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ASYMPTOTIC BEHAVIOR OF M-ESTIMATORS OF p
REGRESSION PARAMETERS WHEN p?/n IS LARGE.
I. CONSISTENCY!

By STEPHEN PORTNOY
University of Illinois

Consider the general linear model Y = x8 + R with Y and R n-dimen-
sional, 8 p-dlmensmnal and X an n X p matrix with rows x/. Let y be given
and let 3 be an M-estimator of g8 satisfying 0 = 3, xy(Y; — ! ﬁ) Previous
authors have considered consistency and asymptotic normality of B when p is
permitted to grow, but they have required at least p?/n — 0. Here the following
result is presented: in typical regression cases, under reasonable conditions if

p(log p)/n— 0then |8 — 8|12 = _Z,(p/n). A subsequent paper will show that
6 has a normal approximation in R? if (p log p}¥*/n — 0 and that
max;| x{(8 — B)| —p 0 (which would not follow from norm consistency if

p?/n — ). In ANOVA cases, 8 is not norm consistent, but it is shown here
that max | x/ LB -8 -0 if p log p/n — 0. A normality result for arbitrary
linear combinations a (,3 B) is also presented in this case.

1. Introduction. For each n consider a general linear model defined by
(1.1) Y=XB8+R

where Y and R are n-dimensional random vectors, X is a n X p matrix, g8 is a p-
dimensional vector and the coordinates of R are independent and identically
distributed. Although X and p depend on n, this dependence will be suppressed
in the notation throughout the paper. Let x; denote the (column) vector in R?
whose coordinates form the ith row of X. The basic questlons here concern the
asymptotic behavior of M-estimators of g: let ¥: R — R be given and suppose 8
satisfies the vector equation

(1.2) 0 =Yk xy(Y: — x{f).

Then § is called an M. -estimator.

The asymptotic behavior of B when p tends to infinity with n has been studied
by Huber (1973), Yohai and Maronna (1979) and Ringland (1983) (the last
reference giving asymptotlc expansions). These papers have provided conditions
under which 6 — B in an appropriate stochastic manner and a'(ﬂ B) has an
asymptotic normal distribution (for appropriate bounded sequences of vectors
a € RP). In appropriate balanced cases Yohai and Maronna (1979) show that
p?/n — 0 is sufficient for consistency and that p*?/n — 0 is sufficient for
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normality. Here conditions will be presented with the goal of reducing the growth
condition on p as far as possible toward p/n — 0.

Without loss of generality assume 3 = 0 throughout the remainder of the
paper. Then equation (1.2) becomes

(1.3) 0=2X5 xiy(R — x{B).

The results here are presented separately for the two basic cases of the general
linear model (1.1). The first case (that of linear regression) places rather compli-
cated and seemingly artificial conditions on the design matrix, X. It should be
noted that these conditions basically require only that the empirical distribution
of the vectors {x;} be near a distribution (in R”) with an appropriately smooth
density. In fact, as shown in Section 4, these conditions will hold in probability
whenever {x;} form a sample from a distribution nat too concentrated in any
fixed direction (equivalently, the directions {x;/ | x;| } should be at least somewhat
smoothly distributed over the unit sphere). The fundamental result here is the
following consistency result: if y is increasing, p (log p)/n — 0, and other relatively
mild conditions hold, then || 3|2 = Dy(p/n). The conditions for the result are
stated in Section 2 and the basic results are presented in Section 3.

Asymptotic normality results in the regression case will be presented in a
subsequent paper (Portnoy, 1984). Huber (1981) conjectured (on the basis of
informal expansions) that additional symmetry conditions may be necessary
for asymptotic normality if p*?/n does not tend to zero. However, there seems to
be no way of showing that the error terms in Huber’s expansion are small. In
the subsequent paper, under stronger conditions the author shows that if
(p log p)*?/n — 0 then the distribution of 8 can be uniformly approximated by a
normal distribution in R?. However, preliminary computations indicate that
normality will hold in many nonsymmetric cases, even if p*?/n — +.

Results for the second case of the general linear model (that of analysis of
variance) are also presented in Section 5. In the case of a design with p cells
(with cell means, 8;) and n/p observations per cell, classical results (e.g., Huber,
1964) give conditions under which there are consistent, asymptotically normal
M-estimators, ,3,( j =1, ..., p). However, clearly ,3, = 0,(p/n); and, hence,
1812 = 2,(p*/n) whlch requires p%/n — 0 for norm consistency. Here it is
shown that if p(log p)/n — 0 then at least max;| 3;| = .Z,((p(log p)/n)"?). Also
a result giving asymptotic normality for arbitrary lmear combinations a’f is
presented. The behavior of || 4 ||2 makes it clear why the two cases of (1.1) should
be treated separately, and why conditions in the regression case can not be so
simple that they also hold for ANOVA designs.

2. Conditions for consistency in the regression case. The results of
Section 3 require conditions on the rate at which p may go to infinity, on the
distribution of R; and the function, ¢, and conditions on the design matrix.

Condition on p. For the results in Section 3, assume that p(log p)/n — 0
as n — . For simplicity, the results of Section 3 will actually assume
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that p({/g n)/n — 0; but this is no stronger: if p < vn, p(log n)/n <
(log n)/vn — 0; while if p = Vn, p(log n)/n < 2p (log p)/n.

Conditions on R; and y. The following two conditions on ¢ and on certain
expectations are needed:

P1: ¢ is an absolutely continuous function with ¢’ bounded satisfying
EY(R)=0,EY’(R) >0, and EY2(R) < B < +». Let ¢ be a constant
and define for r real

(2.1) H(c; r) = infly/'(r — v): |v| = c}.

P2:  There exist constants b> 0 and ¢ > 0 such that H(c; -) is measurable
(hence, H;(c) = H(c; R;) is a random variable) and EH;(c) = b.

Note that by P1, H;(c) is bounded (for any c). Also ‘note that P1 and P2 hold
for the standard robust y functions where ¥’ has only finitely many discontinu-
ities.

Conditions on X. The conditions on X are designed to hold in typical
regression cases where the rows {x;} of X behave like a sample from a distribution
in R”. In any fixed regression problem, the conditions will hold trivially; but the
situation here considers an infinite sequence of regression problems and the
conditions restrict the way the sequence, X,, of design matrices can be con-
structed. It will be shown in Section 4 that they hold in probability if {x;} are
indeed a sample from any of a wide class of distributions for which the distribution
of a’x does not depend too strongly on a.

It is also important to note that condition X2 is designed for the situation
when cov(x;) = I. If {x;} form a random sample, the assumption cov(x;) = I may
be made in reasonable generality since the tranformation %, = Y;V2 «x;, 6 =
%% B yields an equivalent problem with cov(z;) = I. If {é,,} is norm consistent
and the maximum eigenvalue of ¥, is bounded, then {3,} will also be norm
consistent (at the same order, &, ,(p/n)). Alternatively, for any sequence, {¥.}, if
the minimum eigenvalue of (X 'X ) is bounded below by a - n in probability (for
some constant a), then (if Theorem 3.2 holds),

1 1/2 .
(xx) a-n |- | Gxx) -0
=G,(16-6]% = ﬁ,,(’f).
n

The arguments in Section 4 can be used to show that the condition on the
minimum eigenvalue will hold in probability if {x;} are a sample from an
appropriate distribution in R?.

For conditions X1 and X2, let
(2.2) I(y,e)={i=1,2, .-, n: |xly| =c},

and let & be the ball (in RP) of radius é and ~“* be the sphere of radius 1.

2
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X1: for any ¢ > 0 there are constants a > 0, § > 0, and C > 0 such that for all
fE &, ye€ ¥*andn=1,2, ...

Sies (x!/y)2 = an where J =I(8,c) N I(y, C).

X2: for any ¢ > 0 and ¢ > 0 there are constants é’ > 0 and C > 0 such that for
alge ¢, y€ ¥Y*andn=1,2, --.

Sies (x!y)2 <en where J =1I(B,c)NI(y,C).
X3: there is a constant B such that forn=1,2, ...
max{|| x|*i=1,2, ---, n} < Bn’
X4: there is a constant B such that forn=1, 2, - --
S, Y2, x% < Bpn.

3. The basic consistency results.

LEMMA 3.1. Assume conditions P1, P2, X1, X2, and X3; and let
p(log n)/n — 0.

Define H;(x! 8) = inf{y’(R; — v): |v| < | x/B |} as in P2. Then there are constants
a* > 0 and 6 > 0 such that

(31)  Plinf{¥%, (x/y)Hix!B): |yl =1, 18] = 8} = a*n} > 1
as n— o,
ProOF. First, let ¢ be as in condition P2, let I(8, ¢) = {i: | x/B8| < c} and let
J'(B,y) =18, c) NI(y, C+ 1) as in conditions X1 and X2. Then
(32) iy (x/y)?Hi(x!B) = Tics (x!y)*Hi(c) — B Yigs (x{y)’ =S —T

where B is a bound on y/'(r).

First consider S and suppress the argument in H;(c). By conditions P1
and P2 note that H; are i.i.d. random variables with EH; = d > 0. Furthermore,
since H; is bounded, p(t) = log E exp{tH;} has a bounded second derivative
(0 < p”(t) < B? where B is a bound on H;). Therefore,

(3.3) M(t) = E exp{—tH;} < exp{—dt + bt%}

for some constant b > 0. Now let @, 6 and C be given by condition X1 using ¢/2
instead of ¢, and fix y with ||y = 1 and 8 with | ]| < 6.Then by the Markov
inequality (for any set J C I(y, C))

a(y, B) = P{Sics (x/y)°H; < Y dan} < exp{% tadn} [l,c; M(= (x/¥)%)
< exp{¥% tadn — td Yics (x!y)? + bt® Yies (x/¥)*}
< exp{¥% tadn — td Yies (x!y)%(1 — (bC?t/d))}
for t > 0. So choose t small enough so that bC% < d/4. Then, using condition X1,
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if J = I(B, ¢/2) N I(y, C),
(3.4) q(y, B) =< exp{% tdan — % tdan} < exp{—a’n}

(for a’ = tda/4).

Now, cover the sphere &“* = {||y | = 1} by cubes, £ (y,) about y; with sides
of length ¢/n®? (where ¢ will be chosen shortly). Thus, if y € L (yx), |y — y:l <
(pe?/n®)2and (by X3)

| (x!y)? = (xfye)?] < |xi(y — ) | | xfy + x!yel
slxlly =yl - 2 1=l - 1
< 2Bn’%(p/n®)*? = B*Jp/n

for some constant B*. Hence, since {H;} are bounded, ¢ can be chosen so that for
allnandy € ¥ (y.) (for any set J),

(3.5) | Sies (x!y)?H; — Yies (x!yx)?H;| < n - Bevp/n < Y dan.

Similarly, the ball & = {|| 8|| < 6} can be covered by cubes, ¥’(8:) of side ¢/n
such that for 8 € £’ (B:)

|x/8 — x{Bx| < Be vp/n.
Thus, ¢ can be chosen so that for 3 € ¥£’(8:) andy € € (y:),
I (B, ¥) D I(Br, ¢/2) N I(yx, C) = J(Br, Yi)-
Therefore, for 3 € £’(8:) andy € £ (y.) (using (3.5)),
Sicrey x!Y)?H; = Yicsgw (€!y)*H; = Yies (xfye)*H; — % dan.
Thus,
P{Yics (x!y)*H; < % dan for some 8 € £’(8:) and y € L (yx)} < q(yx, Be).

But the number of pairs of cubes needed to cover &* X & is N < (2n%?/¢)P
(2n/e)? < (Byn®)® (for some B,). Therefore, (by (3.4)),

P{Yics (x!y)?H; < % dan for some § € Yand y € &*}

=< Yk q(¥&, Br) = N exp{—a’n}

= exp{—a’n(1 — (5p/n) log(B,n))} — 0.
Therefore, the term S in (3.2) satisfies

P{S=Y danforall € & andy € ¥*} — 1.
Lastly, for term T in (3.2), from condition X2
Tier (x{¥)* < Tigs (x{y)* < en;

and choosing ¢ = % da yields the desired result (with a* = % ad and 6 replaced

by min(é, 67)). 0

THEOREM 3.2. Assume conditions P1, P2, X1, X2, and X3, and X4, and that



ASYMPTOTICS WITH MANY PARAMETERS 1303

(plogn)/n— 0. Let F: R” — RP be defined by
(3.6) F;(B) = L1 xy¥ (R: — x{B).
Then there is a root f of the equation F(8) = 0 satisfying
181* = 2o(p/n).
PROOF. Result 6.3.4 of Ortega and Rheinboldt (1970, page 163) will be

applied; so it suffices to show that 3’F(8) < 0 for || 8|2 = Bp/n in probability.
First note that

B'F(B) = X1 (x{!B)W(R; — x{B) .
=Yk (x/BW(R) — Xk (x{B) J; V' (R —v) dv
A4 . .
Now | A;| = |81 | X1 x:¢(R:) ||, and
E| Tt x¢(R) I1? = E Ti1 Tit1 Tia %z (RY(R)
= ¥f1 i xZEY*(R:) < Bnp

(by conditions P1 and X4). Therefore, using Chebychev’s inequality, for any
& > 0 there is a constant B* such that for all n

(3.7) P{A, = B* vnp ||8| forall B} =1 — .
From the definition of A, and Lemma 3.1 (with H; as defined there),
Ay = Tk (x/B)? infly’ (R — v): |v] < |xiB]}
(3.8) = || 8112 infyy)=1 Tk (x{y)?Hi(x!B) = a*n | BII®
forall B with ||B] <5,

with probability tending to one. Thus, (from (3.7) and (3.8)) there is N such that
forn= N

P{A, — A, < B* Vnp | 8]| — a*n| 8|2 for all 8 with || 8] <8} =1 — 2.

Let VB = 2B*/a* and choose N’ > N so that B(p/n) < 82 for n = N’. Then
P{B’F(B) < 0 for all 8 with || 8]|2 = Bp/n}
> P{A, — Ay < — % Ba*p for all 8 with |82 =Bp/n} =1 — 2¢

for n = N’; and the theorem follows from the result in Ortega and Rheinboldt. 0

COROLLARY 3.3. Under the hypotheses of Theorem 3.2, f is unique on
{B: | Bl = &} in probability. If in addition ¥’ is nonnegative (everywhere), then (3
is unique on R? in probability.

PRrROOF. For F defined by (3.6), the derivative matrix satisfies

F' B = —Xi=a xijxay’ (Ri — x{B).
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Thus, for any y € R?, y’'F’'(8)y = X% (x/y)%'(R; — x!B); and Lemma 3.1
immediately implies that F’(g8) is stnctly negative definite on {8: || 8| < é&}.
Thus, § is unique on this set. If ¥’ is nonnegative, then F’(8) is nonpositive
definite everywhere and (since it is negative definite on a neighborhood of 3) 8
is unique on R?. 01

4. Conditions on the design matrix. We now show that the conditions
X1, X2, X3, and X4 on the design matrix in Section 2 may be expected to hold
when the rows {x/} of X have an appropriate multivariate distribution. In
particular, assume that the row vectors (x1, x5, - - -, x;,) form an i.i.d. sequence
with distribution G on R”. It will be shown that conditions X1, X2, X3, and X4
hold in probability for a wide class of distributions, G. As noted in Section 2,
assume that the sequence of covariance matrices, {Y, = cov(x;)} has bounded
maximum eigenvalue, so that we may assume cov(x;) = I. Also assume that
p(log n)/n — 0.

Conditions X3 and X4 can be easily handled by imposing the simple moment
condition

(4.1) Ex} < By < +
(foralli=1,.---,nandj=1, ..., p). Then E | x;||> < Byp; and using a (first
moment) Chebychev inequality,

Plmax| x1* 2 Bn) = nP(lxl? 2 Bf s 22 _BoP

So condition X3 holds in probability. Condition 4.1 and the Weak Law of Large
Numbers imply that condition X4 holds in probability.
For conditions X1 and X2 define

(4.2) Ui(c, C) = I(| xiB| < ¢, |xiy| = C) - (x{y)?

where the dependence on 8 and y has been suppressed; and (as before) let &
denote the ball of radius 6 and ~* the sphere of radius 1. Assume that the
following condition (on G) holds:

(4.3) for any ¢ > 0 and ¢ > 0, there are constants 6 > 0 and C > 0 such
that forall € & andy € %,

EUi(c,C) =1 —e.

The same argument used in Theorem 3.1 will now be used to prove the following
result:

THEOREM 4.1. Assume {x;} are i.i.d. according to a distribution for which (4.3)
holds. Then if (p log n)/n — 0, conditions X1 and X2 hold in probability.

PROOF. The argument will be sketched for X1; X2 follows analogously. First,
by (4.3) choose 6 and C so that with U/ = U;(c— 1/n,C — 1/n), EU! =2 b>0. As
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in the proof of Theorem 3.1, there is a constant b’ such that for t > 0
E exp(—U!t) < exp{—tb + b't?}.
Thus, for fixed (8, y) for any a < % b,
P{Y~, U! < 2an} < exp{—(b — 2a)tn + b’nt?} < exp{—a*n}
for some constant a*. As in Theorem 3.1, cover & and < * by cubes ¥(8:) and
Z () of side ¢/n*?so that on £ (8:) X £ (yi)
Uiz Yk Ul — an.
Since the number of such pairs of cubes needed for coverage is less than (Bn)®,
P{3™, U; < an for some § € &,y € ¥*}
< (Bn)®P{X2, U! =< 2an for fixed (Bx, y)}
< (Bn)®e " — 0

as in Theorem 3.1; and, hence, X1 holds in probability. A similar proof holds for
X2 (where the fact that E(x/y)2 = | y||? =1 is used). O

REMARK. Condition (4.3) is a condition on the uniformity over 8 and y of
the joint distribution of any pair of linear combinations (x/8) and (x/y). That
is, if 8 and y are fixed, then (by dominated convergence)

EU;— E(x{y)’ = |yl* =1

as 6 — 0 and C — . Thus, if U; tends to be smallest when 8 and y are orthogonal
and the distribution of (a’x;) does not depend too strongly on the direction,
a/la|, then (4.3) may be expected to hold. In particular, (4.3) is fairly easy to
check if x; ~ #,(0, I); and, in fact, (4.3) will hold if the distribution of x; is a
scale mixture of such normal distributions.

5. Consistency and normality in the ANOVA case. Consider the case
of a one-way ANOVA with p cells and n/p observations per cell. Here, the model
can be written

(51) Yif=ﬁj+ Rij’ i=1""’n/p’ j=1""’p’

where {R;;} are i.i.d. Let y be given and let 3; denote the solution (if it exists) of
the equation

(5.2) 0= M8 y(Y; - B).

Elementary extensions of classical methods will be used to obtain the existence
of “uniformly” consistent M-estimators, {8;}, under weak conditions. Stronger
conditions and more tedious computations will provide asymptotic normality of
arbitrary linear combinations ajﬁj (with [|a| = 1). As before, without loss of
generality, assume the true values 8; = 0.

THEOREM 5.1. Let ¥ be a bounded function such that ¢’ is bounded and



1306 S. PORTNOY

continuous near zero. Suppose EY(R) = 0 and Ey’(R) = d # 0; and assume
p(log p)/n — 0. Then there are solutions {ﬂ,} of (5. 2) and a constant B > 0 such
that for any sequence {8,} with 8, —>0and forj=1, ---,p,ifu=<é,

(5.3) P{|Bj| = u} = 2 exp{—Bu’n/p}.
As a consequence,
1/2
(5.4) P{maxj| B = (l _p_lo_g_n) } <P _,
B n n

PROOF. By the hypotheses on ¢ (and the dominated convergence theorem)
(d/du)Ey (R + u) — d as u — 0. Without loss of generality, suppose d > 0. Then
there are {6,} such that for n large enough and 0 < u = 4,,

di(w) = EY(R — u) < — (d/2u and d(u) = EY(R + u)= (d/2u.
Therefore, by the Markov inequality

{ S YRy —w) = -3 u}

nd
(5.5) = P{Z 2B (YR — u) dn(u)) = > e }

< exp{ - ;—z ut}(M(t))"/"
for t > 0 where M (t) = Efexp t(¢(R — u) — d,(u))}. Since ¢ is bounded there is
a constant b (independent of u) such that
M(t) = exp{bt?}.
Thus, the bound in (5.5) becomes

nd LY d’u’n| _ 2
exp{ 2put+pbt}sexp{ 3b p}—exp{ Bup

for t = du/(4b).
Similarly, foranyj=1, --- ,pand |u| =< &y,

Jl SEY(Rj+u) = il u]f = exp{—Bu2 g}

Hence, using a standard consistency proof, there is a root 3j for (5.2) satisfying
(5.3).

To obtain (5. 4) note that the hypothesis shows that p(log n)/n — 0. Hence
(5.3) holds for uZ = p(log n)/(Bn) and

Plmax;| §j| = un} = 52 P{IB,-I = U,

2
=2 eprl—Bu2 ;} = ;_p 0
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THEOREM 5.2. Suppose the hypotheses of Theorem 5.1 hold, and suppose
further that ¥ is an odd function and is twice continuously differentiable with
Var ¢y’(R) < +o and ¥”(u) uniformly bounded. Also let R;; have a symmetric
distribution and assume p(log p)?/n — 0. Then for any sequence of vectors
a=a(n) € RP with |al =1, '

Vn/p a1 aif; —p # (0, o)
where o2 = EY%(R)/(Ey’ (R))? and where {8;} are given by Theorem 5.1.

PrOOF. First note that there are random variables {A;} such that

(i) Aj=+vn/p B;forj=1, -- -, p with probability tending to one,
(ii) A;is symmetric about zero, and
(iii) {A,, ---, A,} are i.i.d. with EA? bounded (uniformly in n).

To prove this, let ¢, = ¥p(log n)/(Bn) where B is given in Theorem 5.1, and
define
Ao {Jn/p G if 16 = en
0 . otherwise.
Then {A;, ---, Ap} are i.id. (since {Bi, .-+, B} are); and by the symmetry
hypotheses and Theorem 5.1, (i) and (ii) follow. :

To show (iii), let F denote the c.d.f. of B,-. Then integrating by parts and using
Theorem 5.1, o

EA,?=2f L wdF(u)
o p ’

(5.6) =2 g Py |+ f uPif; = u) du
p 0 b Yo
< -8;:1 ovn ue B¥n/p dy < 4;—; (;%) J(: ve /2 dv = 4/B.

To prove normality let
(5.7) v, = min{log ;an—z_n- , «/p_/é}>
Then v, — +% and p — v2 — +». Given a € R, let
(5.8) J={j=1,.--,p:|a| = 1/v}.

By (5.7) and (5.8), |
(5.9) 1= Yesal = #J/vi or #J =<k

By (i) above, vn/p ¥ ajﬁj has the same asymptotic distribution as the following
independent sums;

(5.10) Vn/p Sies ;b + Tijes aA;.
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By (ii) and (iii) above, {A;: j & J} form an ii.d. sequence with mean zero
(symmetry) and finite variance. Since max{| a;|: j & J} — 0 (from (5.7) and (5.8))
and #J° = p — v2 — +o (by (5.9)), the Lindeberg-Feller theorem shows that

(5.11) Yies ajAj —p A (0, o* Tjes a}),
where the fact that EA? — ¢ follows from the fact that A; has the same
asymptgtic distribution as vn/p B,- which Huber (1964) has shown to be
/’(I(‘)(; ;la)l.ldle the first term in (5.10) the standard Taylor’s series expansion for
0 =73, y(R;— B) yields
(5.12) d Vn/p Tjes 4B = Tjes aVp/n T8 Y (Ry)) — D,
where d = Ey’(R) and for some | T};| < | 8,

D, = Vn/p Yjes 0;8; (p/n) X2 (Y'(R;) — d)
(5.13) + % Vn/p Sjes a8} (p/n) TIR ¥" (R, — Ty)

= D) + D;.

Using Cauchy-Schwarz and (5.4) there is B’ > 0 such that with probability
tending to one,

| D;| = B'(Zjes af)*Viog n (Tjes C)?
where C; is a sample average of n/p sample values (Y’ (R;;) — d). Thus,
E Yjes C} = (#J)(p/n)Var y'(R).
Therefore, with probability tending to one, for some B*,
(5.14) | D;| = B* V#J (p/n log n)"2.

Again, using Cauchy-Schwarz, (5.4) and the bound on ¢”(u), there is B’ such
that with probability tending to one

(515) D] = B’ Vn/p (Sies a})(Zies Bf)V2 < B'((p/n) log'n) " V.

Therefore, from (5.7) and (5.9) the bounds in (5.14) and (5.15) tend to zero;
and, hence, D, —p 0. Thus, it remains to consider the first term on the right-
hand side of (5.12):

Yies a; ¥p/n T8 W(R;) = vp/n T2 U;

where U; = Y jes aj{¢(R;;). By hypothesis on ¢, {Ui, ---, Uy} are iid. with
EU; = 0 and Var U; = Yjcs a’EY*R). Thus, the Central Limit Theorem holds
and

(5.16) n/p Sjes ;B —p # (0, 6® Jjes a?).
The result now follows from (5.10), (5.11), and (5.16). 0

REMARKS. (1) The existence of consistent roots of (5.2) (Theorem 5.1) can
be proven under slightly weaker hypotheses. Suppose that y is a continuous
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function with ¢ (R) having a finite moment generating function and zero mean,
and that y satisfies the condition: EY (R + u) is a strictly monotonic function for
u in a neighborhood of zero. Then the existence of consistent M-estimators {6}
such that max;|3j| —p 0 follows if (p log n)/n — 0. However, these weaker
hypotheses do not appear to be sufficient to obtain asymptotic normality of
general linear combinations of {3;}.

(2) The proof of Theorem 5.2 can be made more direct by showing that
E(B;)* < + (for fixed even k). This can be proved using large deviation results
if ¥ is monotonic and bounded and if the c.d.f., F, of R decreases algebraically in
the tails. However, if ¢ is redescending quickly enough or if 1 — F(u) = 1/log u
(for u large) then |f},~| will not have finite moments. In fact, if ¢ is monotonic
and F smooth enough, large deviation results show that

Pf{there is a root of (5.2) in (—u, u)} = (1 — F(u))"?,

and, hence, the existence of moments of | le depends very strongly on F. The
proof of Theorem 5.2 avoids this problem by a truncation argument.

(3) The rate of convergence to normality in Theorem 5.2 is often of
order vp/n. However, even if p grows rapidly, if {a,} are approximately equal
(ie.,a;~1/ Vp) then the rate of convergence of a’ is of order 1/+p.
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