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ADAPTIVE ESTIMATORS FOR SIMULTANEOUS ESTIMATION
OF POISSON MEANS!'

By H. M. HUDSON

Macquarie University

A new estimator for smoothing towards log-linear models for Poisson
means is introduced. The estimator is a generalization of one of Peng (1975).
The theoretical basis for the choice of estimator is developed from an approx-
imation to the mean square error of any estimator of Poisson means. The
new estimator and its competitors are evaluated in simulations. The method
has widespread application in contingency table analysis.

.

1. Introduction. In contingency table analysis we may often be able to
improve estimation of cell means by “borrowing strength”, accepting some bias
in return for reduced variability of the estimates. Use of a parsimonious model
for cell means is one method of increasing the precision of estimation. But model
selection introduces bias.

Biased estimation has gained wide practical acceptance. A common technique
is to eliminate as many interaction terms and main effects as possible, based on
the results of hypothesis tests, in a complex model for cell means. The resulting
reduced model is then used to determine “smoothed” cell estimates. See Bishop,
Fienberg and Holland (1975), for illustrations. Bias is then a consequence of the
preliminary hypothesis testing, and the possibility that the reduced model is
incorrect.

This “preliminary test” approach to estimation is unsatisfactory from several
points of view. The real presence of interactions, when relatively small in nature,
may not sufficiently bias a simpler main effects model to compensate for the loss
of precision in trying to estimate the many extra interaction parameters. From a
decision theoretic viewpoint the discontinuity in estimation brought about by the
hypothesis testing dichotomy means this procedure cannot be admissible. Sclove,
Morris and Radhakrishnan (1972) investigated the performance of preliminary
test estimators in linear models. The preliminary test procedure often produced
poor estimates. The risk function of the preliminary test estimator attested to
this poor performance. The risk exceeded the minimax bound (the risk from use
of the unadjusted data) over a substantial region of the parameter space. By
contrast, procedures amongst a class of minimax estimators introduced by James
and Stein (1961) achieved low risk when the reduced model was correct without
sacrificing precision when the adequacy of the model was uncertain.
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In a contingency table context Fienberg and Holland (1970) and Sutherland,
Fienberg and Holland (1974) have proposed empirical Bayes procedures some-
what analogous to the Stein estimator, though in a product multinomial setting.
In “large sparse” tables in which the multinomial distributions approach inde-
pendent Poisson laws, an asymptotic minimax property of these empirical Bayes
estimates was established. The cell estimates obtained by this method are a
shrinkage, to an extent determined by the data, of the raw cell counts towards a
set of expected cell counts, these derived from a reduced model.

Peng (1975), and Clevenson and Zidek (1975), have obtained direct generali-
zations of the Stein estimator when cell counts are independent Poisson variables
and shrinkage is towards 0. Hudson and Tsui (1981) consider arbitrary nonzero
a priori values. The latter result permits immediate generalization to the case of
shrinkage towards data determined expected cell counts.

This paper introduces this new class of estimators and illustrates its use in
contingency tables. Theory is developed indicating the basis for use. When cell
counts are independent Poisson variables, the estimators are (almost) minimax.
Estimates are shrunk to conform with models linear in the logarithm of the cell
count. The new class is flexible and easy to use. Estimates may be calculated
simply. .

The procedure is defined in Section 2. In Section 3 an approximation to the
risk function is developed which demonstrates the near minimax property the
new class possesses. In Section 4 the results above are shown to apply also to
multinomial data. Two examples of applications are contained in Section 5.

Section 6 contrasts the precision and robustness of the several approaches
discussed above in a simulation study.

In Section 7 it is shown that the new procedures may be derived from stochastic
models for the cell means. Thus the new procedures may be placed in an
empirical-Bayes context (Maritz, 1969). Leonard (1972) presented related Baye-
sian theory for binomial data, and extended this analysis to other exponential
families in unpublished notes.

2. Estimators of cell means in contingency tables. Tests of hypothesis
for contingency table analysis are prevalent in the literature. Suppose X;, - - -,
X, are independent Poisson variates with means y;, - - -, u,. The preliminary test
method suggestion of Section 1 may be based on log-linear models for the data.
Then for {;} computed from a reduced log-linear model, the preliminary test
estimator is

. _ J#o if the reduced model is acceptable at level «
=X, if the reduced model is rejected at level o.

In simulations we used a significance level @ = .15. We comment on more
stringent choices in Section 7. Sclove, Morris and Radhakrishnan (1972) have
proved that the Stein estimator dominates the preliminary test estimator based
on linear models in multiparameter Gaussian estimation, for significance levels
above o = .50.
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The Fienberg-Holland rule is defined as
i = po; + (1 — 1/(K + ))(X; — fios)

where K = Q/[pX — ¥ X?/pX], where @ = ¥ (X; — jio)*.

A detailed description of this procedure and its properties is available in
Bishop, Fienberg and Holland (1975), Chapter 12. While the presentation is
appropriate for multinomial data, the nondegenerate asymptotic results provided
there for the Fienberg-Holland rule are based on special asymptotics for sparse
multinomials in which the counts X within the table follow independent Poisson
distributions. Thus these results apply to Poisson counts also.

If Yy, ---, Y, is a sample of independent normal random variables with mean
0y, - - -, 8, and common variance o2, the Stein estimator appropriate for shrinkage
toward any reduced linear model § = AB dominates the coordinate estimator
(Y, ---, Y,). Here A, p X g, is prespecified and 8, ¢ X 1, ¢ < p — 2, will be
estimated by least squares if a mean square error risk criterion is used.
Suppose the vector of predicted means in the reduced model is written 6o;
50 6o = A(A’A)™'A’Y. Then the appropriate Stein estimator is

(2.1) fo+ (1= (p—q~—2)/SHY — b)

where S, = Y2, (Y; — 60)%/s? is proportional to the residual sum of squares for
the reduced model. The gain in MSE at 0 is given by p~*Ey{(p — g — 2)?/S4} X
100%, and will be large if the reduced model is substantially correct. See James
and Stein (1961), Hudson (1974), and Efron and Morris (1972).

Thus one expects that after a variance stabilizing transformation, the Stein
estimator could be applied with useful gains to Poisson counts. We shall use the
standard positive part adaption of (2.1) in simulations which follow.

The last estimator we consider is a generalization of one introduced in Hudson
and Tsui (1981), there shown to dominate X. We again shrink towards a reduced
model of the log-linear form. Specifically the procedure is:

1. Transform the cell entries according to
(2.2) Hi=hX)=3F% 1/, i=1,---,p

It is helpful to note that log((x + 0.56)/0.56) is a very satisfactory approximation
to h(x).

2. Find the least squares fitted values Hj, - - ‘ FIP appropriate to the log-
(2.3) linear model being considered, i.e., define H = A(A’A)™*A’H, for some
design matrix A, p X q.

3. Define R = (p — Ny — q — 2); where a, = max(a, 0), N, denotes

2.4) the numberA of obsefved Zeros, anAd q is the Arank of A. Let S =

) Y2, (H; — H;)? and X; = 0.56(exp(H;) — 1), if H; = 0, or 0 otherwise,
fori=1, ...,p.
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4. Then set
fi=X;— (R/S)H; — H) if (X;+ .56) > (R/9),
25) =X otherwise,
fori=1,-...,p.

3. Approximations to the risk function. The application of Stein’s
integration by parts method (Stein, 1981) to Poisson estimation (Hudson, 1978)
leads to an expression for the mean square error of any estimator of the mean
vector u as an improvement E,{{o(X)} of the mean square error of the un-
smoothed estimator X. For any functions g, - - -, g, defined on p-dimensional
tables X of nonnegative counts, and such that E | g/(X)| < o, fori=1, ..., p,
extend definition of gy, - - -, g, to tables including negative integer counts by g;(x)
= 0, say, if any coordinate x; < 0. Then

EAZE, (X — w)® — EfZL; (X + 8(X) — w)?)
(3.1) = E,{-2 Y2, X[g(X) — g(X — &)] — T gH(X)}
= E,{Yo(X)}.

Here the vectors ey, - - -, e, are unit vectors of the form (0 ... 010 --- 0), so
that X — e; denotes data with X; reduced by one. The function y,, dependent on
the alternative estimator X + g(X) but not on p, is defined as the interior of the
next to last expectation above. We shall usually write ¥o(X) instead of Yo(X, g)
except when the context requires the full notation. The equality (3.1) expresses
the advantage in MSE to be obtained by the alternative estimator as an expec-
tation of a known function. The estimators considered hereafter all satisfy the
necessary conditions stated above for (3.1) to apply.

Mean square error is used to evaluate precision of estimation here. Other
weightings of component errors might be considered, in particular the alternative
Y (@ — w)*/ui. Unfortunately this weighting implies great deference must be
paid to zero counts, limiting the possibility of smoothing, since the possibility of
very small y; cannot be ignored. It is also difficult to derive an unbiased estimator
of risk, as in (3.1), for other loss functions. However, recent results of Hwang
(1982) may make a similar approach to that outlined here feasible with other
weightings. *

The identity (3.1) allows the risk reduction of an alternative estimator to be
assessed. The mean square error of any estimator can thus be determined. This
approach is used in simulations in Section 6. An estimator with the property o
= 0 would be guaranteed by (3.1) to have a smaller MSE than X. For the
estimator to be of practical value y, would need to be large for many data sets.

Such an estimator has been proposed by Peng (1975). His procedure yields
useful gains only when all the means u;, ---, p, are near 0. Because of the
complexity of (3.1) it is difficult to obtain improved estimators for larger means
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by this approach. We therefore consider the approximation

(3.2) Y1 = —2 32, x:(9g,/9x;) — T2, g}
for o, which replaces a first order difference by a derivative, for suitable functions
&1, - -+, 8 which agree with the estimation rule on integers. It is sufficient for

left-sided derivatives to exist in (3.2) for these to replace terms of the form
[gi(x) — &i(x — e)].

A heuristic solution, g, to ¥1(X, g) = 0, based on similar inequalities for
continuous exponential families in Hudson (1978), suggests the choice g:(X) =
—(R/S)(H; — H)), fori=1, - - -, p. Here R, S, H; and H; are defined in (2.2)-(2.4).

The modification shown in (2.5) is then suggested by noting the approximate
convex form of the estimator on a log-like scale. For

R(X; + g(X)) = log(X; + 0.56 + gi(X)) — log(0.56)

= log(X——i + 056) + log<1 + _&0 )

0.56 X; + 0.56
. &(X)
(3:3) = h(X) + X; + 0.56
R R
—Hi—m(Hi—Hi)
= ziﬂi + (1 - Z,‘)H,‘

where the “credibility” weight z; = R/(X; + 0.56)S. The third equality depends
on the condition that | g;(X) | /(X; + 0.56) be small. Thus, when this condition is
met, the estimation procedure involves shrinking the transformed cell counts
towards a linear model.

It is reasonable to insist that (3.3) represents a convex combination of the raw
data H; and the smoothed estimate H; by requiring that z;, = 1,i=1, ---, p.
Otherwise the estimator “overshoots” the fitted value. The procedure adopted in
(2.5) replaces any z; exceeding 1 by 1.

Another heuristic solution g to ¥;(X, g) = 0 is based on Theorem 2 of Hudson
(1978), which generalizes Stein’s result (Stein, 1981, Section 6) for the normal
distribution.' The shrinkage of extreme counts can be truncated. Then one or
more extreme observations will not affect the estimator unduly. Risk properties
of this estimator have not been pursued here however.

We now consider the approximate risk properties of the log-linear estimator.
We use (3.1), and assume that the table is such that only small relative changes
in S are possible when any count is diminished by 1.

Assume then that 1 — (S;/S) is small in absolute magnitude, for each i, where
S;i=S(X—e).Let Q=A(A’A)™'A’, so that Q is a projection matrix with diagonal
elements {g;} whose sum is g, the rank of A. Note that H = QH, from
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(2.3). Then
2
S,=S—(H,—I:I,)2+(H,—H,—%(I—Qu))
_sli-low [2(1{ A) -= (1 - q--)]}
‘l XS i i .

The assumption made therefore requires the second term within the parentheses
to be small, in which case

_Aljr 174G — —_— O
SEs| XS [Z(H H) - ,-(1 q,,)]}.

Consider now the term Xi[g:(X) — g(X — e;)] in the expression for the risk
benefit, for g(X) = —(R/S)(H; — H;). Here R = (p — No — q¢ — 2)+. Then it is
straightforward to demonstrate that, for X; = 1,

Xi[g:(X) — g(X — e)]

from which, using the expansion of S;* above, one may obtain

Xi[g/(X) — g(X — e)]

R/S
21—,',' A 31_ii2 s l_iia
=(1_qii)_%(Hi_Hi)z""%(Hi_Hi)_%
2H; - H)* 31-gqa 1
=(1-gq) - S + 2 XS [Z(Hi A) - X, (1 qﬁ)] )

since 0 < g; < 1. The last term above is negligible, by assumption, and summation
of the remaining terms yields R2?/S as the risk reduction.

These results require only that any change which reduces by 1 the count in
one cell of a contingency table, engenders a small relative change in the lack of
fit, S. It is clear that as the effect of any one observation on S diminishes, as
occurs as p increases, the approximation improves. The introduction of a lower
bound for S, in(2.5), further aids the adequacy of the approximation in circum-
stances in which the data and model agree. On the other hand, the approximation
may not be very satisfactory for small p, if counts X; are small. Nevertheless it
appears that, for many models, ¥o(X) exceeds R?/S over a large region of the
data space, implying near minimaxity of the log-linear estimator and significant
risk reduction.

The general form of this estimator, and heuristic support for it, was first given
in Brown (1979), through considerations of asymptotic expansions of the risk
function, as cell means increased. Our development includes shrinking to
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data dependent values, and suggests that minimaxity is achieved as
p — o even with small cell means.

The estimate R?/S, of the reduction in MSE points to substantial benefits
when the fitted log-linear model is simple (so R is large) and provides reasonably
accurate estimates of cell means. Hence the choice of design matrix A (or
equivalently, the model) is of great importance.

Two special cases considered previously are: Peng’s estimator, in which
A = 0; and Hudson and Tsui’s estimator for the model y; = - .. = y,, for which
A=(1,1,...,1).

4. Application to multinomial data. When a multinomial model is ap-
propriate for contingency table data there will be situations for which the Poisson
theory developed in Section 3 remains valid.

Multinomial observations are often distributed approximately as independent
Poisson variates. For one such situation, see Feller (1950) Exercise V1.10.38. The
approximation also appears appropriate with “large-sparse” contingency tables.

Let (X;, ---, X,) have the multinomial distribution with parameters
(n, I, - - -, II,), where Y, II; = 1. Then the term “large-sparse” tables would refer
to tables where the following asymptotics are relevant:

(a) n — o
(b) nlIl; — u; as n — », (hence p —  also).

It is immediate, from Feller’s result, that the joint distribution of counts within
given cells will, under these asymptotics, be the joint distribution of independent
Poisson variables. In particular, the marginal distribution of X; is Poisson with
mean pu;, and the counts in different cells are pairwise independent, in asymptot-
ics.

In these cases, it is therefore natural to use Poisson estimation theory, which
ignores the multinomial constraint on a row total. However, the argument above
is not wholly compelling as convergence in distribution does not necessarily
imply the convergence of risk functions that is at issue. A direct examination of
this convergence is possible.

This is because an identity for multinomial observations is equivalent for large
n, to the Poisson identity leading to (3.1), the property on which the new
estimator’s near minimaxity depends. For fixed (II,, - - -, II,) denote expectation
with respect to the multinomial distribution above by E™. Then it is easy to show
that, with M ="nlI,-,

(4.1) wE"g(X) = (n/(n + 1)E™'X;g(X —¢), j=1,---,p,
corresponding to a Poisson identity

(42) #ngj(X) = EXIgJ(X - ef)’ j= 1’ Y )

used to derive (3.1).
In (4.1) suppose (n/(n + 1))E"'X;g(X — e) may be replaced by
E"X;gi(X — ¢), for j =1, 2, ---, p, to a suitable degree of accuracy. From
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(4.1) this is equivalent to replacing E"gj(X) by (n/(n — 1))E"'gi(X), for
j=1, ..., p. Then (4.1) may be written

wE"g(X) = E"X;g(X —¢), j=1,---,p,
and hence all results of Section 3 based on (3.1) continue to apply to the difference
in risk
E"Yy (Xi—uw) —E"Y (Xi + g — p)

In the asymptotics above—which include “large-sparse” tables—many estimators
g will have the required property, namely that, for any j,

| (n/(n — 1))E"'g(X) — E"g(X)| = 0, as n — o.

This is because the addition of one observation to the table at random will, for
many estimation procedures, have a negligible effect on any one cell estimate.
Subject to this check, the Poisson theory will also apply to multinomials with
large marginal totals.

5. Examples of the use of the “log-linear” estimator. In this section
we give two examples of the use of log-linear estimators. The first illustrates the
use of the estimator with Poisson counts in a two way cross-classification in
which the reduced model specifies a simple relationship between cell means. The
second example treats a pure multinomial sampling scheme in which the total
count in the table is fixed. The cells are arranged in a 3 X 23 factorial arrangement
and the reduced model corresponds to the absence of some effects.

The first set of data examined records the frequencies of entry of stroke
patients with given severity of condition initially, and on discharge. The data is
tabulated in Plackett (1981) and is shown below.

Final rating

A B C D E
Initial E 11 23 12 5 8
rating D 9 10 4 1
C 6 4 4
B 4 5
A 5

In the absence of specific prior information on distribution of stroke patients’
initial and final ratings, a beta form of distribution for each suggested the simple
model

log pij = p + aylog i + aplog(6 — i) + Bilog j + Bolog(6 — j)

where i and j denote row and column numbers of the cell, fori<j=1,2, ..., 5.
The intrinsic ordering of the ratings A-E is thereby recognized in both initial
and final ratings, and with the assumption of pseudo-independence (conditional
independence of initial and final ratings, given that the final rating is not lower
than the initial rating), leads to a flexible model with relatively few parameters.
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We obtain the least squares fit to the counts transformed to
= log[(X + 0.56)/0.56]

as:
H;=34—-141logi—0.7log(6 — i) — 0.1log j + 0.7 log(6 — j)

with S = 2.12, by multiple regression analysis. Hence R/S = (15 — 5 — 2)/2.12 =
3.77. From the fitted values, H, predictions X=o0. 56(exp(H ) — 1) are obtained

as:

Final rating

Initial 18.2 14.4 11.1 7.9 4.4
rating 7.9 6.2 4.7 3.3

5.4 4.2 3.1

4.7 3.6

5.6

The log-linear estimates of cell means ji; = X; — (R/S)(H; — H;) are:

Final rating

Initial 12.8 21.3 . 11.7 6.6 5.9
rating 8.6 8.3 4.6 4.4*

5.6 4.1 3.2

4.5 3.9

5.4

The estimate 4.4 would be replaced by 3.3 in accordance with (2.5). The calcu-
lations are very simple using many statistical computing systems.

The estimator’s effect is to smooth the cell counts, where small, towards the
fitted values; the relative change is less for larger counts.

The estimated lower bound on the improvement in MSE, R%/S = 30.2, is only
one-fourth of the estimated MSE of unmodified counts, ) X; = 121, an apparent
risk reduction of 25%. The unreliable small counts may be observed to be shrunk
by a considerable factor. This seems a very desirable behavior for an estimator,
and suggests a useful rule for the log-linear procedure when zero counts present
a problem.

Our second example concerns multinomial data. Bishop, Fienberg and Holland
(1975) examined data, collected by Ries and Smith (1963) on detergent prefer-
ences, in their Table 4.4-6. This data is reproduced in Table 1. The design is a
3 x 2° factorial in which the four variables considered are water softness (at 3
levels), previous use of the detergent of interest, wash temperature, and brand
preference. Their analysis of cell counts indicated a strong main effect on
temperature and a strong interaction between previous use and brand preference;
smaller interactions between temperature and water softness, and temperature
and brand preference, were considered to be present also. In order to estimate
the importance of these effects we shall obtain the log-linear estimates of cell
means using a reduced model in which only previous use and brand preference
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variables and their interaction are fitted in addition to the temperature main
effect.

This example is chosen because it highlights the precision to be gained from
estimates based on models involving relatively few parameters, when extra terms
in the model add significant, but limited, explanation. Several alternative pro-
cedures could also be applied: the Stein estimator would be suitable after a
variance stabilizing transformation. Other estimators with Bayesian justifications
have been proposed for multinomial data (see particularly, Leonard (1977), and
references to work of Good contained therein), but their risk properties are
unknown. The reader is invited to compare his favoured method with our
approach. After transformation of the counts by the natural logarithm (equivalent
to transformation by %), observations may now be pooled over the water softness
categories, since the reduced model does not include variation attributable to this
factor. The fitted values in Table 2 are then obtained by standard analysis of
variance techiques for the model with no temperature interactions. The residual
sum of squares of this model is S = .574 on 19 d.f. Hence the shrinkage factor
R/S in (2.4) is 29.6. We can thus calculate the revised cell estimates as
X — 29.6 log(X/X); these are as given in Table 3. The risk benefit is estimated
to be R%/S = 17%/.574 = 504—compare with 1008, the estimated risk of X.

The requirement for Poisson theory to apply in this case was discussed in
Section 4. It is that the expectation of the change in the log-linear estimator
obtained when a single random count is added to the table is negligible, in every
cell. This condition is clearly met here, as fitted values (such as in Table 2) would
be virtually unaffected by the additional count, and with high probability the
count will not affect the observations in the cell being considered. Thus a
substantial MSE reduction is expected to apply to the estimates of Table 3.

TABLE 1
Observed data of Ries and Smith
brand water previous use no previous use
preference softness . temperature
high low high low
Soft 19 57 29 63
X Medium 23 47 33 66
Hard 24 37 42 68
Soft 29 49 33 66
M & Medium 47 55 23 50
Hard 43 52 30 42
TABLE 2

Fitted values for the reduced model (log scale)

previous use no previous use

high - low high low

X 3.18 3.714 3.58 4.14
M 3.52 4.09 3.29 3.86
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TABLE 3
Log-linear estimates**

- previous use no previous use
brand water
preference softness temperature
high low high low
Soft 23.9 48.0 35.7 62.9
X Medium 23.9 (23.9%) 43.7 (42.3) 35.5 (35.7) 74.5 (63.1)
Hard 23.9 40.8 37.3 75.6
Soft 33.8 54.9 26.9 49.7
M Medium 37.2 (33.8) 57.4 (59.7) 26.9 (26.9) 48.5 (47.5)
Hard 35.9 56.1 26.7 45.6

* Fitted values under the reduced model are shown in parentheses.
** Obtained by use of (2.2)-(2.5).

Table 3 indicates that the estimates obtained from the model may be regarded
as generally accurate—with the possible exception of the soft water, low temper-
ature, brand X preference of previous users of M. The brand M preference of
previous users in low temperature conditions may be somewhat underestimated,
and in hot temperature conditions somewhat overestimated, but the size of this
effect is minimal.

The estimated preference for brand X in each cell, shown below, clearly
depends on previous use of brand M.

previous use no previous use
high low high low

Soft 41% 47% 57% 56%
Medium 39% 43% 57% 57%
Hard 40% 42% 58% 59%

Those with no previous use of brand M show very little difference in preference
whatever conditions apply. Previous users’ estimated preference for brand X
appear similar except in low temperature, soft water conditions. These conclu-
sions are not unlike those of Cox and Lauh (1967).

6. Simulation results. For tables containing p = 5 or p = 20 cells, 864
Poisson data sets were generated in a number of steps.
First, 16 replicate samples of size p were selected with distribution

Mo with probability 1 — 2»
p=-u(l + a)> with probability »
l po/(1 + a)?  with probability ».

Cases studied were uo = 4, » = 0.10 and uo = 2, v = 0.05—for o = 0, 0.5, 1. 96 sets
of p means (not all distinct) were thus generated, 16 each from six prior
distributions.

Then, for each set u, a sample X of p independent Poisson counts with these
means were generated. Nine replicates of X for each configuration u were
obtained.
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Taking the sum of squared errors of the unbiased estimator X as a base, the
reduction in squared error achieved by each of the multiparameter estimators
shown in Table 4 was calculated in two forms:

L, = yo(X, 8/ ui
and

— {32, (X — w)® = 32, (Xi + &(X) — w)
2 i ’

L, and L, provide unbiased antithetic estimates of 1 — MSE(X + g, u)/Y w;, the
reduction in risk achieved by the estimator for mean vector u. In Table 5 summary
values of the 144 pairs (L,, L;) are shown for each prior, together with the
maximum attainable reduction—achieved by use of the Bayes estimator for that
distribution. ’

Table 5a shows the attainable MSE reduction, expressed as a proportion of
3 u;. For three distributions, use of the Bayes estimator (which assumed knowl-
edge of the prior) resulted in nearly 100% reduction in MSE; in the other three
cases it was possible to reduce MSE to about one-third of the risk of X. Savings
in MSE of these magnitudes are substantial: a 95% reduction is equivalent to
increasing sample size by a factor of 20, ahd a 67% reduction is equivalent to
increasing sample size by a factor of 3. Table 5b gives the risk reduction of each
multiparameter estimator.

In small tables (p = 5 cells) with little data (priors 1-3, for which uo = 2) the
preliminary test and Fienberg-Holland rule were comparable in achieving risk
reductions of around 50% of that attainable. These estimators were superior in
this regard to the Stein and log-linear estimator. These had very similar perform-
ance in the case of tables with small means. This is because, for 0 < x < 10 the
relationship between h(x) and the variance stabilizing transformation vx + 3 is
near linear, the only minor deviation from linearity occurring when x = 0. Thus
fitted values and shrinkage factors are virtually identical for data in this range.
The equivalence does not extend to data sets in which some larger counts are
present.

With p = 5, uo = 4 (priors 4-6) the Fienberg-Holland estimator recorded the
most consistent risk reductions, slightly higher than Stein and log-linear results.

In larger tables (p = 20 cells) the risk reductions attained by the Stein and

L,

TABLE 4
Estimators considered in the risk computations
no. description comments
1. Preliminary test Hypothesis tested was equality of means.

Significance level a = .15 (see Section 2).
2. Fienberg-Hollandrule ~ With iy = X = T X/20.

3. Positive part Stein Estimates of vp; + %,i=1, - .-, 20, obtained from (2.1) with ¢ =
estimator, square Y, and A, 20 X 1, having elements a; =1, fori =1, - . -, 20. Invert
root transformed transformation to obtain estimates of u.
data

4. Log-linear estimator Estimator as given in (2.2)-(2.5), with A chosen as for estimator 3.
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TABLE 5
Simulation results
a. Risk reductions attainable*

prior
p 1 2 3 4 5 6
5 1.00** .88 .78 1.00 .56 .64
20 .98 92 .67 99 .67 .65
* Tabled is the Bayes estimator’s average risk reduction in simulations.
** MSE scaled by division by ¥, u;.
b. Percentage of attainable risk reduction achieved
rior estimator
P mean P. test F. H. Stein L.L.
p=5
1 79*%,  T9** 53, 54 52, 51 39, 37 37, 36
2 71, 78 45, 54 50, 54 35, 39 34, 38
3 6, 19 32, 41 45, 46 33, 35 35, 35
4 76, 83 46, 54 52, 53 50, 48 47, 47
5 24, 40 23, 25 59, 66 49, 51 46, 48
6 -172, —208 44, 30 39, 31 35, 29 41, 34
p=20
1 92, 98 68, 75 67, 70 82, 85 80, 82
2 A, 91 71, 63 72,71 84, 85 82, 17
3 48, 32 61, 60 70, 66 70, 61 99, 91
4 91, 98 61, 72 66, 70 83, 88 71, 81
5 57, 57 18, 25 76, 76 81, 84 84, 83
6 -235, —258 0, 0 34, 31 17,12 44, 40
* Average of Yo(x)/Y, u: as a percentage of attainable risk reduction.
** Average of [ (x; — m:)? — (i — 1)?]/Y wi as a percentage of attainable risk reduction.
¢. Minimum risk gain estimate*
Fior estimator
prio mean P. test F. H. Stein L. L.
p=5
1 -1.32 —4.20 -.10 —.49 -.24
2 —-1.44 -5.76 -.08 -31 -.21
3 —-8.02 —4.50 -.12 —.43 -.36
4 -1.20 —4.84 -.05 -.29 -.02
5 -5.15 -3.68 -.10 -.13 -.04
6 -11.39 -3.78 -.09 -.21 —.04
p=20
1 —0.42 -2.31 .29 .29 17
2 —-0.41 -2.87 .28 .08 17
3 -2.47 -2.27 .08 —.49 .16
4 -0.56 —2.58 .26 .24 21
5 -2.35 -2.27 .20 .00 16
6 —4.93 -2.49 .06 —.45 .08

* Tabled is minimum value of ¥4(X)/Y, u; obtained in 144 simulations from the prior.
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log-linear estimators were consistently over 80% of that achievable. The Stein
estimator’s performance was slightly the better of the two when all means were
identical, while the log-linear estimator was slightly more effective when the
model was mis-specified. These estimators dominated the preliminary test and
Fienberg-Holland rule for each prior.

Since the distributions considered put weight on only a limited region in the
p-dimensional parameter space, we may have weighted down some poor cases for
an estimator. To gain a wider perspective, we examined ¥o(X) in each of the
1728 data sets X generated. (The configurations of counts were almost entirely
distinct and varied considerably even when the means were similar). When yo(X)
is negative, it is probable that there is a corresponding configuration of means
for which the risk exceeds the minimax bound.

Table 5¢ shows the worst excess risk estimate in any of the data sets X
generated for each prior. The preliminary test procedure produces risk estimates
as much as 5 times the minimax risk, and increased risk estimates occur
frequently, particularly with data exhibiting borderline evidence against the
reduced model. With the Stein estimator, the risk estimate indicated a possible
50% increase in risk for some data configurations, generally those including a
single extreme count. The Fienberg-Holland estimator exhibited a near minimax
performance, with at worst a 10% increase in risk estimated, and the log-linear
estimator confirmed its near minimaxity property of Section 3 in large tables, or
in small tables with expected counts of 4 per cell. With 10 counts in the table,
the excess risk was estimated to be at worst one-third of the minimax risk (again
this occurred when a single extreme outlier was present).

In both Bayes gain and minimax risk, the overall performance of the prelimi-
nary test approach is disappointing, and no fine tuning would appear to improve
it. Worst case (minimax) risk would increase if more stringent significance levels
were used, while average risk will degrade if a less stringent level were chosen. A
strong case has been made for an alternative procedure.

When both risk criteria are considered, it appears that the Fienberg-Holland
estimator is the procedure of choice in small tables, while the log-linear estimator
is preferable for larger tables, when equality of cell means is a plausible hypoth-
esis. :

7. Discussion. The simulations of the previous section were designed with
the intent of examining the average risk of each estimator for various departures
from the hypothesized model. Additionally, data configurations for which excess
risk was apparent were to be examined, and an estimate of the minimax risk
obtained. Average risk and minimax risk criteria for evaluating the robustness
of an estimator to mis-specification of prior information are discussed in Berger
(1982).

As demonstrated elsewhere for normally distributed data, our results show
preliminary test estimators to be deficient with respect to both criteria above. By
contrast, the simulations confirm that with Poisson data too, Stein type proce-
dures with near minimax risk can make substantial use of prior information,
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even when imperfect. This is particularly true with tables large enough for the
adequacy of the model to be evaluated reliably. The robustness of an estimator
to an imperfect model is important. It means simple models may be used without
attendant chance of substantial error in estimation.

Through such simple models, expected counts are obtained that are very
stable. Even oversimplification can be justified with robust estimators, as illus-
trated for the Ries—Smith data (refer to Section 5). Robustnéss is the guarantee
that the estimates will not suffer from a poorly chosen model.

A key element in the assessment of Bayesian robustness of an estimator is the
decision theoretic examination of its risk function (Berger, 1980). The near
minimaxity of log-linear estimators, provided under appropriate conditions by
the approximations of Section 3, permits confidence in expecting such robustness
in these estimators.

Log-linear estimators are Stein-type estimators, They involve shrinkage to-
ward a model determined value, after appropriate transformation of cell counts.
Indeed, with very small counts only, the transformation is variance stabilizing.
Log-linear and Stein estimates are then very similar. Attention has been drawn
to the need to slightly modify Stein and log-linear estimators to avoid problems
caused by extreme outliers in small tables, but the exact methodology requires
further development. .

Another derivation of the log-linear form of estimator may add insight and
suggest an empirical Bayes interpretation of this class of estimators. We formu-
late a stochastic model in which the means y; in the table are themselves random.
Let

(7.1) a=logu=alf+e i=1.-.-,p

where the ¢ are assumed to be independent normal errors with mean 0 and
common variance o2, and a/ denotes the ith row of the design matrix A. Models
similar to this are considered by Leonard in unpublished notes. Given 8 and o,

the maximum likelihood estimates of a;, - - -, a, may be obtained as the solutions
of the equations
(72) eXp(ai) = Xi - U—Z(ai - ailﬂ)y I’ = ly sy P.

If o = e®, and f(a) = exp(a) — x + 6~ %(a — @), then an approximate solution to
fla) =0is a = zap + (1 — 2)log x, with z = 1/(1 + o2u). Note the relationship
between this solution and the log-linear form (3.3), which differs only in the
choice of shrinkage factor, z.

A similarity is thus observed between log-linear estimators and Leonard’s
Bayesian class of estimators. We may infer from this that when cell means accord
with the model (7.1), the log-linear estimator will achieve a considerable risk
reduction.

The use of estimators smoothed towards log-linear models provides a very
flexible technique for estimation in contingency tables.
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