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ASYMPTOTIC NORMALITY OF A CLASS OF NONLINEAR
RANK TESTS FOR INDEPENDENCE

By SHINGO SHIRAHATA AND KAZUMASA WAKIMOTO

Osaka University and Okayama University

Asymptotic normality of a class of nonlinear rank statistics to test the
null hypothesis of total independence of an m-variate population is proved.
The rank statistics are generated from 2m-variate square integrable functions
such that they are symmetric and nondegenerate. Some results under contig-
uous alternatives are also given.

1. Introduction. LetX;=(X;, - --,Xin),i=1, .., nbearandom sample
from a population with distribution function F(x) = F(xy, - - -, X,,). Suppose we
want to test the null hypothesis H; F(x) = [[2: F;(x;), where F; is the jth
marginal distribution function of F, under the constraint that m = 2 and F and
F/s are continuous but unknown. Then it is natural to test H based on R; = (R,

-, Rin),i=1, ---, n where R;;is the rank of X;;among {X;;, ---, X,,;}.

The asymptotic normality of linear rank statistics of the form Y%, J,(R;) is
investigated by many authors especially when m = 2; see Bhuchongkul (1964),
Behnen (1971, 1972), Ruymgaart (1974) and Ruymgaart, Shorack and van Zwet
(1972). For the case m > 2, some rank statistics which are generalizations of
product type linear rank statistics are investigated by Puri and Sen (1971), Sinha
and Wieand (1977) and Al-Saadi and Young (1981). However, many nonlinear
rank statistics are useful in the testing problem of H. Kendall’s tau is one of the
most useful ones and, in some models, nonlinear rank statistics give locally most
powerful rank tests, see Shirahata (1974). Another example L,(m) is proposed
by Wakimoto and Shirahata (1984) where

L.(m) = % Yl QiQ;sin | 0; — 0;]
with
Qi = (m + Y= cos{(R; — Ry)w/(n — 1)})12
and
b, = tan™ (S sinf(Ry — Dr/(n — DY/SP cosf(Ry — Dr/(n — DY) .

The statistic L,(m) is obtained when the coefficient of concordance is considered
based on a graphical representation of the ranked data. For m = 1 (though this
case is not handled in this paper) certain nonlinear rank statistics also play a
role in Beran (1972) for testing randomness against the alternative of serial
dependence.
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In this paper, we consider a class of rank statistics of the form
(1.1) S, =2 leisjsn a.(R;, R/)

which includes Kendall’s tau and L,(m) as special cases. In Section 2 we state
our main result on the asymptotic normality of S, under H and in Section 3 the
result is proved. In Section 4, an asymptotic property of S, under contiguous
alternatives is given.

2. Main result. In order to state our main result, we need the following
notations and assumptions.

AssUMPTION 2.1. The scores a,(r, s) used in S, are symmetric in the sense
that a,(r, s) = a,(s, r) for all (r, s) € Q X Q where

Q={r=(r, ---, rn)| each r; is a positive integer not exceeding n}.

ASSUMPTION 2.2. Ifr; = s, for at least one / in r and s, then

a,(r, s) = 0.

In (1.1), the pairs (r, s) satisfying the condition of Assumption 2.2 do not
appear with probability one. Hence, Assumption 2.2 is only for convenience.
Let us define a function ¢,(u, v) on I, X I, by

(2.1) ¢n(u, V) =an(r,s) if n—1<nu=r and s;—1<nu<s;
for 1=1, .-, m

where I, is the m-dimensional unit cube,u = (u;, --- ,u,) and v=(v;, -+ -, Up)
belong to I, and (r, s) € Q X Q. Furthermore, put

(2.2) $1n(u) = f; on(u, v) dv = a1,(r) = Yeecq an(r, s)/n™,

(2.3) P1jn (W) = J; $1n(w) du? = jn(ry) = Eren,(rj) i (r)/n™7t,

forj=1,...,mand

(24) a;n = I ¢1n(u) du = dn = ErEIZ aln(r)/nm

with du” = du,, ---, du;-, du,41, - - -, du, and Q;(k) = {r € Q| r; = k} for u and
rwithr —1<nu,<r,i=1i ---, m. Note that, by symmetry, we can change

the role of (u, r) with (v, s) in (2.2) and (2.3). Now, we assume the following.

ASSUMPTION 2.3. There exists a nonconstant square integrable function
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¢ (u, v) defined on I,, X I,, such that

(2.5) J; (pn(a, v) — ¢(u, v))2dudv -0 as n — o,
2m

Let ¢1, ¢1;and ¢ be defined similarly to ¢1,, ¢1, and ¢,, replacing ¢, by ¢ in
(2.2), (2.3) and (2.4). From Assumption 2.3 one easily derives

(2.6) J; (¢r(u) — ¢1,(u))2du -0 as n—
and

1
(2'7) f (d)lj(u/) - ¢ljn(u))2 du - O$ ] = 1$ cee,m 88 n — ™,
0

Furthermore, it is assumed that the function ¢ is nondegenerate in the sense of
Schach (1969):

ASSUMPTION 2.4. The function ¢;(u) is a nonconstant function.
The result we want to show is the following theorem.

THEOREM 2.1. Suppose Assumptions 2.1-2.4 hold. Then, under H, n=3/2S, is
asymptotically equivalent to

T, = 2n"2 Y%, ¢(U;) + n'%a,
and hence n™*28S,, is asymptotically N (n'?a,, o*) where
P(u) = ¢1(u) — ¢ — T (¢1;(w) — @),
U, = Uy, -, Un) = (F1(Xa), -, Fn(Xin))

and
1
o*=4 J; (pr1(n) — ¢)?du — 4 Ty J; (¢1;(u) — ¢)* du.

3. Proof of Theorem 2.1. Let Z, =1if R, =r for some i and Z, =0
otherwise. Then the statistic S, is rewritten as

Sn = Yreen an(r, 8)Z:Zs
= Yrsco ba(r, 8)Z:Zs + 2n Freq (a1n(r) — @,)Z: + n’a,
=Ty, + Ton + n%a, (say)
where
b.(r, 8) = a,(r, 8) — ai(r) — a1n(8) + @y.

Thus, in order to prove Theorem 2.1, we may establish the lemmas below where
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it is shown that n=*2T}, = 0,(1) and that n=*2T),, is asymptotically equivalent to
T, — n'?a,. Essential in the proofs is Assumption 2.4, i.e. the nondegeneracy of
¢ in the sense of Schach (1969) who considered both the degenerate and the
nondegenerate case in the univariate two-sample problem.

If ¢ is degenerate, n=**T}, will not be negligible and it is difficult to derive the
asymptotic distribution of S,.

LEMMA 3.1. Under the conditions of Theorem 2.1, we have

(3.1) E(T:,) = O(n)
and
(3.2) E(T3,) = O(n).

PrROOF. Let ¢, (u, v), by,(r) and y;,(u) be defined similarly to ¢,, a;,and ¢;,
with b, replacing a, in (2.1), (2.2) and (2.3). Furthermore, let

Y(u, v) = ¢(u, v) — ¢ () — ¢ (v) + ¢

and let ¢, (u) be defined similarly to ¢,, with ¥ replacing ¢, in (2.2). Then, clearly,
bi.(r) = ¢Y1(u) = Y1,(u) =0foru € I, and r € Q. Put

(3.3) E,. = {(r,s) € Q X Q| r;, = s; for exactly k coordinates}.
Then we have

#Ek = <rZ)nm(n - 1)m—k’ k = 0’ I ((

and
(3.4) Z2Zs=0 if (r,s)€EE, - -- - E,_,.
From (3.4)
E(Ti,) = n7™" Yrea bulr, ) + (n(n — 1)) ™" Yok, balr, s)
= nf Ya(u, u) du + n™*Hn — 1)1 f Yn(u, v) du dv
I, Iom
- ¥t i (n = 1) J; Yn(u, Vin)du dv,,_;

where

v; = v;(u) = {v|v; = u; for exactly j coordiantes}.

From the degeneracy and the integrability of ¥,,, we have (3.1).

Consider a decomposition of Q X Q X Q X Q which is analogous to (3.3). Then,
using a similar property to (3.4), we can get an integral representation of
E(T#%,). From the representation and the degeneracy and the square integrability
of ¢,,, we can get (3.2). The detailed calculation is very long and is omitted.
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LEMMA 3.2. Under the conditions of Theorem 2.1, n=*2T,, is asymptotically

equivalent to T, — n'?a,,.

Proor. By definition, we have
Ton = 2n Tk ca(Ri)
where
cn(r) = aa(r) — @ — Ty (ayjn(ry) — @)
since
Zrea (ayjn(rj) — @n)Z; = 0.

Hence we may show that

(3.5) E{(P(Uy) — c.(R1)% = 0(1)
and
(3.6) E{(¢(U1) — c,(R))(P(Uz) — c.(R2))} = o(n™h).

The assertion (3.5) is proved by (2.6), (2.7) and a generalization of Behnen (1972,
(3.19)). The assertion (3.6) can be proved by considering a conditional expecta-

tion, given U%, ..., U where U? is the order statistics of (Uy, - - - , Uy;), and
the properties
Eren,(k)cn(r)=07 j=1""’m; k=1""’n
and f Pw)du?” =0, j=1,.-.-,m; 0<uy<Il.
I

m=—1

The detailed arguments are omitted because they are easy but laborious.

4. Asymptotic properties under contiguous alternatives. For linear
rank statistics and their extended versions, the asymptotic normality under
alternatives is proved by assuming some special models or by supposing that the
alternative is fixed. See Konijn (1956) and the works referred to in Section 1.
However, there are no commonly used nonparametric models for m > 2 and
nonlinear statistics are very hard to be investigated under fixed alternatives.
Therefore, in this section, we give a theorem on contiguous alternatives without
assuming special distribution functions.

Consider a sequence of alternatives H,; F(x) = F,(x). Here F, does not bglong
to H and H, is supposed to be contiguous to H in the sense of Hajek and Sidak
(1967). Then, since n~*23,, is asymptotically a sum of independent and identically
distributed random variables under H, it satisfies the conditions of Behnen and
Neuhaus (1975) and we can get the following theorem.

THEOREM 4.1. Suppose that Assumptions 2.1-2.4 are satisfied, then n™%2S,
is, under H,, asymptotically N (n*/*a,, + k,o, o*) where ¢* is given in Theorem 2.1
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and
kn = n1/2En(hn(Z) - E(hn(Z)))a

_Jz if|z| <n'®
hn(2) = {0 otherwise,
Z=2¢(U,)/o

and where E, and E are calculated under H, and H, respectively.
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