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PARAMETRIC ROBUSTNESS: SMALL BIASES
CAN BE WORTHWHILE!

By P. J. BICKEL
University of California, Berkeley

We study estimation of the parameters of a Gaussian linear model _#,
when we entertain the possibility that .4 is invalid and a larger model .#;
should be assumed. Estimates are robust if their maximum risk over _#, is

- finite and the most robust estimate is the least squares estimate under .#;.
We apply notions of Hodges and Lehmann (1952) and Efron and Morris
(1971) to obtain (biased) estimates which do well under .#; at a small price in
robustness. Extensions to confidence intervals, simultaneous estimation of
several parameters and large sample approximations applying to nested
parametric models are also discussed.

1. Introduction. The basic aim of robust inference as developed by Huber,
Hampel and others has been the production and study of statistical procedures
which

(a) perform reasonably well when the parametric assumptions are perfectly
satisfied; and

(b) are relatively insensitive to nonparametric departures from parametric
assumptions which a given data set is believed to satisfy.

The main parametric model considered has been the Gaussian linear model and
the departures, outliers and gross errors in the variables, have been modeled by
assuming non-Gaussian error distributions and, where suitable, dependence
between the independent and error variables.

An important aspect of this point of view is a focus on inference about
parameters of interest rather than on deciding whether the parametric model
provides an adequate fit. This is in contrast to the older approach of estimation
and testing after a goodness of fit test or more generally rejection of outliers.

The same point of view makes sense in a purely parametric context. We have
two possible parametric models in mind, %, #, with #, C .#,. Our primary
interest is in estimating parameters which are identifiable in .#;.

Again,

(i) we believe that #; is adequate and want estimates or confidence regions
based on estimates that perform well under that assumption. However

(ii) we wish to guard against the possible departures presented by .#;.
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Here is the main situation we are thinking of with some specific examples.

Nested linear models. We observe y,x, where
y=10+e.

e is an n-variate normal vector with mean 0 and covariance matrix Z. 6 ranges
freely over an r-dimensional linear space ©, under _#, and over an s-dimensional
linear space ©; D 0, under .#; where r < s < n. We suppose Z known. Our
asymptotic analysis in Section 5 will permit us as usual to substitute a consistent
estimate 2 for . We are interested in inference about w(0) where u is a linear
function of 6. Special cases are:

1(a) Pooling means (Mosteller, 1948). We are given two samples X, - .- , X},
independent _# (u, ¢?); Yy, .-, Y, independent _# (u + A, ¢?). We want to
estimate or set a confidence interval on u. We believe A = 0 (_#,) but want to
guard against arbitrary A (.#;). Plausible examples, e.g. measurements in a
current and previous survey, are discussed by Mosteller.

1(b) Additive effects with possible interactions. Suppose _#; is an ANOVA
model in the sense of Scheffé (1959), possibly including random effects, which
contains some interaction terms as well as main effects, and _# is purely additive
specifying all interactions to be 0. We take the variances of all random effects as
well as measurement errors to be known. We want to study some or all of the
main effects. An interesting special case is the crossover design discussed by B.
W. Brown (1980). Here two groups of subjects I and II which for simplicity we
take of equal size n/2 are each administered two drugs A, B in succesion and
responses measured. The second drug is administered after response to the first
has been measured and a time deemed sufficient for the effect of the first to wear
off has elapsed. The order of administration of the drugs is AB in group 1, BA
in group 2. Model _#; here is that the response Y, of the jth subject in group i
during period k who is administered drug u during that period is

Yiw = u + 7 + du + A + & + e

where 7., k = 1, 2, is the period effect, ¢., u = A, B is the drug effect, and \..is
the interaction of drug u and period k with A,; = 0. These are all fixed. As usual,
identifiability requires further linear restrictions. On the other hand, &;, the
effect of the jth subject in group i, is considered random _#(0, ¢;), and «;;, the
within subject deviation for the kth period (including measurement error), is
modeled as _# (0, 6?). All are modeled as independent of each other. We assume
of, o known. .#, specifies that, as we hope, there is no interaction, A\,, = 0. We
are interested in estimating ¢, — ¢,, the difference in effectiveness of the drugs.

1(c) Nested regression models. Write 0 = X8, Bsx1, X = (x4, ---, x,) an
n X s matrix of rank s and think of the s columns of X as corresponding to s
independent variables. Suppose (8 ranges freely over R® under .# but s — r
coordinates of 3 are set equal to 0 under .4, i.e. s — r of the independent variables
are irrelevant. Various linear functions u(f) are of interest, for instance the



866 P. J. BICKEL

vector of expectations @ itself or one or more predicted values x8, at various
values x.

From this special case we will proceed (under regularity conditions) by an
asymptotic analysis to the general case of

Nested parametric models. We observe (X;, ---, X,) with joint density
pn(x, 0) (with respect to some measure »,). Under .#, § € 0,, an open subset of
s-dimensional space. Under .#, § € ©, C 0, a (locally) r-dimensional subsurface
of ©;, and u is a smooth vector-valued function of 4. This of course covers all
previous situations as well as many others including Example 1 with ¢ unknown,
nested loglinear models, etc.

Our point of view, essentially already suggested by Hodges and Lehmann
(1952), page 402, is that procedures should be judged by their maximum risks
under .#, and .#,. So, in the context of nested parametric models, if M (6, §) is
the risk of a decision rule 6 when 6 is true we should look at

m(8) = sup{M(0, 6): 0 € O}, M(6) = sup{M(9, 6): 6 € 0,}.

M can be thought of as a measure of robustness of § and we should be interested
in procedures which make m small subject to a bound on M.

In the basic linear model example the solutions we end up with are necessarily
biased under .#,. Robustness requires that the biases be bounded through M.
The worthwhile gains are in reduction of m over the unbiased minimax estimate.

In Section 2 we apply this theory to the linear model example for quadratic
loss when y is one dimensional. The optimal procedures are difficult to compute.
We motivate a family of reasonable approximately optimal solutions, compare
them numerically to the optimum and other competitors and also briefly discuss
the crucial question of selection within the family.

In Section 3 we discuss confidence intervals based on these estimates. In
Section 4, we derive, using results of Berger (1982) and Huber (1977), some
procedures for the multivariate case. In Section 5, we show how these ideas
generalize to yield reasonable procedures in nested parametric models and, finally,
in Section 6, give conclusions and propose open questions.

2. The nested linear models: dim(x) = 1, quadratic loss.

a) Optimality theory. We specialize to estimation of u with quadratic loss.
That is, we assume that u is real, linear, and if 6(x) is an estimate

(2.1) M0, 8) = Eo(5(X) — u(6))>

Since we assume Z known, we can, by taking Y* = YZ7V2 g* = #4372
reduce our problem to one in which the observation Y* has covariance matrix
o?I, the standard linear model.

Let i = u(6;), i = 0, 1, be the least squares estimates of u under .#,, .#
respectively. Then, for i = 0, 1, ; has constant risk and is minmax under _#.. Let
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o? be the variance of 4; so that
inf;M(8) = o2, inf;m(8) = o3.

Let ¥ minimize m(8) subject to M (8)/o? < 1/c so that 4} = 4, i = 0, 1. Note
that M (u,) = o and g, is certainly not robust. Let

(2.2) p = corr(io, i) = ao/0;

which is independent of the error variance ¢2,

A

(23) A=y — fi
and
(2.4) ok = oi(1l — p?),

its variance.

PROPOSITION 1. The estimate i} may be written

(2.5) i¥ = fio + oswk(A/oi)
where
(2.6) > =1 —c)/e(l - p?

wy is odd and obtained by minimizing Ew*(Z) subject to

2.7 )
supoE(w(Z + A) — A)? <1+ q*forZ ~ _7(0, 1).

NoTE. Evidently w¢ is the solution of the special case u =0, r =0, s = 1, ¢*
= 1. We call this problem (P).

Proor. By sufficiency reduce to 6, and without loss of generality choose a
canonical basis so that 6, consists of the first r components of 6, and all
components of 6, are independent normal variables with variance 0. Moreover
we can arrange that fio/oy is the first component of 6, and A/¢(1 — pz)l/ 2is the
(r+1)st component. Note by Hodges and Lehmann (1952) that A4*
is unrestrlctedly minimax for the “mixed” model: for suitable A(c) and 0 =
0, ..., 08), 6, has density (1 — Mp: + Apo where p; is the dens1ty of 6, under
M and 0 while p, is the density of 6; under (8%, --., 87, 0, , 0), i.e. under
My. We can reduce this unrestricted problem by invariance, using for instance
Kiefer’s (1957) general results. Since we want to estimate

oo 0(1) + (1 - p2)1/20_ 0(r+1)

the problem is invariant under arbitrary translations of 09, i# 1, r+ 1, and we
can reduce to fo, A. The problem is also invariant under translations of fho,
keeping A fixed. Since /i ¥ is unique it therefore must be of the form wo + w(A).
Claims (2.7) and (2.6) follow by calculation. 0

Unfortunately calculation of w} is difficult. See Bickel (1983) for its rather
unpleasant qualitative features.
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In view of these unpleasant features, it is natural to seek other families of
robust estimates with more satisfactory behaviour. By invariance it seems
reasonable to look for 4 of the form

(2.8) fo + aA*w(AA/ag).

For any such estimate
(2.9 M) = oi(p® + (1 — p*)supaE(w(Z + A) — 4)?)
(2100 m(a) = o1(p® + (1 — p*)Ew*(Z)).

Abusing notation, let us call the coefficients of (1 — p?) inside parentheses in
these expressions M,(w), mo(w). They correspond to M and m in problem (P).

b) “Approximate” optimality in problem (P). From (2.9) and (2.10) reasonable
w in problem (P) correspond to reasonable 4. In problem (P) we observe X = Z
+ A, Z ~ _#(0, 1) and we want to minimize m,(w) subject to a bound on M, (w).
Three approximate optimality principles lead to the same family, the limited
translation estimates of Efron and Morris (1971) defined by

e(l(x)=0y |xlsq
=x—qsgnx, |x|>gq,

which leads to My(e,) =1 + ¢~

I. Optimality in a related problem (Bickel, 1983, Marazzi, 1980). Suppose =
is a prior distribution, r(w) the Bayes risk, w, the Bayes estimate, and G, =
m * &, where * denotes convolution, is the marginal distribution of X. Then,

(2.11) r(r) =1 - I(G,)
(2.12) w.(x) =x + (g,/8:)(x)

where g, is the density of G, I(G) is the Fisher information where
712
I1G) = f % (x) dx, if the integral is defined

= o otherwise.

By Hodges and Lehmann (1952) and (2.11), the optimal w} corresponds to G¥
which for some A(g) minimizes I(G) over % = {G = (1 — \)® + A\®é+H, H
arbitrary}. If we “approximate” %, by ¥ = {G = (1 — \)® + AH, H arbitrary} we
arrive at Huber’s (1964) problem with solution G; where

(g1/8) (x) = —x, lx] =gq
=—qgsgnx |x|>gq.

Substituting into (2.12), we get the Efron-Morris family.
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II. Bounding unbiased estimate of risk (Berger, 1982). If
(2.13) Y(x) =2 — wlx)
under mild conditions
M(A, w) =1+ Es(*(x) — 2¢'(x))

so that 1 + ¢%(x) — 2¢/(x) is the UMVU estimate of M (», w). Berger (in a more
general context) proposes minimizing mo(w) subject to ¢%(x) — 2¢’(x) < g% The
solution is easily seen to be e,.

In fact Berger’s approach must yield the same results as approach I both in
our context and his more general restricted Bayes models. To see this in our
model, note that

inf, {(1 — M)mo(w) + X sup:(1 + ¢*(x) — 2¢’(x))}

=1+ infwsup{f Wix) — 2¢'(x))G(dx): G € %1}

=1-—min{l(G): G € ¥4}
by a minmax argument.
III. Bounding unbiased estimate of bias. Note that y(X) is the UMVU
estimate of the bias of w(X). Thus it seems reasonable to minimize mo(w) subject
to sup, | ¥ (x) | < q. This is the exact analogue of Hampel’s robustness formulation.

The solution is again e,.
For further optimality properties of Efron-Morris estimates, see Bickel (1983).

¢) Performance of Efron-Morris (E-M) estimates and competitors. We
measure the relative performance of estimates g by their relative savings and
losses in risk with respect to i,

S) =1-m(@)/m(n), L) = M@)/M() - 1.
For estimates of the form (2.8),
S(r) = (1 = p)(A — mo(w)), L(i) = (1 — p?)(Mo(w) — 1).

Table 1 gives 1 — my(w) as a function of g*> = My(w) — 1 for the E-M estimates,
for w} (calculated by Dr. A. Marazzi) and for some competitors which we now
discuss.

Pretesting estimates. A type of procedure long advocated by Bancroft and
others (see Bancroft and Han, 1977, for a review) are estimates
i =ho, 16— 0| <co
= j,, otherwise

with ¢ chosen to produce an appropriate level for the test of H: .#, vs. .#, based
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TABLE 1
Gain at 0, g = 1 — mo(w), as a function of the increase in maximum risk q¢*> = Mo(w) — 1.
@ & & & 8 q d(q)
1 413 .085 — — 316 715
2 .538 .155 — .330 447 .903
3 .619 .225 — .438 .548 1.053
4 676 .290 — .523 632 1.175
5 721 .350 711 .592 707 1.281
.6 158 .405 .153 .648 175 1.370
N .786 .455 .7188 .695 .837 1.461
8 811 .500 .816 735 .894 1.538
9 .832 .540 .840 .768 .949 1.608
1.0 .850 .58 .859 .196 1.000 1.679

Note: g, is the increase for the E-M estimate, g, for the pretest, g; for the Sacks family, g for
Jeffreys’ type of generalized Bayes estimate. ¢ and d(q) are the critical values for the E-M and pretest
estimates.

on (|6, — bo|)/o. If | i1 — fio| # | 61 — 6|, this estimate is not of the form (2.8).
A version of that form can be based on testing H: EA = 0 vs. EA # 0 and is given
by

5 - A
pe = fio + 0&&,(3)
with

by(x) =0, |x]| =d(q)

2.14
(2.14) —x |x|>d()

and d chosen so that
My(b,) =1+ g2

The y function corresponding to b, via (2.13) corresponds to hard rejection which
is known not to work well. This seems true here too. The Bancroft-Han estimate
is even worse. (See also Sclove et al. (1972).

Another interesting and desirable feature of the E-M family is monotonicity
of M(A, e,) as a function of | A|, i.e. My(e,) is assumed at | A| = . This is not
true of the pretest estimates and more generally estimates which correspond to
redescending ¢ functions. Nevertheless we can expect smooth versions of such
estimates to perform reasonably well. Motivated by Sacks and Ylvisaker (1978),
J. Sacks has proposed a family of such v,

Y () =22+ (Jx| — v)}) 7'

Another natural family consists of the Jeffreys’ type estimates which are gener-
alized Bayes with respect to a prior distribution placing mass p at 0 and
corresponding to Lebesgue measure otherwise.

op(x) = x((1/p — P (x) + 1)7L

Table 1 shows very substantial gains in m, for small payments in M,. Small
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biases can be very worthwhile. The pretest estimates are clearly poor and the
Jeffreys type estimates are inferior to both the E-M and Sacks estimates.

There is, of course, a serious question as to which E-M estimate to use. The
natural way is to calibrate by the maximum L (i) we are willing to tolerate. This
of course depends both on p? and M,(w). For instance, if n, = n, in the pooling
example p? = 1. If we are willing to accept a 10% loss we would take g = .2 and
obtain a gain of (.5) (.538) = 26.9%.

Another idea is to bound the maximum squared bias of i standardized by the
variance of ;. For the E-M estimates this equals L(i). The remaining approach
of choosing d according to a reasonable level for the test of H: A = 0 based on A
yields unreasonably high values of L(g) and is not recommended.

The performance of E-M is markedly better than that of the “Jeffreys” or
pretest procedures for small g This is in accordance with the asymptotic results
of Bickel (1983). Since the Sacks’ procedures which are on the whole comparable
with E-M cannot be extended over the whole g2 range, we are left with E-M as
the candidate of choice.

The best we can do in terms of my(w) for given M,(w) cannot be calculated
exactly. However effective numerical procedures have been derived in Marazzi
(1980, 1982). Here is a table of the optimal g based on results he has supplied.

g .06 .12 .19 .29 44 .70
go .39 .49 .57 .66 .74 .82

3. Nested linear models: x univariate.

Confidence intervals and other loss functions. In univariate estimation prob-
lems, we usually want confidence intervals as well as point estimates. Since,
given our assumed knowledge of o, we can form fixed width confidence intervals
based on f,, it seems reasonable to ask how intervals of the same width based
on estimates u perform. This boils down to fixing a width 2z¢; and using the loss
function

7(0,d) =1if |d — p(0) | = 201

(3.1) = 0 otherwise

(3.2) M@, a) = P[la — u0)| = 201] =1 — Py[u(8) € i + za1].

From the argument of Proposition 1 it is easy to see that for any loss function of
the form #(| u(#) — d|), equivariant estimates are of the form (2.8). Calculation
of the optimal procedures is even more hopeless for this loss function. However,
it is easy to see that approximate optimality approach III continues to yield the
E-M estimate. More generally

PROPOSITION 2. Suppose 720, d) = Z(|u(0) — d|) and # is nondecreasing.
Then m(r) is minimized among all equivariant p of the form (2.8) with |¢(x) | <
q by an E-M estimate

(3.3) s = fo + azeq(A/az).
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Proor. Without loss of generality, suppose ¢; = 1. If § € 0, and 4 is given
by (2.8)

m(i) = EZ(|U + w(V)])

where U, V are independent normal with mean 0. By Anderson’s theorem
(Anderson, 1955) E(Z (| U + w(V)])| V) is monotone increasing in |w(V)].
The proposition follows. [

The risk of an E-M estimate (3.3) for a loss function #(| 8 — d|) is given by

Moo= | {/(aou — A)[8(d - &) - &(~g - B)]

(3.4) + f (Zloou+ a1(1— p?) V2w - q))¢(w) dw

+ ot = 0+ o) dufo)

where A = u(8) — u(8o), A = AJo1(1 — p?)*2. Evidently M depends on 6§ through
A only, as it must, and moreover,

PRroPOSITION 3. IfZ is as in Proposition 2, then M is a nondecreasing function
of | A| for the estimator ji¢.

ProoF. It is enough to consider # such that /7’ exists and is bounded since
we can then obtain the general case by approximation. Differentiate M with
respect to A and interchange limits to get

oM

— (0, a¢
aA(,u)

= 0,(1 — p?)VY&(q — A) — &(—q — A)] f 7' (oou — A)p(u) du= 0. O

NoTE. This establishes monotonicity of risk for an arbitrary monotone loss
function in the original problem considered by Efron and Morris. Thus

m(ag) = (J;o £(aou)¢ (u) du)(2<I>(q) -1)
(3.5) o
+2 J: fd Z(oou + a1(1 — p*)*(v — 9))¢()$(u) du dv

00

(3.6) M(is) = j:w Z(o1(u — (1 — p?)%q))¢(u) du.
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TABLE 2
Minimum probabilities of coverage of fixed length intervals centered at E-
M estimates: z = 1.960.

q? 2 4 6 8
2 982 978 972 962
932 .936 941 945
4 .988 .985 971 965
912 922 932 941
.6 .992 989 .980 .966
.894 .908 922 .936
8 994 991 .982 968
874 .894 913 932

Note: For each table, the first entry in each box is the minimum
probability of coverage on .#, given by (3.7), the second the minimum on
#, given by (3.8).

If we specialize to confidence intervals as in (3.1), we obtained minimum
probabilities of coverage,

1 - m(ag) = (22(2/p) — 1)(22(q) — 1)

(3.7
+2P[-2—- (1—-p)q<A=<2z-(1-p")"d, B=q]

where (A, B) are bivariate standard normal with correlation (1 — p?)'/2
(8.72) 1 — M) = ®(z— (1 —p)"%q) + 2z + (1 — p»)?q) — 1.

We give these probabilities for z = 1.96 (corresponding to a 95% confidence level)
and selected g in Table 2. The results are similar for the 90% and 99% levels.
Again the cost benefit structure seems attractive.

Brown (1980) essentially uses pretest estimate based confidence intervals on
a data set to illustrate the dangers of the crossover method. If we treat ¢, o as
equal to their estimated values so that p* = .48 for these data and say select ¢ =
.2 in Table 1 so that L(4g) = .10 we obtain significant results for all (.#;)
confidence levels tabled and a fortiori all corresponding (.#;) levels, which is
consistent with an analysis of the data based on first period results only.

4. Nested linear models: Quadratic loss in the multivariate case.
Suppose dim(x) = p. Then g, ~ A4, (1 (0), Z1), fio ~ A#p(u(8o), Zo) where 6, is the
projection of § on 0. If (6, d) is a function of u(f) — d, invariance considerations
lead as before to estimates
(4.1) fo= o + w(l)

where A = ji; — i, is independent of i, with an 7, (A, =, — Z,) distribution,
A= pu(0) — n(6y). Specialize further to,

Z(u(0) — d) = (u(0) — d)A(u(0) — d)T, A positive definite.
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Then,
m(i) = tr(AZo) + tr(AE,(w w(A)))
M) = tr(AZo) + supatr(AEA((w(A) — A)T(w(A) — A)))

and in minimizing m (i) subject to a bound on M we need only consider the
second terms above. That is, it is enough to consider the special case r = 0,
s = p. Exact solution is impossible. However we can attempt approximations.

We can always reduce to the case A = || a?;|| diagonal, Z; — =, the identity.
That is, we observe X = A + Z, Z ~ _4,(0, I), A = (4, ---, Ap). The risk of an
estimate w = (w1, -+, wp) =x — ¥(x) is

M(A, w) = 32, a?Ewi(X) — A)?

=XPiaf + E{ Pl (pi(X) — 2 %% (X))}

under mild conditions. If = is a Bayes prior distribution with Bayes risk r(w),
Bayes estimate w,, and marginal density g, then

wy(x) =x + V log g.(x)

(42) r(r) = S84 af = I(G,)
where V is the gradient ((3/9x.), - - -, (8/3x,))
(4.4) IG) = ¥ af f <§f_ (x))zg“(x) dx

(and = o if the quantity on the right is undefined). Again the original problem
is to minimize I(G) over %, and approximation (I) is to minimize over ¥, (with
® now the p-variate standard normal). By the argument given for one dimension,
this yields the same solution as does approximation (II) which minimizes
M(0, w) subject to a bound on [¥ a?(¥?(x) — 2 (3¢:/0x:)(x))] < g for suitable
q>. Unfortunately this approximation is also difficult to compute (but see Chen,
1983), unless all the a? are equal, say to 1/p. In this case the solution is given for
p = 3 by Huber (1977) and for general p by Berger (1981), Theorem 3. Here

w(x)=0 lx]| =q
(4.5) 2
=p(lx|9x, |x|>gq
with p a ratio of Bessel functions with parameters depending on p and scale
depending on g% and p(|q|?) = 0. For p = 3 we can take ¢ = 0, i.e., find the
minimax estimate in this class which minimizes M (0, w). The answer is the
Stein positive part estimate, ¢> = 2(p — 2),

o(r) = (1 — 2_(2_:_2_))

r
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As Berger points out, M (0, w) for this estimate drops very sharply from .296
when p = 3 to .07 for p = 5. Although ths solution is appealing we face the usual
ambiguities of the multivariate case. For p = 3 we could, for instance, also reduce
M@, i) for | n(8,) | small by applying Steinian shrinking to . Moreover, the
effect of the choice of loss function on the suitability of the estimate is difficult
to make precise.

For a? = 1/p, it seems reasonable to consider average squared bias and,

~ minimize E{3%, w}(X)} subject to ptYr, y? < q>
The solution is as in the one-dimensional case,
w(x) =0, ETRENE
= (- (qg/lxDx |x]*>q%

If we define M as in the introduction then for fixed M(w) = 1 + g2 estimate
(~4.5) improves (4.6) at A = 0. This follows since the estimates (4.6) also have, if
¥ corresponds to w,

(4.6)

(4.7) M@W)=1+p~sup, ¥ [¢2(x) -2 \h ( )] =1+4q°

The difference is substantial and despite its attractive feature of computability
for more general loss functions, this analogue to Hampel robustness seems
unsatisfactory for this application.

5. Nested parametric models: Asymptotics. We extend the approaches
of Sections 3 and 4 to general nested parametric models by using large sample
approximations. Related results are given by Sen (1979) for pretesting estimates.
For simplicity we consider estimation of () where x is a smooth real-valued
function of 6.

Suppose 0, O, are as we described previously, respectively an open subset of
R® and a (locally) r-dimensional submanifold of ©,. Suppose that the models are
approximable locally in the sense of Le Cam, to scale n"*?, by nested Gaussian
linear models and admit estimates 6o, 61, (typically M. LE s under #,, #,)
which are efficient and locally sufficient uniformly on compact subsets of 6, ©,
respectively. See Le Cam (1969), Chapters 3, 4 for a detailed description of these
concepts and suitable conditions.

Fix 6, € 0, and reparametrize © by 6, + an in Pitman form. Locally ©
permits arbitrary a while 0, specifies a € V (6,) an r-dimensional subspace of R*.
Also (8o + an™?) = pu(fo) + aji(6o) + O(n~"?) where 4 is the differential of .
Finally, n2{(8o. — 8o), (61, — 8o)} is asymptotically normal uniformly on compact
sets of (6o, @) with means (aIl(6,), a) and covariance matrix 2 (6) where II1(6,)
is the projection matrix of V (6,).

These approximations suggest that in order to minimize maximum M.S.E. of
estimates of u(8) over large Pitman neighbourhoods of 6, in ©,, subject to a
bound on the maximum M.S.E. over large Pitman neighbourhoods of 6, in 0, we

-1/2
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use asymptotically equivariant estimates as follows. Let
T

Bo = wlBin) = w@om), o3(00) = nT(oo)('i)zwo)('i) 4 (00)

denote the asymptotic variance of n'/?A, under 6, + an "2,

A =a(l — I1(6o))w (o)
denote its asymptotic mean, and 4, , be a consistent estimate of g4, e.g.
&An = UA(éln)-
Then, an asymptotically equivariant estimate is one of the form
(5.1) u(on) + Ga,w(An/3s,)

and n times the M.S.E. at 6, + an~"?of such an estimate is (under mild conditions)
approximated by

(5.2)  M(bo, a, w) = a3(60)(p*(6o) + (1 — p?(00))E(w(Z + A) — A)?)
where ¢%(6,) is the asymptotic variance of n'/ 2;;(0,,,) and,
Pz(oo) = 00(00)/01(00)~

From (5.2), given a bound 1/c on sup,M(6y, a, w)/o3(6y), we minimize
SUpaevioy M (6o, a, w) by taking w = wi. As in Section 2, we obtain reasonable
results by taking w = e,, with g related to c via (2.6) and p = p(0¢). The asymptotic
sufficiency and efficiency properties of §;,, i = 0, 1, enable us to formulate
asymptotic optimality and near optimality properties of these estimates in the
class of all estimates. For simplicity, we omit these.

We give a simple illustration of this approach by applying it to the case of
nested linear models with = = ¢2I, ¢ unknown, and u a linear function of the
mean 6. Then our prescription is merely to replace "i‘ in (2.8) by

(5.2a) 6% = 1Yo %(a} — 03)]

where 72 = || Y — 6,]|2/(n — 2), the usual estimate of ¢2. The ratio in parentheses
in (5.2) depends on the models only. For general Z, given a consistent estimate
2 of =, we can calculate 6o, 6, by generalized least squares using £ and then plug
$ into o3 appropriately calculated.

As a second illustration, consider pooling two binomial samples. Let p; =
Ni/n;, i =1, 2, where N; is bin(n;, p;), 0 <p; < 1, ny/ns = \, 0 < A < 1. We want
to estimate p,. .#, prescribes p; = p,. So, if we use n = n; + n, as an index,

oln = (ﬁly ﬁ2)9 éOn = (ﬁ’ ﬁ)
where
= (N; + N;)/n = (A1 + p2)/(1 + N).

If6 = (p, p),

030) = p( - p), o26) =p( —p) LEN gy A

) 1+
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Thenif #;=1—p;, i = 1, 2, putting w = ¢, in (5.1),

o _ 5, (BA)", (OB — B2)
He=P T\ ) N+ M@

or
pe = p if I(An)l/z(ﬁl - 1:’2)/(131’A'1)1/2(1 +AN)]|=g¢q

5.3 . N .. .
6.3) = p1 — q sgn(py — P2)(A\n) "V2(p171)? otherwise.

This yields, by (5.1), for quadratic loss, a relative loss in risk of
(5.4) o12(0) sup.M (6, a, w) — 1 = g*/(1 + \)

while the relative savings in risk are

(5.5) 1 — o72(0) supviM (8, a, w) = (1 — mo(ey))/(1 + N).

Clearly we can extend this approach to confidence intervals and the p-variate
case. What we are doing should be clear from the examples. We essentially
interpolate between the M.L.E.’s of () under #, and .#, using weights which
are functions of Wald’s form of the test statistic for H: u(6) € u(0,) vs. K: u(8)
€ #(@1)-

When we consider the limit of ordinary risks M (6, {6,}) we find that procedures
(5.1) generally exhibit a discontinuity at points of @y, i.e. convergence of the risk
is not uniform. This is reminiscent of Hodges’ example of a super efficient
estimate which is essentially a pretest estimate corresponding to a sequence of
levels tending to 0. However the Hodges procedure has infinite relative loss in
risk whereas we propose to pay a small price in the relative loss in exchange for
improved behaviour on 0,.

6. Conclusions: Open questions.

(1) We have applied robustness ideas to derive what we judge are useful biased
estimates in the estimation of single parameters under a simple model .#, when
we want to guard against deviations towards a larger model _#;. The solutions
involve both an approximation to the optimality principle and in general a large
sample approximation. Tables 1 and 2 show that the first approximation is not
serious for quadratic loss and the solutions give reasonable confidence intervals.
The adequacy of the large sample approximation remains to be assessed in
different models by obtaining approximate solutions of the Berger-Bickel type to
the exact model, where possible.

(2) In the p-variate case, even approximate solutions can only be calculated
in special cases and their structure depends on the loss function. It may be
appropriate to apply Steinian “pulling in” within the simple model towards a yet
simpler model as well as further “pulling in” towards the simple model itself.
Alternatively, if we do not believe that losses from errors made in estimation of
different components of u should be combined it may still make sense to apply
pulling in towards .#, on each component individually.
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(3) This approach is applicable, in principle, to large sample problems when
#; is nonparametric. For example, suppose we want to estimate features of
distributions such as medians, means, or even the whole distribution or its
density. Our approach suggests reasonable ways of interpolating between esti-
mates based on parametric assumptions and nonparametric estimates.

(4) Typically we have more than one simple candidate model _#,. It would be
very interesting to obtain reasonable estimates of u(f) which do well at each
member of a set of simple models while still performing adequately at a super
model 7.

(5) This work is closely connected with the recent studies of Marazzi (1980)
and Berger (1982) on robust Bayesian inference. See also the thesis of Y. Ritov
(1982) and Masreliez and Martin (1977). Problem (P) is precisely of that form,
minimize the Bayes risk for a prior degenerate at {0} subject to a bound on the
maximum risk—interpreted as the worst that misspecification of the prior can
do. On the other hand, if in our original problem we replace the maximum risk
over .#, by an average, we are again in the robust Bayesian framework. We prefer
not to try to specify prior distributions. Our point is just that a possibly naive
belief in a simpler model can be catered to with reasonable safety.

Acknowledgement. I am grateful to B. Efron and P. Huber for helpful
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