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TAIL ESTIMATES MOTIVATED BY EXTREME VALUE THEORY

BY RICHARD DAvVIS! AND SIDNEY RESNICK?

Colorado State University

An estimate of the upper tail of a distribution function which is based on
the upper m order statistics from a sample of size n (m — o, m/n — 0 as
n — ) is shown to be consistent for a wide class of distribution functions.
The empirical mean residual life of the log transformed data and the sample
1 — m/n quantile play a key role in the estimate. The joint asymptotic
behavior of the empirical mean residual life and sample 1 — m/n quantile is
determined and rates of convergence of the estimate to the tail are derived.

1. Introduction. This paper deals with the problem of estimating the tail
of a distribution function (df) F(x): = 1 — F(x) for large x based on a random
sample. Many of the proposed estimators of the tail (cf. Hill, 1975 and Breiman,
Stone and Ginns, 1979) assume that F(x) belongs to a given parametric family
(typically Pareto or exponential) for all x greater than some predetermined value
%o. The parameters are then estimated by maximizing the likelihood based on
the observations which exceed x, (see DuMouchel, 1983, and the references
therein). Two obvious problems in this approach are the choice of a parametric
family and the threshold value x,. We propose an estimate of F without appealing
to the likelihood principle which is applicable to a wide class of distribution
functions. The proposed estimator is motivated by ideas from classical extreme
value theory and in some instances coincides with estimators given by other
authors. Extreme value theory also is a clear influence on the estimator of
Pickands (1975).

A df F belongs to the domain of attraction of an-extreme value distribution G,
if there exist constants a, > 0, b, such that nF(a,x + b,) — —log G(x) for all x
with G(x) > 0. We shall assume that —log G(x) = (1 + x/a) " where 0 < a < o,
the case a = ®» corresponding to —log G(x) = e~ The upper tail of F is then
exponential or Pareto-like depending on whether « is infinite or finite. Under
the assumptions given in Section 2, we show that

(1.1) SUDsasr | LF(x) — (x/b() ™®] >0 as t—

where b(t) is the 1 — ¢! quantile of F and a*(t) = t [fog) F(e’)dt is the mean
residual life of the df F(e‘) evaluated at log b(t). In particular a*(t) — o™ as
t — oo for all 0 < o < o (see Section 2). From a random sample X, - - -, X,, the
estimates of the parameters b(t) and a*(t) are based on the upper m = m(n)
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order statistics where m is a sequence of integers chosen such that m — o and
m/n — 0. This idea is similar to that of Weissman (1978) (seé also Boos, 1984,
for empirical results on the Weissman article) except that he assumes m is held
fixed. Replacing ¢ by n/m in (1.1), the parameter values b(n/m) and a*(n/m) are
naively estimated by their empirical counterparts. That is if X;) > Xy > -+ >
X denotes the decreasing order statistics, then b(n/m) is estimated by the
empirical 1 — m/n quantile, X(,+1), and a*(n/m) is estimated by the empirical
mean residual life of the log-transformed data evaluated at log X,.+1) which is
equal to

(12) a*(n/m) = m™ T2, (log (Xp) — log(Ximsn)).
This leads to a Pareto tail estimate of F(x) given by
(L3) (/1) () X))/,

This estimator of the tail is essentially the same as the one proposed in Hill
(1975) (see also Breiman et al., 1979) where it is assumed that F(x) = cx™* for
x > xo with x, known.

In Sections 4 and 5 the asymptotic properties of the estimators of b(n/m) and
a*(n/m) are derived. In particular it is shown that

v (E/m) | log Xiner = log b(n/m)
a*(n/m) a*(n/m)

converges jointly in distribution to two independent normal (0, 1) random

variables. Consistency and rates of convergence of (1.3) to F are derived in

Section 3.

2. Preliminaries. We now discuss our assumptions in more detail. We will
always assume that F'(x), the distribution whose tail is to be estimated, satisfies
F(x) <1 for all x and that F has at least one derivative F’ which serves as a
density. Then F(x) = 1 — F(x) has the representation for x > 0

2.1) Fix)=c¢ exp{— J(: 1/fo(u)) du}, c>0
where
@2 fou) = Fw)/F'(w), u>0.

In order to guarantee that F is in the domain of attraction of an appropriate
extreme value distribution we assume the validity of sufficient conditions due
essentially to Von Mises (cf. de Haan, 1970, Section 2.7). For a < » assume

(2.3) lim,oxfo(x) = a™%.
In this case set
(2.4) b(t) = F~(1 — 1/t), ao(t) = fo(b(¢))
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where F*(u) is the left continuous inverse of F' and if o > 1, we further define

a(t) = tf F(s) ds
b(t)

so that a(t) is the mean residual life evaluated at b(t). We then have as t — o
for all o < o,

- ag(t)x+b(t) 1
Faoe o0 =enl- [ () a

) R N T

= en- J, (s )

alx+1 .
- exp<— f au™! du)
1

=(1+ax)™

and provided a > 1

a(t) _ <b(t)F'(b(t)))<fZ°(¢> F(s) ds) o afla—1)
() \ Fo@®) /\b®)F®@)

(cf. de Haan, 1970, page 15).
For attraction to exp{—e )}, referred to as the « = » case, we assume F has a
representation for x > 0

(2.6) Fx)=c¢ exp{— j(: (h(u)/fi(u)) du}, c>0

where

(2.5)

lim, ,h(u) =1
and f; is differentiable with derivative f{, satisfying
lim, .f1(u) =0

(cf. de Haan, 1970, pages 92, 111). The condition (2.6) is implied by the usual
Von Mises condition, f§(z) — 0 as u — o« in which case the most convenient
choice of hand f; is h = 1 and f; = f,. The condition (2.6) also holds if (de Haan,
1970, page 110)

2.7 h(x) := F’(x) f F(s) ds/(F(x))? —> 1 as x — oo,
in which case we may take
filx) = f F(s) ds/F(x).

(In fact (2.6) is equivalent to (2.7).)
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If (2.6) holds we may take
(2.8)  b(t) =F-(1-1/t), ai(t) =£(b(?), alt)=t fbm F(s) ds

and then since lim;_b(t) la;(t) = lim,.b(t) "Y1 (b(¢)) = lim,_.fi(b(t)) = 0,
a;(t)x + b(t) = o and lim,_.f;(a; (t)x + b(t))/fr(b(t)) = 1, we get

tF(a;(t)x + b(t))

ay (B)x+b(t)
= eXP{— J;( ) (h(u)/fr(u)) du}

= exp{— fo h(ay(t)u + (@) (f(b(2))/fr(ar(t)u + b(2)) dU}

N exp{— f 1 du} =e7"
0

Furthermore as t — o since ao(t) = fo(b(t)) = f1(b(t))/h(b(t))
(2.9) a(t) ~ a(t) ~ ao(t)

(cf. de Haan, 1970, pages 84, 88).

When either (2.3) or (2.6) hold, we will say F is in an a-domain of attraction
with the understanding that o = o refers to (2.6) being valid.

Finally, we note for later use that because b(t) = F(1 — 1/t) we have

F(b(t)) _ h®(@) _ ao(t)
F'(b(t))t t t

Although we are being less than completely general in supposing (2.1) and
either (2.3) or (2.6), we feel this is the appropriate level of generality for the tail
estimation problem. The domains of attraction are not severely restricted by our
assumptions (cf. de Haan, 1970, Section 2.7) and most common densities (normal,
exponential, Cauchy, gamma, Pareto, - --) satisfy our conditions. Furthermore
many of our results may be extended to the general case. This involves replacing
the constant ¢ > 0 in (2.1), (2.5) by a function c(x) satisfying lim,_,.c(x) =¢c>0
(de Haan, 1970; Balkema and de Haan, 1972).

In the tail estimation problem, it is advantageous for a number of reasons to
be explained later to transform the original data by taking logarithms. (Negative
observations, not relevant to estimating the right tail anyway, are neglected).
If Xy, ---, X, is the original random sample we consider X, ---, X} where
X¥* = log X;. Then for x > 0, F*(x) = P[X¥ > x] = F(e*). If F is in a domain of
attraction for 0 < a < o, then F* is in a domain of attraction with a = . In fact

1—F*x) _ 1= F(e) _ fole?)
(F*)I(x) exFl(ex) ex

(2.10) b'(t) =

(2.11) fe(x) =
and
(2.12) b*(t) = log b(t).
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In the a < » case, if we set h*(x) = a™*/(fo(e)e™) and ff = o' we get for x > 0

F*(x) = c”‘exp{ - J; <?;((:))) du}>

so that F* is of form (2.6) and further from (2.9)

(2.13) a*(t) =t L(t) F*(s) ds ~ a¥(t) = a7

If F is in a domain of attraction with a = oo, then (2.6) gives

Fr(x)=F() =c e"p{" fo <£%%> d”}

.

— otexpd— | (P
iy exp{ | ( . (eu)e_u) du}
- D)

=c exp{—J; <ff(u)>du}

where h*(u) = h(e"), ff(u) = fi(e¥)/e*. It ié easy to check h* —» 1 and (ff)' =0
so that F* satisfies (2.6). Furthermore in this case
(2.14) af(t) = ff(d*t)) = f1(b(2))/b(t) = a:(t)/b(t) - 0

ast— o and

(2.15) af(t) ~a*(t) =1t Jz:‘m F*(s) ds.

3. Approximations by Pareto tails. In this section we show that if F is
in a domain of attraction for 0 < « < o as described in Section 2, then the tail F
may be approximated by Pareto tails. By means of these approximations we will
be able to show that our tail estimators are consistent. We begin with some
notation. For a positive real number g > 0, define the distribution functions

_ [0 ifx <—g™!
m&x)'{l—(1+grf ifx=—g!

and
0 ifx<0
F(—g,x)={1—-(1—-gx)¥ if0<sx<g?
1 ifx =g

The distributions F(+ g, x) are close to a unit exponential distribution.

PROPOSITION 3.1. For0<g<l1,
SUP.zo | F(+ g, x) — e™*| = (2 + g)e7%g.

PRrROOF. The bound for sup,-o| F(—g, x) — e™*| is the one given by Hall and
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Wellner (1979) and their method works almost without change to give the bound
for sup,=o| F(g, x) —e™*|.0

Other approximations are collected in the next result.

PROPOSITION 3.2. For0<g<]1,
(i) SUp:=o| e — e7*| = (g/(1 — g))(1 — g) = e (g/(1 - g)),
and

(ii) SUp,=o| ¥ — e7F| = (g/(1 + &))(1 + g) 2.
Alsofor0<a<p
(iii)  supei|x™ — x7f| < 'I‘g"‘;——z—l“ (a/B)F/F~2 <= e7!|B8 — a|/B A a.

PROOF. (i) Set x(x) = e™™®* — ¢™* = (. It is easy to check that x’(x)
is positive for x near 0 and negative for large x. Thus it is evident that x
has a unique maximum and it occurs. at the solution of x’(x) = 0 which is
—g 'log(1 — g). The value of the maximum is thus

x (=g 'log(1 — g)) = (g/(1 — g))(1 — g)'~.
The bounds for (ii) and (iii) can be obtained from (i). O

We now show how in the & = » case, the tail of a distribution in the domain
of attraction of the double exponential exp{—e™}, x € R, can be approximated
by Pareto tails. This approximation is similar to one employed by A. A. Balkema,
L. de Haan and S. Resnick in an unpublished manuscript. Begin by assuming F
satisfies (2.6) and suppose g(x) = 0 is nonincreasing, lim,_,.g(x) = 0 and

(3.1) g(x) =z |h(x) — 1] V [fi(x)].

Such a function g always exists since we may take for instance
g(x) = sup;=, | h(t) = 1| V [fi(¢)].

Write for ¢ = b(u)

t

f@) = fi(b(w) = Lu) fi(s) ds = Lu) &(s) ds = g(b(u))(t — b(u))

= - Lu) g(s) ds = —g(b(4))(t — b(u))

and similarly
1-gbw) =hl) =1+ g0b).
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Therefore for t = b(u)

1-gb@)  _h) _ 1+ g(b(w)
Ab@) + gb@)E — bw) = fi() = fibw) — gb@)(t — b))

Now integrate between b(u) and a,(u)x + b(u). Recall a;(u) = f,(b(u)) and

ay(uw)x+b(u)
—log uF(a,(w)x + b(u)) = Lu) ?1%%

and from (3.1) we get after a change of variable
1- g(b(u)))(g(b(u)))'IIOg(l + g(b(u))x)
< — log uF(a;(u)x + b(u))
< —(1 + g(b(w))(g(bw))) log(l — g(b(u))x).

(The right inequality holds for 0 = x = 1/g(b(u)) and the left for x = 0.)
Exponentiating we find for x = 0

(F=g(b(u)), £)"** = uF(a(u)x + b(w) < (F(g(bw)), 1))

Since

-(1-g)g7!
F(g x)' %=1+ gx) 9" = (1 + (L) (x(1 - g)))

1-¢
=r-8 _

dt

and
F(—g, x)'** = F(— (g/(1 + g)), x(1 + g))
we have

SUPs=0 | UF (a: (u)x + b(u)) — e™*|

FGﬁQ&i—wu—gwwm)—fx

(3.2) = SUP==0 | I\ T 2 (b(w))
—g(b(w)) L
V sup:=o F<1 +g(b(u)),x(l+g(b(u)))> e |.
Now
g(b{(u)) _ _ -
SUPx=0 F(—————l_g(b(u)),x(l g(b(u)))> e

= SUPx=0

g(b(w)) ~ )_—mmmm
Fngaaﬁﬁﬂ gbw)) —e

+ Supxzol e—x(l—g(b(u))) — e—xl.
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According to Proposition 3.1, the first term is bounded by

gbw) \ _, &b))
<2 T1- g(b(u))>e 1—g(bw))

and using Proposition 3.2 (i), the second term is bounded by

g(b(u)) (1 — g(b(u)))Ve®®

1 - g(bw))
whence
= gbw) _ L
SUP:=0 F<1_g(b(u)),x(l g(b(u)))) e
- g0W) \ 5, 4 _ ‘l,g(,,(u»} g(b)
—Jl<2+1—g(b(u>>>e MRS T

In a similar way using Proposition 3.1 and 3.2 (ii) we find

- g(b(u)) R
F(— T+ 26@) +g(b(u)),x(1 +g(b(u))}) e

- gbw) \ _, _l/ga,(,,,)} g(b(u))
= {(2 + Iy e GGh g(b(u)))e + (1 +gb) T+26)"

Since g/(1 + g) < g/(1 — g) and (1 + g) ™% = (1 — g)"%, we may bound the left
side of (3.2) as follows:

SuprOI uF(al(u,)x + b(u)) _ e_xl

gbw) \ _, _www} g(b(w))
@3 5%@*1—gww»% 1+ ebw)) T- gbw)

= y(g(bw))) = 0(g(bw))).

Supy=o0

REMARK. Reviewing the previous derivation we see that if A = 1 then
sup=o| uF(a:(u)x + b(u)) — e7*| = (2 + g(b(w)))e™g(b(w)).

The previous discussion contains the important ideas required for the following
theorem on tail approximations.

THEOREM 3.1. For g > 0, let Y(g) be the function given by the right side of
(3.3); i.e.

_ g |\ - —el _8&
(3.4) v(g) {(2+1_g>e2+(1+g) g}l_g.

Suppose F is a distribution in the domain of attraction of an extreme value
distribution with 0 < a < .
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(i) If o < w and F satisfies (2.1), (2.2), (2.3), then for u>1

(3.5) SUPs=bw) | UF(s) — (s/b(u)) ™| = ¢¥(&1(b(w)))
where g, satisfies for t > 0
(3.6) &) =z a7 t/fo(t) — .

(ii) If a = o and F satisfies (2.6), then for u>1
3.7 SUPszbw) | UF(s) — exp{—(s — b(u))/a1 ()} | =< ¢(g(b(w)))
where g satisfies (3.1). Also

(3.8) SUPs=b) | UF(s) = (s/b(u)) /14| < Y (g (b(w)))
where g, satisfies for t > 0.
(3.9) &) = |h(t) — 1| V |fi®t) — t7fi(@)].

PRrOOF. The assertion (3.7) is just a restatement of (3.3). If we write (3.3) for
the log transformed sample we get after changing variables (y = a¥x + b*)

(3.10)  sup,=y) | uF*(y) — exp{—(y — b*))/at W)} | = ¥(g*(b*w))).

If & < o, then recalling h*(x) = a™!/(fo(e®e™), ff(x) = a~! gives

* *e)— 1] = o1 | & _
g*(x) =z |h*(x) - 1| =« }fo(ex) a'.

Since b*(u) = log b(u) we have

bu) )
o) ~ % |

Set g*(b*(u)) = g1(b(u)) and recall af(u) = a7, so rewriting (3.10) by setting

s = e” gives (3.5).
If a = oo, then h*(t) = h(e’), ff (t) = fi(e’)/e’ so that (f)’(t) = fi(e*) — fr(e")e ™.
Therefore

&(b()): = g*(b*w)) = | h(b®)) — 1] V |fi(bw)) — f1(bw))/b(u) |

as asserted and setting s = e” in (3.10) and remembering af(u) = a,(u)/b(u)
yields (3.8).0 ..

g*(b*(w)) = o™

We now discuss tail estimators. First note that when a = «, b/a, in (3.8) is
equal to 1/af (cf. 2.14) and that af(t) ~ a*(t) = ¢ [+ F*(s) ds. When a < =,
the exponent « in (3.5) is 1/a¥(t) ~ 1/a*(t). Since a*(t) has a nice interpretation
as the mean residual life of F* evaluated at b*(¢), we are led to consider what
happens when a*, b* are replaced by empirical counterparts. As b*(n), the
1 — n™! quantile of F* is difficult to estimate from X, ..., X, (or X%, --- , X},
we consider instead b*(n/m), a*(n/m) where m = m(n) satisfies m/n — 0,
m — . Thus we consider (3.5) and (3.8) with u replaced by n/m. In (3.5) we
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replace , b by the estimators l/a*(n/m), b(n/m) and in (3.8), we replace b/a;,
b by l/a*(n/m), b(n/m).

THEOREM 3.2. Suppose F is in the domain of attraction of an extreme value

distribution as described in Section 2 with 0 < a < . Based on X;, ---, X,
suppose a* = a*(n/m), b = b(n/m) are any estimates of a*(n/m) and b(n/m)
satisfying (n — o, m — o, n/m — )

-~ ¥ _ b* 5
(3.11) @y, Y0 el

a a a
Then
(3.12) SUD,=b0m | (R/m)F(s) = (5/8) ™% | —p 0

so that (s/6)™/%" is a consistent tail estimate for F(s)/F(b(n/m)), s = b(n/m).
PROOF. The a = » case is slightly harder than « < % so we concentrate on
a = o, Write
sup,=s| (n/m)F(s) — (s/6) ™|
< supezs| (n/m)F(s) = (s/b) ™% | + sup,as| (s/b) /% = (5/6) /7|
+ sup,zs| (s/b) ™% — (s/6)™"|= A + B + C.
For A, apply (3.8) to get
A = 0(g:(b(n/m))) >0 as n— oo,
Next we have
B = supet |y = y 7|
which from Proposition 3.2 (iii) is bounded by
a*/at — 1
E;/a’l" Al

1/at — 1/a*
1/at A 1/a*

-

because of (3.11) and the fact that a* ~ af. Finally we have that

C = b7V& | bY7 — BV = | (b/b)" = 1| = | exp{(6* — b*)/a%) — 1.
Since a*/a —p 1 we have (b b*)/a —p 0 whence
lexp{(6* — b*)/a*} — 1| —p 0
as required. 0
REMARK. Strong consistency in (3.11) leads to strong con31stency in (3.12).

We now specify the estimators a* b. Recalling that X(l, > X >, ,> X
denote the decreasing order statistics of the sample X, - .-, X,, (snmllar notation
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for the log transformed sample) we set
b(n/m) = Ximsy)
the empirical 1 — m/n quantile and
a*(n/m) = m™ T2y (XY — Xtey) = m™ T2y (log Xy — 10g Ximsn)

the empirical mean residual life of the transformed data evaluated at X¢,.,). The
asymptotic properties of these estimators are studied in the next sections and in
particular we check that (3.11) is valid.

4. Asymptotic propertis of 4, b, and &. In this section we consider the
asymptotic properties of the estimates of a(n/m) = n/m [§m F(s) ds and
b(n/m) = F—(1 — m/n) where F satisfies (2.1) and ejther (2.3) with « > 2, or
(2.6). The estimates are given by

(4.1) i(n/m) = m™ 21 (Xjn — Xma1n)

and

4.2) b(n/m) = Xpns1n

where X, , = X, = --- = X,,, are the decfeasing order statistics from a random
sample X, - - - , X, with df. F.Via the probability integral transform, the random

variables defined by E; = —log (1 — F(X;)) are independent unit exponentials.
Since F(X;) = 1 — e7%, we have b(e®) = X; as. Soif E,, = E;,, ---, = E,,,,
denote the decreasing order statistics based on E;, - - - , E,,, then with probability
one,

(4.3) a(n/m) = m™' T, (b(e¥in) — b(ePmin))
and
(4.4) E(n/m) = b(eE”H-l,n).

The proofs of the following results rely on this representation and the well known
properties of the order statistics from an exponential sample.

THEOREM 4.1. Suppose F belongs to the a domain of attraction with 2 < a <
. Then as n — ®

< \/-”—l<&(n/m) B 1>’ J;l<5(n/m) - b(n/m)))

a(n/m) a(n/m)
(45) | 0] [a? + afla=2) (a~-1)/a?
o a/\a — o — [0 4
=N ([0] [(a D/ (- 1)/a)2]>

where m = m(n) is any sequence of integers satisfying m — o and m/n — 0.
Moreover,

a(n/m) b(n/m) — b(n/m)
a(n/m) 7 b a(n/m) =0, and o N B ym)

a(n/m) o
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REMARK. The formulas in Theorem 4.1 in the a = o case are to be interpreted
as the limit @ — . Notice that in this case the two components in (4.5) are
asymptotically independent.

The proof of this theorem will be broken up into a series of lemmas.

LEMMA 4.1. For any ¢ > 0 with ¢ < (a — 1)/a, there exists a positive real
number T such that

ao(ts)_a_lsa—l < a—l+esa_1+c_a—lsa_1
a(t) « o a

foralt=T and s = 1 where ao(t) is given by (2.4). Furthermore a,(ts)/a(t) —
((e — 1)/a)s*" uniformly on a compact nezghborhood ofs=last— oo,

(4.6)

PROOF. Define
ta’(t) —t“’F(b(t))b (t) + a(t) —1- a(t)
a(t) a(t) a(t)

where we have used (2.10). Since ao(t)/d(t) — (e — 1)/a, we have u(t) - 1/a
and hence for any 0 < ¢ < (o — 1)/a, there exists a positive number T such that

4.7) u(t) =

(4.8) al—¢e<u(@)<a'l+e forall t=T.
Solving the differential equation (4.7) for a(t), we obtain

" u(x)
4.9) a(t) = a(l)exp(j m)
whence

a(ts)/a(t) = exp<f' u_ix_) dx) = exp<J: u(ix) dx) forall s=1.

Applying the bounds in (4.8) to the exponent we get (cf. Feller, 1971, page 277)
(4.10) st < a(ts)/a(t) <s** forall t=T and s=1.
Moreover the inequality (4.8) also gives the bounds

4.11) ezl ,0® a1, eral t2T
o« a(t) a

Writing ao(ts)/a(t) = (a(ts)/a(t))(ao(ts)/a(ts)) the inequality

(4.12) <°‘ ; 1_ 8)8.)1—1_-5 < a;gs)) < sa_1+,<a ;— 1 N e)

for all ¢t = T and s = 1 follows from (4.10) and (4.11). Now subtracting
((a = 1)/a)s* " from each side in (4. 12), the bound (4.6) follows easily.
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For s < 1, the inequality (4.10) is reversed for ¢t > T so that (4.12) becomes

a-—l_e s"_l"sws.s“_l"a———l+s for 0<s<1.
o a(t) o

It is then clear that ao(ts)/a(t) — ((a — 1)/a)s®" uniformly on a compact
neighborhood of s = 1.

LEMMA 4.2. For2 < a < o,

( %(E(n/m) - b(n/m)>’ - <a(eEm+‘-") _ 1)) N <a -1 1) .z
a(n/m) a(n/m) a a

where Z, is a N(0, 1) random variable.

PROOF. First, from Renyi’s representation for order statistics from an ex-
ponential sample (cf. Feller, 1971, page 19) we have

Eniin=a 25" (n+ 1 —j)7'E;.

It follows by checking characteristic functions directly (or see Smirnov, 1952,
Theorem 4) that '

M (Emir,n — log(n/m)) = Z,

where Z; is a N(0, 1) random variable. By appealing to Skorokhod’s theorem
(Billingsley, 1979), we shall assume for the remainder of the proof that

(4.13) N,: = Vm(Eps1, — log(n/m)) — Z, as.
\Now since b’(t) = ao(t)/t (see (2.10)), we have from (4.4) and (4.13)

J;z(l;(n/m) - b(n/m))

a(n/m)
n/m a(n/m)s 1 a(n/m)s
By Lemma 4.1,

(ao((n/m)s)/a(n/m)) = ((a — 1)/a)s"/*

uniformly on a compact neighborhood of 1 and since N,/ Vm = 0 a.s. it follows

that
exp(N,/vm)
e f ao((n/m)s)
1 a(n/m)s

= Vm(a — 1)(e* /Y™ — 1) + 0(1) —> "‘—;;1 . Z, as.

as desired.
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From the representation (4.9), we have

Eps1n exp(Ep41,n) exp(N,,/vVm)
ale ) exp< f _uix) dx) = exp< f ulln/m)z) dx)
n 1

a(n/m) /m x

where u(t) — 1/a as t — . Consequently u((n/m)x) — 1/« uniformly on a
compact neighborhood of 1 so that (4.13) implies

\/—_ m —_ J_ a”IN, /vm -1
m a(n/m) —1)=+vml(e -1 +0(1) > a'Z, as.

which completes the proof. [0

LEMMA 43. For2<a <o, .
Jm((@(n/m)/a(e"m)) = 1) = (af (o — 2))V*Z,
where Z is a N(0, 1) random variable independent of Z, in Lemma 4.2.

PRrROOF. Observe that for a random sample of exponential random variables
(Ern = Emirny Eon — Ensiny -+ Ejn — Emiiny Emein)
=4 (Eym, Eomy « -+, Eqm, Ent1n)
where E,,,1 , is independent of (E1 ., - - - , Emm). Thus from (4.3)
a(n/m) = m™ T, (b(e®ir) — b(eFr+1n))
= ™ By (b(ePmrineFin~Emin) — b(ePrnr))
=a Mt Sy (bleFrantFin) — p(eFnein))
and using symmetry we have
(4.14) a(n/m) =g m™ T2, (b(eFmr1n*E) — p(eFmrin))

where for all n, E,.,, is independent of the sequence of independent unit
exponential random variables (E;, E,, - - -). It follows from (4.14) that

E@a(n/m)| Epin) = j; (b(eFrme1n*X) — b(eFmern))e™ dx
(4.15) ®
= efmiin f b(e*)e™ dx — b(eEm+in),

Em+l.).

However, since

a(t)=tf F(y) dy=tf xF(dx) — b(t)
b(t) b(t)

=t f b(e*)e ™ dx — b(t),
logt
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we conclude that (4.15) is equal to a(e®+1») and therefore
(4.16) E(@(n/m)/a(efr+1n) | Epyrn) =1 as.
We rewrite (4.14) as follows:

a Epiint By Epyin
a(n/m) —am R, <b(e ) — b(e ) (o — 1) (e 5 — 1))

a(eBm+in) a(eBm+in)

, +(@—1Dm 32, (5 - 1)
(which is suggested by the limit relation lim, .(b(tx) — b(t_)l)/a(t) =
lim, . [§*(b'(s)/a(t)) ds = lim; . [ (ao(ts)/a(t))(ds/s) = (a — 1)(x* — 1) for
all 1 < o = «; see Lemma 4.1). Therefore,
a-—1 15, o
\/E 2}21(6“ E’—a_l)

(4.17) «/E(M - 1> =q - SR YYD +
Jm
where using the fact that b’(s) = ao(s)/s we may write

a(eEm+l,n)
Yg) _ fexp(Ej) ao(eE'm+1,ns) _fa-— 1 (ot ‘_13
1 a(eFmin) a J° s
Since Ee” % = a/(a — 1) and Var(e* %) = a/((a — 1)%(a — 2)), the second
expression on the right of (4.17) converges in distribution to (a/(a — 2))/?Z,

where Z, ~ N(0, 1) and is independent of the random variable Z; of Lemma 4.2
by the independence of the E/’s and E,,+1,,.

To complete the proof we will show $7;, Y% /v/m —, 0 and for this it suffices
to show for every 6 > 0 that P[|m™"23 %, Y| > §| En+1,,] =5 0. Observe that
E(Y?|Ens1,,) = 0 for all j, n, j < m by (4.16) and the independence of Ep1,
and the E;’s. Therefore by Chebychev

P[I ”L_l/2 2]";1 Yﬁlj)l >0 I Em+1,n]
(4.18) < 1/8°E(Im™2 Tt Y2 ?| Ens1,0)Ligey,om

+ P(Im™2 Z21 Y| > 8| Envin) g, <m-

Since for each n, Y, Y?, ... are conditionally independent and identically
distributed given E,,, with conditional mean 0, the first term in (4.18) is equal
to 6 2E((Y)?| Em+1,n)1i5,,,,>n) a.. Applying the inequality (4.6) to the inte-
grand of YV, we obtain

E(( YSzl) ) 2 I Em+ l,n)]-[Emﬂ.n>"T]

2

- 1\ - -1
- E[(a - 1. 8)<; + e) (e — 1) — (a — 1)(e B - 1)] * Ligp i >me

The expectation portion of this bound does not depend on n and approaches 0
as ¢ — 0 by the dominated convergence theorem. Hence this term goes to zero in
probability as n — . As for the second term in (4.18), it also goes to zero in
probability since E,,+1,, — % in probability by (4.13), which finishes the proof. 0
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PROOF OF THEOREM 4.1. The independence of Z; and Z, in Lemmas 4.2 and
4.3 implies that

( i Bo/m) = bin/m) m(a(eb‘w-n) _ 1)’ %< d(n/m) 1))

a(n/m) a(n/m) a(eBrein)

= (a N a = 1)Zi, a7'Z, (af(a — 2))?Z,).

Since
é(n/m) _ _ ﬁ(n/m) _ d(n/m) a(eEm-H..n) _
JE(a(n/m) 1> - %<a(eEm+l'") 1) + a(eEmﬂ,n) ‘/—"—1< a(n/m) 1>

and d(n/m)/a(e®~+») — 1 in probability by Lemma 4.3, it follows that

.

( %<a(n/m) N 1>’ %(5(n/m) - b(n/m)))

a(n/m) a(n/m)

(4.19)
= (a7'Z; + (a/(a — 2))°Z;, a (o — 1)Z;)

which establishes (4.5).

The convergence in probability of d(n/m)/a(n/m) and (b(n/m) -
b(n/m))/a(n/m) to 1 and 0 respectively is immediate from (4.5). This implies that
(5(n/m) ~ b(n/m))/a(n/m) —p 0 and since b(n/m)/a(n/m) - a — 1, we must
have b(n/m)/a(n/m) = (a(n/m)/é(n/m))(b(n/m)/a(n/m)) —p a — 1. Hence,
b(n/m)/a(n/m) —p a — 1 which yields the result

d(n/m)/(@(n/m) + 6(n/m)) —p 1/a. O
We now apply Theorem 4.1 to the log transformed variables discussed in
Section 2. Recall that F*(x) = F(e*) denotes the distribution of log X; and F* is

in the & = © domain of attraction. The corresponding estimates of a*(n/m) =
n/m [fogon/m F*(s) ds and b*(n/m) = log b(n/m) are

a*(n/m) = m™ ¥ (log Xjn — 10g Xme1n)
and
b*(n/m) = log Xpsrn = log b(n/m).

The asymbtotic behavior of these two estimates is immediate from Theorem 4.1.

COROLLARY 1. Suppose F belongs to the a-domain of attraction with 0 < a <
o, Then

a*(n/m) b¥(n/m) — b*(n/m) o] [1 o
(J;(a*(n/m) - 1)’ «/ﬁ( a*(n/m) )) = N<[0]' [0 1])

In particular
a*(n/m)/a*(n/m) —p 1, (6*(n/m) — b*(n/m))/a*(n/m) —p 0,
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and

a;(n/m) —p 1/a.

REMARK. Since a*(m/n) — a7, it follows in the o < ® case by the conver-
gence to types theorem, that if for some choice of m — », Vm (a*(n/m) — a™)
— ¢, then

Jm(@*(n/m) — a™) = N(c, ™).

However the condition for this to hold depends heavily on the unknowns F and
o and hence this result cannot be used for obtaining a confidence interval for «

(cf. Hall, 1982).
Another weakly consistent estimate of o~ for « >2is

a(n/m)/(a(n/m) + b(n/m)).

However as shown in the following result, this estimate has a larger asymptotic
variance than that of a*(n/m).

COROLLARY 2. For2<a=<om

a(n/m) a(n/m) +'b(n/m) _ ( —1)2
%(&(n/m) + b(n/m) a(n/m) 1) =N (0’ ala — 2))’

ProOF. We have

( a(n/m) a(n/m) + b(n/m) _ 1)
a(n/m) + b(n/m) a(n/m)

(4.20) b(n/m) M(ti(n/m) B 1>

= a(n/m) + b(n/m) a(n/m)

a(n/m) b(n/m) — b(n/m)
B a(n/m) + b(n/m) Vm a(n/m) )

Since b(n/m)/b(n/m) —p 1 and d(n/m)/a(n/m) —p 1 by Theorem 4.1, it follows
that b(n/m)/(a(n/m) + b(n/m)) —p (a — 1)/a and a(n/m)/(@(n/m) + b(n/m))
—p 1/a and hence the right-hand side of (4.20) converges in distribution to

— 1/2 -_—
o)
o a a—2 a a

_a-1 a \? (a—1)2>
T« <a—2> Z2~N<O’a(a—2)

REMARK. The estimator /(6 + b) is approximately normal with mean

by (4.19)
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a/(a + b) ~ a™! and variance
m-! (@-1*( a Y\ o (= 1)
ala—2)\a+b ad(a — 2)

—~~
(assuming 2 < a < ®). The estimator a* is approximately normal with mean
a* ~ a™! and variance

o (a=1)°

a¥la—2)°
An additional advantage of a* is that the asymptotic distribution theory is not
dependent on o > 2 as is the case with a/(a + b).

m i a*)2 ~mla?l<m

5. Strong consistency. The weak consistency results of Theorem 4.1 and
Corollary 1 may be strengthened to strong consistency for special choices of the
m(n) sequence. These results in the a = o case partially extend those of Mason
(1982). Also see Teugels (1981) and Haeusler and Schneemeirer (1983). We begin
with two preparatory lemmas.

LEMMA 5.1. Let E,, E,, --- be an i.i.d. sequence of unit exponentials with
E,.=E,,= --- = E,,denoting the decreasing order statistics from the first n. If
m = m(n) = [n%), 0 < < 1, ([x] denotes the greatest integer < x), then

(5.1) E, 1, — log(n/m) > 0 as.as n— oo,

Proor. Given e> 0,
P[E,.+1,, > ¢ + log(n/m)] = P[S, > m]

where S, = # {1 < j < n: E; > ¢ + log(n/m)} has a binomial (n, p,) distribution
with p, = P[E, > ¢ + log(n/m)] = m/n e™. Since m — np, = m(1 — e™), > 0, we
have by Bernstein’s inequality (Serfling, 1980, page 95)

P[S, > m] = P[S, — np, > m — np,] < P[| S, — np,| > m — np,]

=< 2 exp{—n((m — np,)/n)*/(2(p. + (m — np,)/n))}

= 2 exp{—m(1 — e™)?/2}

= 2 exp{—[n’](1 — e™)*/2}.
It follows that

n=1 P[Ep+1,n — log(n/m) > ¢] < oo,
The proof will be complete by an application of Borel-Cantelli, once we show
(5.2) n=1 P[Ep+1,, — log(n/m) < —¢] < oo,
However
P[Es1,n — log(n/m) < —¢] = P[S, < m]

where S, = #{j: E; > — ¢ + log(n/m)} has a binomial (n, p,) distribution with
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P = (m/n)e*. Following the same argument as above, we obtain the bound
P[S, < m] < 2exp{—[n’](e* — 1)/(4e* — 2)} which establishes (5.2) as desired. [

LEMMA 5.2. Under the hypotheses of Lemma (5.1), we have for any 1 < «

=< o,

(5.3) (@ = 1" 3y (e EinEnnd) — 1) -1 as.as n— o,

PROOF. For the a = » case, the left-hand side of (5.3) is
m_l 21";1 (Ej,n - Em+l,n)
and the result follows immediately from Theorem 1 in Mason (1982). So assume
1< a<xandlet G(x) = I:[e“_l'zl < x]=1—x"If G.(x) denotes the empirical
distribution function of e* &1, ..., e* E then

(a - l)m—l 21";1 (e“_l(Ef.n_Em-ﬂ,n) _— 1)

= (a - l)n/m Gn(x) dx . e_a_lE”H»l.n.

exP("‘_lEm+l,n)
Since
00

(e — 1)n/m G(x) dx - e Emsin = g~ Ensin~los/m) 7 a5,
exp(a"E,,,.,.l_,.)

by Lemma 5.1, it is enough to show

00

(a — 1)e™ Emsrn(n/m) ) |Gn(x) — G(x)|dx — 0 as.

exP(“hlEm'&l,n
But the left-hand side is equal to
B | Ga(x) — G(x) |

-l 1)/(2a)
a — 1)e™ Emein(n/m) Gx)«* dx
( / ool iEyy G x) @D/

ot |Ga(x) = GX) | o —(ae1r/c20
<e Em+1,n(n/m)supx>0 G"’(x)(a+1)/(2a) 2e (@a—1)/(20)E 41,0

| G.(G7'(t)) — t|
(t(l - t))(a+1)/(2a)

< 2e-(ﬂ+l)/(2u)(Emﬂ,n-lox(n/m))(n/m)(a—l)/(2¢x) SUPg<i<1

which, by Lemma 5.1, is asymptotically eqﬁivalent to

B G.(GY(t)) — ¢t
(5.4) (n/m)‘ D/C) gupgei<t : t(l(— t)()()a+l)/(2a|) .

However since n/m ~ n'~* and G,(G™(t)) is the empirical df for a random sample
from a uniform (0, 1) distribution, we may apply Corollary 1 of Mason (1981)
with v = (a — 1)/(2a) to show that (5.4) goes to zero almost surely. [

THEOREM 5.1. Suppose F belongs to the a-domain of attraction with 1 < a <
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. Thenifm=[n’lwith0<6<1,
(i) b(n/m) — b(n/m)
a(n/m)
(i) a(n/m)
a(n/m)
(iii) a(n/m)
a(n/m) + 5(n/m)

(iv) a/*\(n/m) —1/a as.forall a>0.

—0 a.s.

—1 a.s.

—1/a as.

REMARK. Under the conditions of Theorem 5.1, the tail estimate given in
Theorem 3.2 is strongly consistent. :

PROOF. (i) From (2.10), as in the proof of Lemma 4.2, we have

b(n/m) — b(n/m) _ f P En Tt g0 (nfm)s)

a(n/m) a(n/m)s

and since ao((n/m)s)/a(n/m) — ((a — 1)/0{)3“-1 uniformly on a compact neigh-
borhood of 1, the result follows from Lemma 5.1.
(ii) From (4.3) and (2.10) we have

A Ejpn—
a(eEm-H,n) J=1 1 a(eEm'ﬂ,n)s

exp(Ej n—Epm+1,n) Epiin, -
55) I f (ao(e ) a-—1 s) %
1

a (e Em+l,n) o

+ (a - l)m_l Z]”Ll (ea_l(EJ}n_ mtLn) — 1)'

The second term goes to 1 a.s. by Lemma 5.2. On the other hand for a given
e > 0 with ™ + ¢ < 1 and n sufficiently large, the modulus of the first term is,
using Lemma 4.1, bounded above by

exP(Ej n~Em+1,n)

_ ! ' a—1 -1 a—1 _\ds

m 12}11f << +c>s"‘ +e s >_
) 1 o [0 4 S

—-lym (& T 1 ad (a7 +e)(Ejn—Emt1,n) —
m= 2 ( « + 8)(1 + ae>(e 1)

- m™ IR, (@ — 1)(e EinEnud) — 1)

which by Lemma 5.2 converges almost surely to

-1 .
o 1+£ o a -1 _1___a 1+ae_1'
a 1+ ae/\1 + a¢ a—1-— ae

Since ¢ > 0 is arbitrary, the first term in (5.5) goes to zero almost surely so that




TAIL ESTIMATES 1487

a(n/m)a(exp(En+1,,)) = 1 a.s. Finally from (4.9) and Lemma 5.1, we have

alexp(Ensin) _ (f T wlnfm) 4 ) 1 ag
a(n/m) P 1 x -

which combined with a(n/m)/a(exp(En+1,.)) — 1 a.s. proves (ii).
(iii) This follows easily from (i) and (ii) and the fact that a(n/m)/b(n/m) —
1/(a = 1).
(iv) Since a*(n/m) — 1/a, this is immediate. 0
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