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A LARGE DEVIATION RESULT FOR THE LIKELIHOOD RATIO
STATISTIC IN EXPONENTIAL FAMILIES!

BY STAVROS KOUROUKLIS
The Pennsylvania State University

In thispaper we consider exponential families of distributions and obtain
under certain conditions a uniform large deviation result about the tail
probability Ps(¢a(X,) > ¢), ¢ >0, where 9 is the natural parameter and ¢,(X,)
is the log likelihood ratio statistic for testing the null hypothesis {3}. The
technique involves approximating certain convex compact sets in R* by
polytopes, then estimating the probability contents of associated closed half-
spaces, and counting the number of these half-spaces. Some examples are
given, among them the multivariate normal distribution with unknown mean
vector and covariance matrix. *

1. Introduction. Let & = {P,: w € Q} denote a k-dimensional natural
exponential family of distributions with densities (at x)

dP,/dv = exp{w’x — c(w)}, x € R*, w € Q,

with respect to a o-finite measure » on 2 (R*). We say that v generates the
family &2 Here, ’ denotes transpose. Q is the natural parameter space, i.e.,

(1.1) Q= {w € R*: expic(w)} = f expi{w’x} dv(x) < 00} .

Throughout this paper we assume that Q is an open subset of R*. Without loss
of generality we may also suppose that » is not supported on a flat.
For d € Q consider the log likelihood ratio function

ds(x) = supf(w — 9)’x — c(w) + ¢(9): w € Q}
supfw’x — c(w + 9) + ¢c(d): w € Q}, x € R~

Let now X, X,, - - - be a sequence of i.i.d. random vectors in R* with family of
distributions & and X, = Y%, X;/n. Then, ¢,(X,) = log 4,/n, n = 1, where 4,
is the likelihood ratio statistic for testing Hy: w = d vs. H;: w # 4.

In this paper we study the tail probability P,;(¢s(X,.) > ¢), ¢ > 0. For one-
dimensional exponential families, i.e., for k = 1, Kallenberg (1978, page 16) has
proved the following lemma.

LEMMA 1.1. Let ¢ > 0. Then, given d € Q,
Py(¢s(X,) >¢) < 2e™, forall n=1.
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The main result presented here may be considered as a multidimensional
analog of Lemma 1.1. Specifically, we prove below that, for & = 2, under certain
conditions

(1.2) Py(¢o(X,) > €) < c(r, d)n**Vexp{—r(n — ko)e}

foralle > 0,0 < 7 < 1, n > n,, where the constants n,, ko, ¢ do not depend on «.
Relevant asymptotic results appearing in the literature include Efron and Truax
(1968), Woodroofe (1978), Kallenberg (1978). Our result is cruder than those,
but unlike those, holds uniformly in ¢ € (0, «). Besides, a version of (1.2) (see
(3.13)) allows us to generalize uniform large deviation results in Hoeffding (1965)
and in Herr (1967) to multidimensional exponential families (see Theorem (3.3)).

An interesting application of (1.2) is given in Kourouklis (1984). There the
author uses (1.2) to obtain Bahadur optimal statistics in sequential context, thus
generalizing work of Berk and Brown (1978). It can also be applied to nonse-
quential analysis to establish Bahadur optimality of the likelihood ratio
statistic in both the one-sample and the multi-sample problems with data from
exponential family (families) (see Kourouklis, 1981).

Section 2 contains some properties of exponential families we will need in the
sequel. Section 3 contains our assumptions and the main result. In Section 4 we
present some examples for which these assumptions are satisfied.

2. Preliminaries. In this section we collect some well known properties
pertaining to exponential families. Details are given in Berk (1972), Barndorff-
Nielsen (1978), and Rockafellar (1970).

The function ¢ defined in (1.1) is closed, strictly convex and infinitely differ-
entiable on Q with gradient ¢(w) = E,X (expectation of X) and positive definite
hessian é(w) = Cov,X (covariance of X), where X ~ P, w € Q.

Consider now the conjugate function of ¢, i.e.,

#(x) = sup{w’ x — c(w): @ € R*} = sup{w’x — c(w): w € @}, x € R,
and let
B = {x € R*: ¢(x) < o}.

¢ plays an important role in the sequel as well as in the theory of maximum
likelihood estimation (see Berk, 1972). General theory on conjugate functions is
contained in Rockafellar (1970). ¢ is closed, convex, and its conjugate is c. It is
also differentiable on intB (interior of B) and the restriction of ¢ on ¢(Q) is the
inverse of ¢. Moreover, if B is open (an assumption we require in the next section),
from Theorems 9.1 and 9.2 of Barndorff-Nielsen (1978) it follows B = ¢(£), so
that ¢: @ — B is 1-1 and onto with inverse ¢: B — Q.

Similarly, ¢, is the conjugate of c(w + d) — ¢(d), hence it is a closed convex
function. The set of finiteness of ¢, is also B, and ¢, has a minimum 0 attained
at x = ¢(9).

We close this section by defining the Kullback-Leibler information number
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for w, d € Q by

2.1) K(w, d) = f log((;;;:) dP, = (v — 8)’é(w) — c(w) + ¢(d).

3. Assumptions and main result. In this section we consider multi-
dimensional natural exponential families of distributions.

ASSUMPTION 3.1. B is open.

AsSUMPTION 3.2. There is a positive integer m, such that X,, € B with
probability one with respect to some (and hence every) member of & Note that
this implies X, € B with probability one for all n = m. It is implicitly meant that
m is the minimum possible.

For d € 2 and ¢ > 0, we let

3.1) L,={w€ Q K(w, 9) < ¢}.

Below and throughout, det, tr denote determinant, trace respectively.

ASSUMPTION 3.3. For some w € (, there are constants 8 = 8(w) = 0, y =
v(w) > 0 and a real-valued Borel-measurable function f(t) = exp{o(t)} as t — «
depending in general on w and bounded on any finite interval (0, §), such that
foralle>0

inf{det é(w): w € I,,,} = v exp{—0¢}
and
supftr é(w): w € I,,,} < f(e).

Assumptions 3.1 and 3.2 are equivalent to the existence of the maximum
likelihood estimator of w € Q with probability one for n = m, as can be seen by
Corollary 9.6 of Barndorff-Nielsen (1978). Assumption 3.1 is further discussed
in Remark 1 following the proof of Theorem 3.2. A referee has noted that if the
distribution of X,, is dominated by Lebesgue measure then both Assumptions
3.1 and 3.2 are satisfied, and if B in Assumption 3.2 is replaced by intB then
Assumptions 3.1 and 3.2 are equivalent to each other. Assumption 3.3 facilitates
the calculation of certain integrals. Typically, f is a polynomial. In making this
assumption, we were motivated by the two-parameter normal model N(u, ¢%)
where the corresponding bounds for the infimum and the supremum are asymp-
totically sharp (see Kourouklis, 1981, Example 1).

For d € Q and ¢ > 0 consider the level set

(3.2) A, = {x € R*: ¢5(x) < ¢} CB.

Since ¢, is convex, so is A, ;. By Theorem 5.20 of Barndorff-Nielsen (1978), A, ,
is a compact neighborhood of ¢(d) (recall that ¢, has minimum 0 attained at x =
¢(9)). Under Assumption 3.1, ¢, is continous on B and hence ¢,(x) = ¢ for
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X € bdA., (the boundary of A.,). Moreover, it can be easily shown that
L= ¢(A.,). Hence, I, , is also compact.

The following lemma is well known and therefore its proof is omitted. We
only note here that it also holds for k = 1 and in that case a minor generalization
of the lemma yields an alternative proof of Lemma 1.1.

LEMMA 3.1. Suppose that Assumption 3.1 holds. Consider ¢ > 0, d € Q and let
G be the closed half-space determined by a supporting hyperplane of A., and not
containing A, . Then, Py(X, € G) <exp{—ne},n=1.

Theorem 3.2 below is our main result. The type of argument used is related to
that of Borovkov (1968) and Efron and Truax (1968).

THEOREM 3.2. Suppose that Assumptions 3.1-3.3 hold and let
ko = Bk(k — 1), n; =max(m — 1, ko).
Then, given 7,0 < 7 < 1, E,, exp{r(n — ko)¢.,(X,)} is finite for all n > n, and

(3.3) E.exp{r(n — ko)¢.(X,)} = O(n**7).
Moreover, for some constant c¢(r, w), '
(3.4) Py (¢,(X,) > ¢) < c(r, w)n**Vexp{— 7(n — ko)e},

foralle>0,0<7<1,n>n,.

PRrROOF. Consider the level sets A; ., A.,.,, where 0 < § < e. Note that A, ,, C
A, and d = inf{||x — y|: x € bdA;,,, y € bdA.,} > 0, since on the bound-
aries the value of ¢, is §, ¢ respectively. By Proposition 5.6 of the Appendix,
there is a polytope II, A;, C II C A, ,, which is the intersection of at most
co[(r + 1)/8,]**7V closed half-spaces, where r is the circumradius of 4, ,, 8, =
min(x/8, d/2), and ¢, a (positive) constant depending only on k. Let F;, i =
1, - - -, p be the open half-spaces such that I = NZ., F§. Since 4;, C II, each F;
is contained in a closed half-space, G; say, determined by a hyperplane sup-
porting A;, and parallel to the hyperplane determining F;. By Lemma 3.1,
P,(X,€F;) <P,X,EQG;) <exp{—nd},foralli=1, ..., pand n = 1. Since
IIc Ae,w’

Pw(¢w(xn) > 8) = Pw(Xn € Ag,w) = pr(Xn € Fl)

< co[(r + 1)/8:)** Vexp{— n 6}.
Hence, setting A = ¢ — 4, for some constants ¢, ¢; depending only on & we have
Py(u(X,) > o) |
< {er(r + 1)F* D 4 ¢o[(r + 1)/d)**Viexp{nAlexp{—ne}, n=1.
We now estimate r, d in terms of ¢, A. For x € bdA.,,, we have
e = ¢u(x) = (x — ¢w))’ d(n)(x — é(w)),

(3.5)
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where 7 is a point on the line segment with endpoints ¢(w), x. Thus,
e =[x — é(w) | %inf{Amin(2): 2z € A, }/2
= |2 = ¢w)1%/[2 sup{pmax(w): @ € Lu}]
= ||z — ¢(w)|*/[2 supftr é(w): © € Luil,

where Apnin(2z) is the minimum eigenvalue of ¢(z), pmax(w) is the maximum
elgenvalue of é(w) and we used the facts that ¢(¢(w)) = ¢ }(w) for w € Q, and
d(A.L) =1I,,. Settmg s(e) = supitr é(w): w € I, ,,}, we then have | x — é(w)| =
(2s(e)e)%. Since x is an arbitrary boundary point of A, ,, letting D denote the
diameter of A, ,,, it follows from the last inequality that D < 2(2s(¢)¢)"/2. Finally,
since r < D (see Eggleston, 1969, Theorem 49), by Assumptlon 3.3, we obtain the
following estimate of r:

(3.6) r =< 2(2f(e)e)2
We now estimate d. For x € bdA; .,y € bdA,,,, we have
(3.7 bu(¥) = ¢u(x) + (y = x)"du(n),

where 7 is a point on the line segment with endpoints x, y. Moreover, for
Z2E€ A, ., du(2) = d($)(z — é(w)) for some { on the line segment with endpoints
¢(w), z. Hence,

(@)l =< |z = é(w) | sUP{Amax(v): ¥ € A.}
= ||z = é(w) | /inf{pmin(w): @ € L.}
< (25(c)e)2[s(e)]*"/inf{det é(w): @ € L.}
= (2s(e)e)*[s(e)]*"/i(e),

where An.x(v) is the maximum eigenvalue of ¢(v), pmin(w) is the minimum
eigenvalue of é(w), i(¢) = inf{det é(w): v € I, ,,} and we used the fact that ui,(w)

= det é(w)/[tr é(w)]e—1. Thus,
sup{ll du(2) |I: z € A.u} < (25(e)e)[s(e)]*7/ile).
From (3.7) we then obtain
A=e—6=(y—x)du(n) =< |y —xlsupill o) |: z € A.u},

or |y —x| =i(e) A/{(25(e)e) ¥ s(e))* ). Therefore, by Assumption 3.3, we obtain
the following estimate of d:

(3.8) d = vA exp{—Be}/{(2f()e)[f (e)]* 1L

By taking A = 1/n (i.e.,, § = ¢ — 1/n) and substituting the estimates of r and d
((3.6) and (3.8)) into (3.5) we obtain

(3.9)  Pu(9u(Xn) > ¢) =< [file)exp{—koe} + n**"Vfy(e)lexp{—(n — ko)el,

for all n = 1, ¢ > 1/n, where, in view of Assumption 3.3, f; and f, are (positive-
valued) Borel-measurable functions depending in general on w, bounded on any
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finite interval (0, §) and such that f;(t) = exp{o(t)} as t — «, i = 1, 2. Note that
these properties of f; imply

f fi(t)exp{— at} dt < o forall a>0, and
(3.10) 0
f fi(t)exp{—at} dt = OG) as a—oo, (=12
0
Consider now n > max(m — 1, ko) and 0 < 7 < 1. Then, by Assumption 3.2,
exp{r(n — ko)¢.,(X,)} is a bona fide random variable under P,,. Using the bound
in (3.9) we obtain

E.exp{r(n — ko)¢u(X,)}

= f P, (explr(n — ko)du( X} > 1) dt

® log ¢
<e+ f Pw<¢w(X',,) > r— ko)) dt

-]

=e+1(n— ko) Pu(¢u(Xs) > texplr(n — ko)t} dt

1/I7(n—kg)]

o0

<e+ 7(n — ko) tnho) f1(t)exp{— (1 — 7)nt — tkot} dt

o0

+ nF*V(n — k) f fo()expf— (1 — 7)(n — ko)t} dt.
1/[r(n—ko)]
Hence, by (3.10), the first two assertions of the theorem now follow.
The last one simply follows from (3.3) and Markov’s inequality. 0

REMARK 1. The multinomial distribution. An essential requirement in our
method of inscribing a polytope between two level sets of ¢,, is that the boundaries
of these sets do not touch each other. See Theorem 3.2 and Proposition 5.6 of
the Appendix. In view of the continuity of ¢, a sufficient condition for achieving
this is to assume that B is open, as we did. An important model for which B is
closed and hence Theorem 3.2 cannot be invoked is the multinomial distribution
with all the cell probabilities positive (to fall into the exponential framework).
This model, however, can be analyzed by a direct calculation. To this end, let
X1, X,, --- be a sequence of i.i.d. random vectors in R*, k = 2, following the
multinomial distribution, and X, = (X,1, ---, X.:) be the sample mean of
Xy, -+, Xa, n = 1. The sample space is

S= {(19 O’ Sty O),’ "'9(0’ 09 "'90) 1),}CRk
and the parameter space is
I = {7!' = (7!'1, ey, Wk)' € R*: = 0, 2?:1 T = 1}.
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Consider next 7 = (ny, - - -, 7x)’ € II and let 4, be the likelihood ratio statistic for
testing Hy: m# = g vs. Hy: w # 7. Then,

E,.z = E,[sup{miXm ... Xy € T}/ (gp%m ... ppXne)]
= E,[XEm ... Xofm/(qpXn ... gpXm)]
= zsl+---+sh=n,s,~integer520 [(sl/n)sl ce (sk/n)sh/("ﬁl et 772")]

N Y CURTEPR)) VT

= Y [nY/(s:! -+ sD](s1/n) - (s/n)* < (n Phl 1)’

since each summand is a multinomial probability .and the number of integral
solutions of the equation s; + --- + s, = n is ("#%"). Hence, for some constant
a(k) depending only on k we obtain E,/, < a(k)n*"’. Letting now ¢, = log £4,/n
we conclude that P,(¢,(X,) > ¢ < a(k)n*'exp{—ne}, for all e > 0, n = 1,
n € II. Note that the same result is obtained by applying inequality (2.8) in
Hoeffding (1965). See also Kallenberg (1978, page 68).

REMARK 2. The case of independent components. When the data vectors
X1, X, - - - (distributed according to an exponential family) consist of independ-
ent components it is possible to obtain results similar to (3.3) and (3.4) (in fact,
sharper) by simply applying Lemma 1.1 to each of the components without
having to verify Assumptions 3.1-3.3. The details are as follows.

We introduce some notation we will need below. Let »;,i=1, ..., k, k=1, be
nondegenerate o-finite measures on %(R) and

Q= {w € R: expici(w)} = f expiwy} dvi(y) < oo}

be nonempty and open. Let » = »; X - .- X v, be the product measure of »;’s, and
P = {P,: w € Q} the natural exponential family generated by ». Clearly, the
natural parameter space for & is the open set @ = Q; X ... X Q, and the
corresponding c(w) = Y&, ci(w), w = (w1, - -+, wx) EQ. U X =(Yy, ---, Vi)' ~
P, Y:,i=1,-.-,kare independent with densities exp{w;y — ci(w;)} with respect
to »;. Furthermore, letting, for 9; € Q;, ¢i(v]8;) = sup{(w; — 9;)y — ¢i(w;) + ¢;(d:):
w; € Q,‘}, we have

$a(x) = supf(w — 8)'x — c(w) + ¢(3): w € Q} = Tk, ¢i(y:| ),

x = (yh "':yk),,8= (81: "',8k),- LetX,= (Xil: "”Xik),:i= 1’ 2’ --- bea
sequence of i.i.d. random vectors with family of distributions & and X, =
(X1, -+, Xor)’, where X,,j = 3%, X;i/n,j=1, ---, k,n = 1. Then, given ¢ > 0,
0<r<]l,

Ps(¢4(X,) > ¢) < exp{—rne}Esexp{rng(X,)}
= exp{—rne} [1%1 Esexpirnei(Xni| 9:)},



LARGE DEVIATIONS IN EXPONENTIAL FAMILIES 1517

and hence
(3.11) Py(¢s(X,) >¢) <[1 + 27/(1 — 7)]*exp{—7ne}, n=1,

where we used the fact that E; exp{rn¢:(X,:|9:)} = 1 + 27/(1 — 7), i =
1, ---, k, which follows immediately from Lemma 1.1 by integration. An
improvement on the above bound can be obtained by minimizing the right-hand
side expression in (3.11) with respect to 7 € (0, 1), the minimizing choice being
10 = [1 — 2k/(ne)]"?, ¢ > 2k/n. Of interest is also the choice 7, = 1 — 1/(ne)
giving

(3.12) Py(¢s(X,) > ¢) < e(2ne — 1)*expf{—ne}, n=1, ¢>1/n.

REMARK 3. For a bound on P, (¢,(X,) > ¢) that does not involve 7 one can
take 7 =1 — 1/(n — ko) and argue as in the closing lines of the proof of Theorem

3.2 to obtain
E,exp{(n — ko — 1)¢.(X,)} = O(nF*1*1)

and hence, for some constant «(w),
(3-13) Pw(¢w()_(n) > 8) = K(w)nk(k_,l)+1exp{—(n - kO - 1)8},
for all e >0, n > max(m — 1, ky + 1).

REMARK 4. When f in Assumption 3.3 is a polynomial (with necessarily
positive constant term since f(¢) = tr ¢(w) for all ¢ > 0)

J; fa(t)exp{— at} dt = O(1/a**-1/2+1)

as a — o, This follows immediately by displaying f, (which is feasible from (3.5),
(3.6), (3.8), and (3.9)) and integrating out. Hence, arguing as in the proof of
Theorem 3.2, we obtain, for 0 <7 < 1,

(3'14) Ewexp{f(n - k0)¢w()_(n)} = O(nk‘k_l)/z),

which provides a significant improvement on (3.3). This situation occurs in the
examples of Section 4.

As an immediate consequence of Theorem 3.2 (more precisely, of (3.13)) we
generalize below results in Hoeffding (1965) for the multinomial distribution and
in Herr (1967) for the multivariate normal distribution, and thus give an answer
to a question raised by Chernoff (see discussion following Hoeffding’s paper).
Ford € Q, 2, C Q we let K(Q4, 3) = inf{K(w, 9): w € Q4}.

THEOREM 3.3. Suppose that Assumptions 3.1-3.3 hold, and let &, be the
maximum likelihood estimator of w € Q and Q, be a Borel-measurable subset of Q2.
Then, for some constant x(w),

(3'15) Pw((:’n € Ql) = K(w)nk(k_l)+lexp{_(n - kO - I)K(er w)}’

for all n > max(m — 1, ko + 1) uniformly in Q,.
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ProOOF. To avoid trivialities, assume K(Q;, w) > 0. Then, for

n>max(m—1, kg + 1)
we have

P,(w, € )
= Pu($(R,) € ©) = Pu(K($(X), w) = K(0s, w))
= Pu(u(X) = K(:, w) = x(w)n**D*exp{—(n — ko — DK (R, w)},
by (3.13).0

REMARK 5. It turns out that (3.15) is not just a consequence of (3.13), but in
fact equivalent to it. This is straightforward to show.

For one-dimensional exponential families an analogous result can be obtained
by applying Lemma 1.1.

4. Examples. In this section we present two examples for which Assump-
tions 3.1-3.3 are satisfied. Detailed arguments as well as other examples are
contained in Kourouklis (1981).

EXAMPLE 1. The family of gamma distributions with densities g(y | w;, w2) =
wi2y“zexpi{—w;y}/T (w2), ¥, w1, w2 > 0, with respect to the measure dy/y. Assump-
tion 3.3 is satisfied for w = (1, 1)’.

ExAMPLE 2. The family of p-variate normal distributions N,(u, Z), (z, Z) €
O = {(u, Z): un € R?, 2 is p X p positive definite}, p = 1. Let & = {P,: w € Q}
denote the corresponding k-dimensional natural exponential family, where
k= 2p + p(p — 1)/2, and a denote the transformation that maps © 1 — 1 onto
the natural parameter space Q. Also let X;, X,, --- be a sequence of i.i.d.
random vectors in R* with distribution P,, w € Q. Since (as is well known)
X, = X%, Xi/n has an absolutely continuous distribution for n = p + 1,
Assumptions 3.1 and 3.2 are satisfied with m = p + 1. We will show next that
Assumption 3.3 holds with w = a[(0, I,,)], where I, is the p X p identity matrix.
Note first that here

Ly=lo=a[(g, Z))E L uu+trZ—logdet Z—p=2, ¢>0.
For w = a[(u, 2)] € Q, direct calculations yield the crude bound

4.1) tr C(w) < tr Z(1 + 2p’p + 3 tr 2/2).

Direct calculations and induction on p also yield

(4.2) det é(w) = 27°(det =)P*2

Consider now w = a[(u, Z)] € I, and let Ay, ---, X\, be the eigenvalues of .

Then p'u + Y2, (N\; — log \; — 1) < 2¢, which in turn entails
(4.3) wpu=<2 and N\ —log\i=2+1, i=1,.--,p,



LARGE DEVIATIONS IN EXPONENTIAL FAMILIES 1519

since x — log x — 1 = 0 for x > 0. The last set of inequalities implies
(4.4) expf—2c— 1} =\ =2+ 1)/Q-¢Y, i=1,..,p.
(For the right-hand side inequality, use the fact x log x = — e, for x > 0.) From
(4.1)-(4.4) it clearly follows that Assumption 3.3 holds with 8 = 2p(p + 2),
v = 27"exp{— p(p + 2)}, and
fle)=pRe+1)/1 —e™) + 2(p+ 1)e(2e + 1)/(1 — e7?)
+ 3p%(2¢ + 1)%/[2(1 — e71)?].

We should note here that for the multivariate normal distribution, inequality
(2.7) in Herr (1967) states
(4.5) P.(¢.(X.) > ¢) = AnPP*V2exp{—(n = 2p — 3)¢},

for all large n uniformly in ¢ > 0 and w € Q, where A is a constant, and hence
implies the (general) result (3.4) (as well as (3.13) and (3.14)). However, the
above bound can also be improved. Indeed, by direct computation,

E.exp{(n — p — 1)¢.(X,)} = O(nP+rP/4)
uniformly in w € Q and hence '
(46) Pu(9u(Rn) > &) < AinP*P*Viexpi—(n — p — 1)é),

foralln>p+1,¢6>0,w € Q, where A, is a constant depending only on p.
Lastly note that direct computation also yields

(4.7 E.exp{r(n — p)¢.(X.)} = O(1)

for any 0 < 7 < 1, uniformly in w € Q (Kourouklis, 1981). This is therefore the
best order of magnitude one could hope to get in (3.3).

5. Appendix. Using results of Bronshteyn and Ivanov (1975) and Dudley
(1974), it is shown below (in Proposition 5.6) how a polytope can be inscribed
between two bounded convex sets in R*, k = 2, one contained in the other. A
crude estimate of the number of “sides” of this polytope is obtained. Preliminary
definitions and lemmas are in order.

DEFINITIQN 5.1. A $-grid for a set B C R* is a subset A of B, such that each
point of B is within (Euclidean) distance § from some point of A.

LEMMA 5.2. Given a‘sphere S of radius r >0 in R* and 0 < § < 4r, there is a
d-grid for the boundary of S, bdS, which contains at most c(r/8)*! points, where ¢

is a positive constant depending only on k.

Proor. The proof is essentially contained in the proof of Lemma 1 of
Bronshteyn and Ivanov (1975). See also Appendix A of Kourouklis (1981).0

LEMMA 5.3 (Bronshteyn and Ivanov, 1975). Let C be a bounded convex set in
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R*and x,, ---, xm, m = 1, points in R* ~ clC (clC denotes the closure of C).
Suppose that for every supporting hyperplane of clC there is at least one point x;
lying in the open half-space disjoint from the half-space containing clC. Then the
convex hull of {x, - - -, xm} contains C.

DEFINITION 5.4 (Dudley, 1974). A set C in R* is called analytic if there is an
entire analytic function g such that C = {x € R*: g(x) < 1} and the gradient of g,
&, is nonzero on bdC.

LEMMA 5.5 (Bronshteyn and Ivanov, 1975; Dudley, 1974). Let x, y, u, v be
points in R* such that (x —y)'u=0and (x—y)'v<0.Then |x+u—-y—v| =
max{|x -y, lu—vl}.

PROPOSITION 5.6. Let C; C Cs be sets in R* such that C, is convex and analytic,
C, is bounded and convex, and d = inf{ || x; — x5 ||: x; € bdC), x2 € bdCs} > 0. Then
there is a polytope P satisfying C; C P C C, and such that it is the intersection of
at most co[(r + 1)/6]1**7V closed half-spaces, where r is the circumradius of Cs,
6 = min(w/8, d/2) and ¢, a positive constant depending only on k.

PrOOF. The proof is along the lines of Lemmas 4.4 and 4.5 of Dudley (1974).
Let S be the sphere of radius r + 1 co-centric to the circumsphere of C..
By Lemma 5.2, there is a ¢-grid, say S;, for bdS which contains at most
c[(r + 1)/6])*7! points, ¢ being as in Lemma 5.2. For every p € bdS there is a
unique nearest point n(p) € bdC,, with | p — n(p) || = 1. The function n(.) maps
bdS 1 — 1 onto bdC,. Note that p — n(p) is normal of clC, at n(p) (a point x, is
normal of a convex set C at a € C if (x — a)’xo < 0 for all x € C). It is next shown
that A = {n(p): p € S;} is a é-grid for bdC,. Let n(q), ¢ € bdS, be a point in bdC;.
There is a point p € S; such that |p — ¢|| <é. Let u = p — n(p), v = q — n(qg).
Since u, v are normal of cIC; at n(p), n(q) respectively, we have (n(p) — n(q))'u
= 0 and (n(p) — n(q))’v = 0. Apply now Lemma 5.5 to obtain that | n(p) —
n(q)|| < éand ||u — v| <. Consider next the set

D = {y(p — n(p))/llp — n(p)ll: p € S},

where v = 26. We will show that the assumptions of Lemma 5.3 hold for C; and
the points of D. Consider a hyperplane, say H, which supports clC, at n(q) €
bdCy, q € bdS. There is p € bdS such that | n(p) ~ n(q)| < é. Let u, v be as
above and u, = u/||ull,vi=v/||v|. Since |u|| =1, |v] = 1 we have || u; — v, ||
< |lu—v| <é. Let 8 € [0, v] be (the smallest nonnegative) angle between u;,
;. Since | u; — v, || = 2 sin(6/2) and @ < = sin(6/2) for 0 < @ < = by concavity,
we have 0 < 76/2 < 20 = n/4. Let o be the distance of n(p) to H along the
normal p — n(p). Since 0 = 0 = 7/4, a = | n(p) — n(q) | tan 6 < 6. Hence, vy > «
and y(p — n(p))/ | p — n(p) || lies in the open half-space determined by H disjoint
from the half-space containing clC;. Apply now Lemma 5.3 to conclude that
C, C conv D (convex hull of D). Since v = d, D C C,, hence conv D C C,. By
taking P = conv D, we have C; C P C C,. Furthermore, we can write P =
N {H;: 1 <j < fr-,(P)}, where fr_,(P) is the number of (¢ — 1)-dimensional faces
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of P and H; the closed half-space associated with these faces and containing P
(see Griinbaum, 1967, pages 17, 31, 32). Since f,—1(P) < (‘¢*) (Griinbaum, 1967,
page 31), where fo(P) is the number of exposed points of P and the latter
is less than or equal to the cardinality of D, we conclude that f,—;(P) =
co[(r + 1)/6]%¥*~Y, where c, = c*/k!0

REMARK 5.7. The above estimate c,[(r + 1)/6]**™V of f,—,(P) is very crude.
For k = 2 it can be improved to c(r + 1)/.
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