
SH, acts transitively and properly on H, by

SH, x H; - H,,
(2.11) : o
(A, x) > Ax (matrix multiplication).

(See Vilenkin [24] or Jensen [18].) The invariant measure p is given by

p(C) = Ad({x € RY0 < gu(x,%) < 1,%, > 0, x/ /o (x,%) € C})

for C a compact subset of H,.
We will consider transformation models with E = ® = H, and G = SH,, for
d > 3. The above considerations imply that we are covered by Theorem 2.2. Let
¥, = (1,0,...,0)* € H,. Then ‘
1 0
L= {(0 A)A e S0(d 1)},
where SO(d — 1) is the special orthogonal group of order d — 1. One can read-
ily check that x ~, y if and only if x, = y, since SO(d — 1) acts transitively
on every sphere in R“"!. Therefore L \ H, can be identified with [1, + oo[
using the identification Lx ~ x, = g4(x, #y). If ¢ = A9, with A € SH,,
then LA™'x ~ @(A7'x, 9)) = (A7 %) *@u8 = x*(A " V*g,9, = x*@u A, =
x*@,® = @ (x, ¥) which shows that the transformation models have the form,
P',*= fak, fs(x) = p(@(x, #)), where p: [1, + o[ > R, is a continuous function.
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We will now identify the measure #;(p). For ¢ > 1 we find, using Fubini’s
theorem,

#(r)([1,¢])
= }\d({x ERY0 <x?— - —x2<1,x,>0, 22 < t}(x}—--- —x?,)})

gl({x e RY 12 x4 e b (1- 1) 7 > 0))
= fl}\d_l({x ERTNO <2+ -+ +x2 < (1- 1/t2)y2})dy
0

+/1t)\d41({x ER“Yy2—1<x2+ - +x2_, < (1-1/t%)y*}) dy

c[ft(l 3 1/t2)(d~1)/2yd_1dy— ft(y2 B 1)(d—1)/2 dyl.
0 1

where c is a constant depending on d. This shows that #,(p) has density with
respect to Lebesgue measure on [1, + oo[ given by

8(t) = (8/9t) 7 (n)([1, ¢]) = e(¢> = ) *(d - 1)/d

and hence the associated model functions have to satisfy [P°p(s)s? 3ds < + 0.

Finally, it can be shown that the only degenerate L-orbit in H, is the one
corresponding to 9, so according to Proposition 2.2 the transformation model
admits unique maximum likelihood estimation if and only if the model function
p has a unique maximum at 1.

3. Structural sufficiency. Let (P;);c¢ be a transformation model admit-
ting unique maximum likelihood estimation, ¢: E — ©. In this section we will
discuss sufficiency of the pair (¢, 7): E > © X G \ E. Assume that (¢, 7) is
sufficient. For a moment we will ignore problems with null-sets, continuity,
measurability, etc. According to Neyman’s theorem the densities have the form
fo(x) = ay(#(x), m(x))b(x). Then

_ fs(x) . aﬂ(t(x)’ m(x)) X
(3.1) fo(x) = _—ft(x)(x) ft(x)(x) = at(x)(t(x)’ (%)) ft(x)( )-

Now,
Frge(82)m(8(8x)) = foysy(g2)m(gt(x))
= fun(x)x(8) " 'x(&)m(t(x))
= fym(x)m(t(x)) [according to (2.1)]
SO fyx(%) is of the form g(w(x))/m(¥(x)) which inserted in (3.1) gives

o Bl 7(2) g(r(x)
? at(x)(t(x)’ 'rr(x)) m(t(x)) ’

showing that the density is a function of (¢, 7). According to the structure

(32)
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theorem in Section 2 the density is of the form fy(x) = p(#(x, #))/m(#) too. To
be sure that f; is a function of (¢, ), irrespective of the choice of p, we should
demand that #(x, ) is a function of (¢, 7). This should motivate the following
definition.

DEFINITION 3.1. Let #: E — © be an equivariant mapping, 7: E > G\ E
the orbit projection. (¢, 7) is structurally sufficient if, for each 9 € @, the
mapping #y: E > G \ E X 0, 7y(x) = #(x,¥), is a function of (¢, ), say,
7y(x) = py(#(x), 7().

REMARK. If (¢, 7) is structurally sufficient, it is in fact a sufficient reduction
in all transformation models because the densities then have the form fo(x) =

p(py(t(x), m(x)))/m(D).

We can give a simple necessary and sufficient condition for structural suf-
ficiency.

ProPOSITION 3.1. (t, 7) is structurally sufficient if and only if
(3.3) Ve O, VxeE: Gy, cGgG,.

PrROOF. (t, ) is structurally sufficient if and only if
VdeO,VgeG,VxeE: t(gx) = t(x) = 7y(x) = 7y(gx)
« Ve, VgeG VxeE: gEGt(x)=>[3h€G:h0=1‘},hx=gx]
 VHe0,VgeG,VxekE: gEG,(x)z[HheG,,:h‘lger]
® Ve, VgeG,VxecE: g€ Gy, =geqGgq,,
which is exactly (3.3). O

REMARK. ¢ is equivariant so G, C G- (3.3) says that even though Gy 18
larger than G, it should not be too large

COROLLARY 3.1. Assume that G acts transitively on ©. If the isotropic
groups of © are normal, then (t, ) is structurally sufficient. If G acts freely on
E, i.e., the isotropic groups of E consist only of the neutral element, (t, ) is
structurally sufficient if and only if the isotropic groups of © are normal.

PrROOF. If the Gy’s are normal they are all equal because G,y = gGog ™! = G,
$0 G,y =Gy C G G If G acts freely on E, then G, = {e} so the condition (3.3)
is equlvalent to Vg EG,VIED: gGyg™ ' C Gy O

We will now introduce (see, e.g., Barndorff-Nielsen [6], [7])

DEFINITION 3.2. E and © are of the same orbit type if the G.’s and G,’s are
conjugates of one another, ie,Vx € E,V4€0,3g<€ G: G, = gG,g .
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REMARK. If E is a TT-space and E, is isomorphic to ©, then E and © are
of the same orbit type.

In the rest of this section we will assume that E and © are of the same orbit
type. In this case the concept of structural sufficiency turns out to be rather
trivial.

PROPOSITION 3.2. (t, ) is structurally sufficient if and only if (¢, ) is 1-1
and onto.

PRrROOF. If (¢, ) is structurally sufficient and x € E, then G, C G, and we
can find ¢ with G, = G,. According to (3.3) G, C Gy, € G,G, = G, 50 G, = Gy,
showing that (¢, 7) is 1-1. (¢, ) is obviously onto. O

The proof of the above proposition motivates Definition 3.3.

DEFINITION 3.3. A subgroup H C G is regular if
(3.4) VgeG: HcgHg '= H=gHg™ .

REMARK. If H is regular any conjugate group gHg ™! is regular.
We then obtain

ProposITION 3.3. If the Gy's are regular, then (t,m) is structurally suffi-
cient, i.e., 1-1 and onto.

PROOF. Let x € E and choose ¢ € ©® with G, = G;. Now G, is of the form
8G,87 " so Gy = G, C Gy, = gGyg™" which by the regularity of G, implies
G, =Gy, O

This suggests a study of the concept of regularity. It is obvious that a normal
subgroup is regular. Similarly, a maximal compact subgroup is regular.

ExaMpLE 3.1. Consider Example 2.:2. We then have E =0 = H"(d) so E
and © are of the same orbit type. Now, G; = O(d) which is known to be
maximally compact and hence regular and by Proposition 3.3 we see that ¢ has
to be 1-1 and onto. This is in accordance with Example 2.2 in which we argued
that #(S) = AS for some A > 0.

We will now state a widely applicable result.

PROPOSITION 3.4. Every compact subgroup of a Lie group of nonzero dimen-
sion is regular.
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For the notion of Lie group see, e.g., Bourbaki [11] or Hochschild [17]. The
proposition is an easy corollary of the following result.

LEmMA 3.1. Let H be a compact Lie group. If o: H — H is a continuous
injective homomorphism, then ¢ is onto.

ProoF. Let H, denote the connected component containing e. H, is a closed
normal subgroup of H. Since ¢ is a continuous homomorphism ¢(H,) C H,. Let
L(H,) denote the Lie algebra associated with H,. Then ¢ in a canonical way
induces an algebra homomorphism L(¢): L(H,) — L(H,). ¢ being 1-1 implies
that L(g) is 1-1 (see Bourbaki [11], Chapter III, Section 6). L(H,) is finite-
dimensional so L(¢) is onto, i.e,, L(p) L(H,)) = L(H,). According to Bourbaki
([11], Chapter III, Section 6) we then have H, = o(H,). Since H is locally
connected H, is open so H being compact implies that H /H, is finite. ¢ defines
in a canonical way a mapping ¢: H/H, > H/H, by o(hH,) = o(h)H,. ¢ is
easily seen to be 1-1 so the finiteness of H/H, then implies that § is onto as
well. Let A € H, choose h € H with g(hH,) = hH,, i.e., ¢(h)H, = hH,. Choose
now k € H, with o(h) = hk and k€ H, with (k) = k~'. Then g(hk) =
hkk~' = h showing that ¢ is onto. O

PROOF OF PROPOSITION 3.4. Assume that H is a compact subgroup of G
with gHg~' C H. Define ¢: H — H by ¢(h) = ghg™'. Now, ¢ is a continuous
injective homomorphism and H is a compact Lie group so by Lemma 3.1 we
indeed have that ¢ is onto, i.e, gHg ' = o(H) = H.O

REMARK. It is not true that every closed subgroup of a Lie group of nonzero
dimension is regular.

We finally state a result for T'T-space.

PROPOSITION 3.5. Let E be a TT-space. (¢, ) is structurally sufficient for all
equivariant mappings t: E — © if and only if the Gy’s are regular.

We will close this section with an example of a transformation model which
admits unique maximum likelihood estimation ¢ with (¢, =) nonsufficient.

ExaMPLE 3.2. Introduce
E={((x)sn.:N)N€Z,x,€{0,1},k=N+1,N+ 2,...}.
We equip M with the topology making
:{0,1}"xZ > E, ‘((xk):=1; N) = ((xk—N)Zo=N+1; N)

a homeomorphism. Let G = {[p, a]lp € {0,1}%, a € Z}, G is the semiproduct
of {0,1)* and Z, with composition rule [, a][y, b] = [p(ay), a + b], where
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(ay)(k) =yY(k — a) and (py)(k) = p(k)Y(k), the unit is (0,0) and the inverse
is given by [¢, a]™ = [(—a)p, —a].
G acts on E by
GXE-E,

7 ([‘P, a]7((xk)2°=N+1; N)) - ((‘P(k)xk—a);o-a+1v+1§ a+ N)'

(3.5) is transitive and proper. The invariant measure on E is given by p =
(®2 1) ® 7, where p,({0}) = p;({1})) = 1 and 7 is counting measure on Z.
Notice that G is an LCD group, E is an LCD space and the isotropic group for
(0,0)is G50y = K = {[9,0]|p(k) = 0V k& > 0} which is homeomorphic to {0,1}N
and hence compact but it is nonregular. Define ® = E. We will introduce a
transformation model on E with parameter set ©. Let (p,)?_,, p, €10,1[ be
known reals. For & = ((#,)%_47.1; M) € © we define the conditional distribu-

(3.5)

tion of (X, )?_n., given N as follows. X, Xy, o, ... are independent.
If M < N, then
X bin(l, pk)’ if 0k+N=O’
N+k "\ bin(1,1 - p,), if&,,y=1.
If M > N, then
Xni1s Xnigy--or Xy ~ bin(1, 1),
X bin(1, p,), ifd,, =0,
M+k A bin(1,1 — p,), if &,, = 1.

The marginal distribution of N has density ¢(M — - ) w.r.t. counting measure
on Z.

IfVEeEN: p,<3 p,=7%and ¥ (1-2p,) <+ and, say V k> 1:
q(k) =0 and finally --- < g(—1) < q(0) < 2q(1), then the above probability
distributions on E give rise to a transformation model with a unique maximum
likelihood estimator & E — O, t((x,)7_n+1; N) = ()5 -n+9; N + 1) which is
nonsufficient (details are left to the reader). This is thus an example of a
transformation model where E and © are of the same orbit type, the maximum
likelihood estimator exists uniquely but (¢, 7) is nonsufficient. As pointed out
above this relies on the fact that the isotropic groups of E = ©® are nonregular.
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