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BOUNDS FOR THE BAYES RISK FOR TESTING
SEQUENTIALLY THE SIGN OF THE DRIFT PARAMETER OF
A WIENER PROCESS

By ASHIM MALLIK AND YI-CHING YAO

Massachusetts Institute of Technology

Let x(t) be a Wiener process with drift 4 and variance 1 per unit time.
The following problem is treated; test H:u < 0 vs. A:p > 0 with the loss
function | u | if the wrong decision is made and 0 otherwise, and with ¢ = cost
of observation per unit time, where u has a prior distribution which is normal
with mean 0 and variance ¢3. An idea of Bickel and Yahav is followed to
obtain a lower bound for the Bayes risk which is strict as ¢y —  for all ¢. An
upper bound is also derived.

1. Introduction. Let X(t) be a Wiener process with drift u and variance 1
per unit time. Chernoff [2] considered the following problem: test

Hiu=0vs.A:fp>0

with the loss function | u| if the wrong decision is made and 0 otherwise, ¢ =
cost of observation per unit time, and u has a prior distribution which is normal
with mean 0 and variance ¢3. Chernoff [3] showed that the Bayes risk

(1.1) B(0d) = ¢} [Kog' — 6¢365%Inao(1 + 0(1))]

as oo — %, where K is an unknown constant.

By considering the above testing problem with the additional information of
the magnitude of u, Bickel and Yahav [1] obtained a lower bound for the Bayes
risk for the case of u having the improper prior distribution (i.e. 6o = ®) and
conjectured that the lower bound can be attained as ¢ | 0. In Section 2, we
consider the case of g finite. By using similar techniques as in Bickel and Yahav
[1], we obtain a lower bound for the Bayes risk and show that this lower bound
is not asymptotically achievable as g9 — o for all ¢ > 0. In Section 3, we consider
the case of u having the improper prior distribution and show that Bickel and
Yahav’s lower bound is not asymptotically achievable as ¢ | 0. In Section 4, we
derive an upper bound for the Bayes risk.

2. Lower bound for finite oo. From Chernoff [3], the posterior cost of
wrong decision is given by

(2.1) Y, = (t + 05%)Pop(a) — |a| R(—]al)},

where o = (t + 052)"2X(t) and ¢ and ® are the standard normal density and
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cumulative distribution functions, respectively. Let the posterior risk at time ¢
be

(2.2) R(c, t) =Y, + ct.
We are interested in a stopping rule 7, for which
E[R(c, 10)] = inf,erE[R(c, 7)]

where T is the class of all stopping times.
Using the idea of Bickel and Yahav [1], let us consider the following problem
of testing

Hip=povs. Aip = —pg

with | uo| for the cost of wrong decision and prior distribution P(u = po) =
P(u = —uo) = %. Then the posterior cost of wrong decision is

Y. = | ol P(X(t)u < 0| X(2)).
Let
R, t) =Y, + ct.

To solve the above Bayes problem, we have to find a stopping rule 7*(| uo|) such
that
E(R(c, 7*)) = inf.erE(R(C, 7)).

From the property of the S.P.R.T., Bickel and Yahav [1] derived the following
lemma.

LEMMA 2.1. The stopping rule *: stop at the first time 7 that | X(t) | = a,
where a is determined by the minimization of

luol (1 + exp(2a| uol)) ™" + calpol (1 — 2(1 + exp(2a| uo|))) 7,
is the optimal stopping rule for the above problem.

LEMMA 2.2.

(2mwad) ™2 J: E,[R(c, 7*)]exp(—p*/203) du =< E[R(c, 70)].

ProoF. The stopping rule 7, is a Bayes rule for a symmetric problem and
hence is symmetric in u. Therefore

E,[R(c, 70)] = E,[R(c, 7*)] for all g,

and the lemma follows.
THEOREM 2.3.
(2ma}) V2 f E,[R(c, 7*)]exp(—u?/2¢3) du

= ¢¥[K'05' — %367 %n oo(1 + 0(1))]
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as o9 — ®©, where

K’ = (27x)"V/21/3371 f (z=2z1421nz)™8
1

(1+22+22).01+lnz-21Ydz

~ 1.885.
PROOF. Let
(2.3) z = e’

where a is the solution of the minimization problem in Lemma 2.1. Then z should
satisfy the relation

(2.4) 2ut=c(z— 21+ 21n 2).

By using (2.3), (2.4) and Lemma 2.1, it follows that
| Btk ~exst-tyzot) d

= Q133-1,2/3 f z=2"'+2mln2)*1 +Inz-27
1

(1 + 227 + 27 %exp[—c¥3(z — 271 + 2 In 2) 26522757 da.

Let

y = 275323552

IZ)=(z—2z1'+2nz)™*Q +lnz—-2z1)1 + 227 + 27?).
We have

f E,[R(c, 7*)]exp(—u?/203) du
(2.5) .
= 21337123 | f I(2)exp(—y(z — 271 + 2 In 2)??) dz.
1

To complete the proof of Theorem 2.3, two further lemmas are needed.

LEMMA 2.4.

1/y
f I(z)exp(—y(z — 271 + 2 In 2)??) dz
1

= f I(z) dz + 3v*In v — 12y'2 + O(y*/In ¥).
1
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Proor. Calculate as follows:

1/y
f I(z)exp(—y(z — 27 + 2 In 2)?3) dz
1

= j: IZ)[1 - v(z— 27"+ 2 1n 2)%2(1 + 0(1))] dz
= f I(z) dz — v(1 + 0(1)) f Iz)(z— 27+ 21n 2)?? dz
1 1
= j: I(z) dz — f_l I(z) dz — v(1 + 0(1))O(y™In v)

= f I(z) dz + 3v"°In v — 1293 + O(y*4In ).
1

LEMMA 2.5.

L I(z)exp(=y(z — 27! + 2 In 2)?3) dz
1/v

=12y = 3yIn y + 9 . 2717242y N (1 + o(1)).

PrROOF. Letw=1+v(z— 27!+ 21n 2)?3. Then

I(z)exp(—y(z — 27+ 21In2)??) dz=3 . 272321 + In z — 271)e™ du.

Let
u=z-2"42Inz= (w/y)¥
Forz=~7,
l+lnz-2"'=1+1lnu+O®wn u)
=1+3 - 27n(w/y) + O((w/v) > In(w/v)).
Then

f1 I(z)exp(—y(z — z7' + 2 In 2)%?) dz

=3.272 f YW@ Inw — 31n v + 2e™ dw
i

(v 1—y—2Iny)?3

+ O(y*®ln v)
=12y = 3vln v + 9 . 277292 (1 + o(1)).

From (2.5), Lemma 2.4, and Lemma 2.5, we get Theorem 2.3.
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From (1.1), Lemma 2.2 and Theorem 2.3, K = K’. Suppose that K = K’. From
(1.1), Lemma 2.2 and Theorem 2.3, for o, sufficiently large,

—6¢a5%n g > — % cag?ln oy,
a contradiction. Therefore K > K’, i.e. the lower bound is not asymptotically

achievable as gy — .

REMARK. Chernoff [4] estimated K = 2.38 by a questionable least squares fit
to the asymptotic expansion. We found K’ =~ 1.885 by numerical integration. It
seems rather interesting that, with the additional information of the magnitude
of u, the Bayes risk is reduced by only about 21%. That is to say, this information
is not as substantial as the authors expected.

3. Lower bound for oo = ©. Consider the case of u having the improper
prior distribution given by Lebesgue measure. For any stopping rule 7,

f R(u, 7) du = lim, 0 (2703) Y*[(27ad) /2 f R(u, 7)exp(—u?/203) du]

> lim,,o_,w(27ra§)1/ZB(a(2)) = (27) V2 Kc*3,

so the Bayes risk with respect to Lebesgue measure satisfies

inf, f R(u, 7) du = (27)V?Kc*® > (2m) V2K ' %3

for all C > 0.
Here, (27) 2K’ c*?is the lower bound derived in [1]. Therefore, we have shown
that Bickel and Yahav’s lower bound cannot be attained.

4. An upper bound. We first consider o, < ». Modifying the argument in
Bickel and Yahav [1], we shall derive an asymptotic upper bound for the Bayes
risk as g9 — .

Define the stopping time 7, to be the first time for which

(4.1) A7V2(t + 65%) 3 %exp(—X (t)%/2(t + 052)) =c,
where A is a positive constant. When A = 8, this stopping rule is suggested as
an approximation to the Bayes rule for small t in [3]. In order that this rule be
meaningful, we require Ac%o5® < 1.
LEMMA 4.1. As g9 — o,
cE[r] = (1 +0(1))2 - 32 . A7V6c23651,

PROOF. From the definition of 7,, it follows that
X(11)? = =(11 + 60°)[In Ac®(r1 + 05?)°).
Since E,[X(7,)% = u2E?%[7,] and
E[(m1 + 00)In(r, + 60%)] = E[71 + 00%]ln E[r; + 00?],
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we get
w’E2[11]/(Eu[r1] + 602) < —In Ac%? -3 In(E,[71] + ¢5?).

Define g(y) = u?y*/(y + 65%) + In Ac® + 3 In(y + 05?). Since g(y) is increasing
for positive y, we have E,[71] < 2z, where g(z) = 0. Hence

cE[ri] =¢ f E,[11](27a3) V2exp(—u®/203) du

= 2c(21r052)_1/2j; E,[71]exp(—u?/203) du

< 2c(2wog?) V2 f z exp(—u?/203) du.
0

Since g(z) =0,
p?=—[ln Ac? + 3 In(z + ¢52)](z + 002)/2%,

so
(Ac2)~1/3— U62 d
(42)  cE[n] = 2c(270o?) ™2 f z exp(—u*/203) (— '(ﬁ) dz.
0

Here,
—du/dz = (z + 65%)(2uz) 7 [8(z + 652) 7! + u?(2? + 2265%)(z + 052) 2.

After a careful inspection, it becomes clear that, as ¢, — o, the integral in (4.2)
can be approximated by replacing 5% with 0. That is to say,

cE[m1] = (1 + 0(1))2c(2wcd) 12
(ACZ)—I/S
. f 27Y(=2"1n Ac%2®)"227(3 — In Ac%?®) dz.
0
Let —ln Ac%2® = 1% Then
cE[m1] = (1 + 0(1))2¢c(27wad) ™12 f (Ac®)™V8(1 + u?/3)exp(—u?/6) du
0
= (1 +0(1))2 - 372 . A™M6c23q51,

LEMMA 4.2. As 09— o,
E[Y,] = (1 + 0(1))@2x) V2AV2cE[7,].

PrOOF. From (2.1) and (4.1), we have
Y., < (11 + 00®) % ((11 + 05?) 72X (1)) = 27) " 2AY%¢c(, + 057),

which proves the lemma.
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THEOREM 4.3. As gy — &,

B(od) = (1 + 0(1))2Y/683 g =6 3g32,

PrOOF. Using Lemmas 4.1 and 4.2, we have
B(o3) = E[R(c, 71)] = cE[n1] + E[Y.,]
< (1 +o0(1)(1 + (2r)"V2AYV?) 2 . 312 . A7V6c2Bg50,
Setting A = /2, we get the Theorem.

From (1.1) and Theorem 4.3,
K < 26 . 3%, 5716 ~ 4819.

For the case of u having a prior distribution given by Lebesgue measure, we
may consider the boundary (r/2) ~/%t~3%exp(—X (t)*/2t) = ¢ and apply the same

techniques to show that the Bayes risk is bounded from above by 2%3 . 3%2
1/3.,2/3
- w33,
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