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ESTIMATING AN ENDPOINT OF A DISTRIBUTION WITH
RESAMPLING METHODS

By WEI-YIN LoH
University of Wisconsin, Madison

The problem of estimating an endpoint of a distribution is revisited,
using the bootstrap and random subsample methods. Contrary to an example
in Bickel and Freedman (1981) suggesting that these methods do not work
here, it is shown that one can in fact construct asymptotically valid confidence
intervals in some situations.

1. Introduction. Bickel and Freedman (1981) give the following as a
counter-example to Efron’s (1979) bootstrap method. Let X;, X, ---, X, be
independent, identically distributed random variables from the uniform distri-
bution F on the interval (0, 6). Using the natural pivot n(6 — X,))/0, where X,
denotes the ith order statistic, they observe that (i) n(6 — X, )/0 tends to a
limiting exponential distribution, and (ii) with probability one, the condi-
tional distribution of the bootstrap quantity n(X. — X%,)/X does not have
a weak limit. Here (X%, - - -, X}) denotes a bootstrap sample. Since the bootstrap
distribution does not approximate the true distribution of the pivot well even in
the limit, these authors conclude that the bootstrap method does not work for
this situation.

In this paper we re-examine the problem more generally for any distribution
with cdf F(x — 6) such that F(x) < 1 for x < 0, F(0) = 1, and belongs to the
domain of attraction of the type II extreme value law, i.e. we only assume that
there is 6 = 0 such that (cf. Gnedenko, 1943)

(1.1) lim, ,0-{1 — F(cx)}/{1 — F(x)} =c® forall ¢>0.

The uniform, as well as any distribution with a finite, nonzero density at 6,
corresponds to § = 1. It is easy to verify that under (1.1), the above observations
generally hold true, namely, (i)’ n'/’(@ — X)) tends to a limiting distribution,
and, (i)’ with probability one, the conditional distribution of n**(X.,,— X¢,)
does not have any weak limit. However, we show that the bootstrap intervals are
asymptotically valid for some & # 1. This implies that the bootstrap is more
“robust” than first thought, since it can provide valid inferences even without
the bootstrap' distribution being close to the true distribution of the pivot. On
the other hand, since the method works for only one value of §, the result suggests
that it is highly model-dependent.

Even more surprisingly, it will be shown that if we repeat the whole argument
with Hartigan’s (1969) random subsampling method instead, then (i)’ and (ii)’
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again hold with X, replaced by the largest value in each random subsample.
Now if F is the uniform distribution, the random subsample intervals have exact
coverage probabilities for all sample sizes! In fact these intervals are asymptoti-
cally valid for all F with 6 = 1.

The nonuniform performance of the bootstrap method could be corrected if
we knew 4. This is accomplished by using a “generalized” bootstrap, which
resamples the observations with unequal probabilities depending on §. The
validity of the resulting intervals is proved in Section 4.

The twin problem of finding point estimates of 8 is also considered. Essentially,
our procedure is to derive median- and mean-bias corrected estimates based on
X using the bootstrap and random subsample distributions. This application
of the bootstrap does not appear to have attracted much attention in the bootstrap
literature.

2. Survey of known results. Suppose (1.1) holds. Miller (1964) showed
that Quenouille’s (1949) jackknife estimate of 6 based on the naive estimate X,
is

(2.1) ;=X +n7'(n - DXw = Xin-v)-

Robson and Whitlock (1964) proposed the asymptotically equivalent
(2.2) brw = 2X(n) — Xn-1)-

More recently Cooke (1979) suggested the estimator

(2.3) 2Xm — X0 [A = i/n)" = {1 — (@ + 1)/n}" X,
which is asymptotically equivalent to

(2.4) bc=2Xm— (1 —e™) 24 e Xney.

This has smaller asymptotic mean squared error (MSE) than (2.2) for 6 = 1, but
not for & > 1. Note that all these estimators have nonnormal asymptotic
distributions.

Better estimates are available if § is assumed known (cf. Cooke, 1979, 1980).
For solutions assuming conditions stronger than (1.1), see Hall (1982) and the
references therein.

When § is unknown, the choice between (2.1) - (2.4) is in some sense not
absolutely critical, since the mean squared error of each is O(uZ), where u, =
F(1 — n™). In contrast, the situation with interval estimation is quite differ-
ent. Miller (1964) showed that the jackknife t-intervals give completely wrong
coverage probabilities. Robson and Whitlock (1964) obtained the interval
Xy, Xy + @711 — a)(X(n) — X(»-1))) which has asymptotic coverage probability
1 — « only for § = 1. Cooke (1979) generalized this to

(2.5) Xy X + {1 — )™ =1} Xim) — Xin-1))-

This has asymptotic coverage probability 1 — « if and only if (1.1) holds with
5 = 1/v. Weissman (1981) further generalized (2.5) to the “two-sided” interval
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involving lower order statistics
I'w(v; p1, p2)
= (X + ri(p1) Xy — Xin-), Xy + ri(p2)Xin) = Xin-n))

where r;(p) = [{1 — (1 — p)¥}™ —1]7.. He showed that this interval has
asymptotic coverage probability p, — p; if (1.1) holds with 6§ = 1/».

(2.6)

3. Bootstrap and random subsample procedures. Let §* denote the
largest value in a bootstrap or random subsample, and P, the associated resam-
pling probabilities. Clearly, for i = 1, 2, ..., n — 1, the bootstrap and random
subsample distributions are respectively:

(3.1) P, 6* = Xin-i) = {(n=1)/n}" > e7;
(3.2) P,(0* < X(n-p) = (2" = 1)/(2" — 1) - 27,

We first prove statements (i)’ and (ii)’ mentioned in the introduction.

THEOREM 3.1. Under (1.1) and as n — o,

(i) n'%(0 — X)) converges in distribution to that of Z?, where Z is the
standard exponential random variable, and

(ii) w.p.1, the conditional distribution of n"* (X, — 0*), under either (3.1) or
(3.2), does not have a weak limit.

PROOF. From standard results concerning extremal processes (cf. Weissman,
1981), we know that for fixed k&, the joint distribution of

(n*(0 — Xm), (0 = Xn-)), -+ -, %0 — X(n-n))
converges to that of the random variables
(ZV?, (Zy + Z5)Y%, oo S (Z 4 -+ + Zp)Y),

where the Z’s are independgnt standard exponential random variables. Hence
(i) follows. It further follows that for each fixed &, n'/*(X(,) — X(.-») converges
in distribution to that of (Z; + .-+ + Z4,)® — Z1/%. The Hewitt-Savage zero-
one law now implies that lim sup n**(X(,) — X(,—) = % and

lim inf nl/"(X(,,) - X(n—k)) =0 as.

This together with (3.1) and (3.2) yield part (ii) of the theorem. 0

Despite this fact, the bootstrap and random subsample methods can still give
useful results. First consider interval estimation of 6. Efron (1981, 1982) has
given two methods, called the “percentile” and “bias-corrected percentile” meth-
ods, but because both yield intervals contained within the support of the bootstrap
distribution, which does not contain 6, they do not work here. Instead we use
another method originally criticised in Efron (1979, Remark D). Let ¢, be the
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100a percentile of the bootstrap distribution of §* i.e. P (t.= 0*< X)) =1-
«, or equivalently

(3.3) P(t.—0<b6*—0)=1-aq,

since § = Xy If we believe, as thg bootstrap method would have us believei that
the Monte Carlo distribution of §* — 6 is gloseA to the true distribution of 6 — 6,
(3.3) suggests the approximation P(t, — § < 6 — 0) = 1 — a. This gives (X,
2X, — t,) as an approximate 1 — « one-sided confidence interval for . We will
show that this approximation is asymptotically valid under (1.1) for some value
of 6.

Although Efron (1979) has advocated splitting the bootstrap probabilities at
the endpoints of the intervals in other situations, it turns out that because of the
asymmetric nature of the present problem, this should not be done here. Thus if
a = e~ for some integer i, we deduce from (3.1) that an approximate 1 — «
bootstrap interval for 0 is (X, 2X» — Xn-y). This interval, however, has
associated a = 27 if we use random subsampling (3.2) instead.

THEOREM 3.2.  The bootstrap interval (X (), 2X») — Xin-1) has asymptotically
exact confidence coefficient 1 — a = 1 — e™" if and only if

(3.4) 6 = log(1 — e~ 1)/log(.5).

Similarly, the random subsample interval (X ), 2X(n) — X(n-») has asymptotically
exact confidence coefficient 1 —a=1-—2"if and only if 6 = 1.

PROOF. Recall from (2.6) that Weissman’s (1981) interval Iy (v; 0, 1 — &)
has asymptotic coverage probability 1 — « if (1.1) holds with é = 1/». The theorem
follows by equating r;(1 — «) to 1 and solving for 6. 0

A stronger result obtains if we specialize F' to be the uniform distribution.
Then, as long as (%2)""! < a < Y%, the intervals obtained by random subsampling
have exact coverage probabilities for all n.

We can obtain improved estimates from X, by subtracting from it the
bootstrap and random subsample estimates of bias. From (3.2) we see that
(X(ny — X(n-1)) estimates the median-bias of X(,. Therefore a median-bias
corrected estimator of 6 is 2X(,) — X(-1), which is (2.2). No corresponding
estimator is available from (3.1) since the bootstrap puts approximately 1 — e™*
of its mass on X,,,. However, we can use both (3.1) and (3.2) to obtain estimates
of the mean-bias in Xs. Subtracting these estimates from X, produce respec-
tively 8¢ in (2.4) and a new estimator, 2X,, — 2"(2" — 1) ' ¥ ¢ 271 X,,_;), which
is approximately

(3.5) brs = 2Xm — () i 27 X i)

THEOREM 3.3. Assume (1.1),u, =F (1 —n"Y) and v =1/8. As n — oo,
u;! Bias(X,)) — T'(v + 1), u;! Bias(fc) — {(1 —e™)™ — 2iT (v + 1),
u,! Bias(égw) > @p-1I'(r+1), ul Bias(éRs) — (2" = 2)T(» + 1).
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TABLE 3.1 . )
Values Of lim u;z MSE(G) for 6= X(,.), o}zw, 0(: and o}zs

8 Xy brw be brs
log(1 — e7%)/log(*4) 6.172 9.969 4,699 7.367
1 2.000 2.000 1.331 1.333
2 1.000 0.667 0.719 0.599
3 0.903 0.602 0.704 0.609
4 0.886 0.620 0.728 0.650
5 0.887 0.651 0.754 0.687

PRrROOF. Follows by direct calculation using the formulas in Cooke (1979). O

This theorem shows that both frw and frs remove the first order bias when
=1, and 0 does the same when 4 is given by (3.4). It may be verified that when
n is large and 6 # 1, fgw and frs have biases in the same direction and

lim, .| Blas(ﬂRs)/Blaszw) | = 1.
THEOREM 3.4. Let v and u, be as in Theorem 3.3 and
H(p) = 4T(2v + 1) + T(2v + 1)1 — p)*(1 — p») 2!
—4T(r+ 1)1 —p) 2o pT@v+ i+ 1)/Tw+i+ 1)
+2(1 = p)? 32, piT@2v + i + 1)/T(v + i + 1)}
- X pTv +j + 1)/T( + ).

Then under (1.1) and as n — o,
un? MSE(X() — T'(2v + 1), u;2 MSE(dc) — H(e™),
u;2 MSE(frw) — T'(2v + 1){(2v2 — v + 1)/(v + 1)}, u;?2 MSE(frs) — H(.5).

PROOF. Again use the formulas in Cooke (1979). Note however that his
formula (12) is incorrect. O

Table 3.1 gives some values for the RHS of the above quantities.

4. A generalized bootstrap. A heuristic explanation can be given for the
peculiar values of 6 in Theorem 3.2. From Weissman (1981) we know that for

each fixed k,
(4.1) P{(6 — X))/ Xy = Xin-w) < 1} > 1= (1 — 5%)*

as n — o under (1.1). If we arbitrarily replace this with bootstrap probabilities,
but keep X(,) — X(n-r) unchanged, we get

(4.2) P (X — X))/ Xy — Xin-wy) <1} = P,(Xt) > Xnwy) > 1 — 7~

Equating the RHS of (4.1) and (4.2) yields the value of 4 in (3.4). A similar
heuristic explanation works for random subsampling.
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This suggests that if 4 is known, and we resample so that
(403) P* (szn) > X(n—k)) =1- (1 - -56)k’

then the resulting intervals will have asymptotically correct coverage probabili-
ties. Given (Xi, - - - , X,), let p{™ be the probability that X, is sampled at each
draw of this “generahzed” bootstrap.

THEOREM 4.1. Suppose that (1.1) holds with 6 known. Then the generalized
bootstrap yields asymptotically valid intervals for 0 if

pgn) =1- (1 — -56)l/n’ pgn) _ (1 - -56)(n—1)/n’

Zg=n—f pin) =1- (1 - .56)(j+1)/n’ J= 1,2 ---,n— 2.

PROOF. The values of p{” clearly satisfy (4.3), and the theorem follows from
(4.1) and (4.2).0

COROLLARY 4.1. If (1.1) holds with known 6 and « = (1 — .5%)* for some k,
then the interval (X ), 2Xn) — Xn-r) for 8 produced by the generalized bootstrap
has asymptotic confidence coefficient 1 — a.

PrROOF. As for Theorem 3.2. [0

We now consider estimates derived from the generalized bootstrap. Subtracting
the bootstrap estimate of mean bias from X, yields the estimator

69 = 2X(m — 5° Tpf (1 — 5)* X — (1 — 5% Xq).

THEOREM 4.2. Let u, and H(-) be as defined in Theorem 3.4. Under (1.1),
u;! Bias(6®)) >0 and u;? MSE(@Y) - H(1 - .5° as n— o,

PROOF. Same as for Theorems 3.3 and 3.4. 0

We note that §% is essentially s with 1 — .5° substituted for %z. Table 4.1
gives some values of the asymptotic MSE.

A better idea of the precision of % may be had by comparing with Cooke’s
(1980) results for the best linear estimator 0(‘” (r) based on the r largest order
statistics. For example, 6 has approximately the same MSE as §{"(3), and MSE
(#9) = MSE (69 (6)).

TABLE 4.1.
Values of H(1 — .5%)

b} log(1 — e7)/log(.5) 1 2 3 4 5
H(1 - .5% 4.70 1.33 0.46 0.29 0.21 0.16
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5. Remarks. We have assumed in the last section that é is known. If it is
unknown, the generalized bootstrap may be made adaptive by replacing é with a
consistent estimate. One such estimate (cf. de Haan and Resnick, 1980, and de
Haan, 1981) is

§ = log m/log{(Xn-2 — Xim)/Xn-1) — Xn-2)}

where m — © and m/n — 0, as n — . Clearly the adaptive version of Theorem
4.1 holds. On the other hand, whether 6 is known or estimated, the conclusions
in Theorem 3.1 remain true with the generalized bootstrap.

It may be argued that, if § is unknown, 6§ — X, is not the right quantity to
bootstrap, since its limiting distribution, after standardization, is not independent
of 6. This criticism is not entirely valid, because there is nothing in the original
formulation of the bootstrap method which requires thdt only pivotal quantities
be bootstrapped. (Recall that if X and x denote the sample and population means
respectively, X — u can be usefully bootstrapped even though it is not an
asymptotically pivotal quantity when the population variance is unknown.) An
asymptotically distribution-free quantity for the present problem (Weissman,
1982), is

10g{(0 = Xin-m)/(6 — Xn)}/1081(0 — X(2-1)/(0 = Xinem)}»

where 1 < m < k < n. For m and k fixed and n — o, this has a limiting
distribution, under (1.1), which is independent of 6§ and 6. Unfortunately, any
attempt at bootstrapping

lOg{(X(n) - an—m))/(x(n) - X?‘n))’/k)g{(x(n) - ?‘n—k))/(X(n) - Xr‘n—m))}

immediately runs into difficulties because the latter is undefined whenever two
or more of X¢,), Xt.—m) and X, are equal to X,).
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