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OPTIMAL DETECTION OF A CHANGE IN DISTRIBUTION!

By MoOSHE PoOLLAK

The Hebrew University of Jerusalem

Suppose one is able to observe sequentially a series of independent
observations X;, X;, ... such that X;, X;, ..., X,—; are iid distributed
according to a known distribution Fy and X,, X,, --- are iid distributed
according to a known distribution F;. Assume that » is unknown and the
problem is to raise an alarm as soon as possible after the distribution changes
from F, to F;. Formally, the problem is to find a stopping rule N which in
some sense minimizes E(N — v| N = v) subject to a restriction E(N|v = )
= B. A stopping rule that is a limit of Bayes rules is first derived. Then an
almost minimax rule is presented; i.e. a stopping rule &V* is described which
satisfies E(N* | » = o) = B for which

SUP;1 << E(N* — v | N* = »)

— infistoppingrutes | EN| v=)=BiSUP1=< E (N — v | N = ») = 0(1)

where 0(1) — 0 as B — .

1. Introduction. Suppose one is able to observe sequentially a series of
independent observations whose distribution possibly changes from F, to F; at
an unknown point in time. Formally, X;, X,, --- are independent random
variables such that Xj, .- ., X,_; are each distributed according to a distribution
Fyand X,, X,+1, - -+ are each distributed according to a distribution F;, where
1 < » < » is unknown. The objective is to detect that a change took place “as
soon as possible” after its occurrence, subject to a restriction on the rate of false
detections.

The problem originally arose out of considerations of quality control. When a
process is “in control,” observations are distributed according to F,. At the
unknown point », the process jumps “out of control” and ensuing observations
are distributed according to F,. The aim is to raise an alarm “as soon as possible”
after the process jumps “out of control”.

The early literature on the problem deals mainly with a change in the mean
of normal random variables having known, fixed variance, or a change in the
probability of success in Bernoulli trials. Early solutions grouped observations
and proposed-testing each group individually for an indication of whether or not
the process is “in control”. Shewhart charts (Shewhart, 1931) were standard
procedure for 20-30 years.

Gradually it became clear that much was being lost by regarding (groups of)
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observations separately, thereby not enabling evidence to accumulate with time.
Early attempts to rectify this include work by Dudding and Jennett (1944) and
Weiler (1954). Their procedure involves constructing “warning lines” and “action
lines,” the proposal being that one would take action whenever a point passes an
“action line” or whenever enough recent points pass a “warning line”. (See also
Page, 1955.)

Procedures that are in current use were initiated by Page (1954). In order to
detect a change in a normal mean from yo to u; > o, he proposed stopping and
declaring the process to be “out of control” as soon as S,, — min;<.<,S;. gets large,
where S, = Y&, (X; — p*) and po < p* < y; is suitably chosen. This and related
procedures are known as CUSUM (cumulative sum) procedures (cf. Johnson and
Leone, 1962, for a survey). Other methods were also proposed in related contexts
(e.g., Girshick and Rubin, 1952; Chernoff and Zacks, 1964; Kander and Zacks,
1966). Nonparametric approaches have also been tried (cf. Bhattacharya and
Frierson, 1981).

In order to evaluate and compare procedures, one needs to formalize a
restriction on false detections as well as to formalize the objective of detecting a
change “as soon as possible” after its occurrence. The restriction on false
detections is usually formalized either as a rate restriction on stopping rule N
(e.g. a requirement that E(N|» = ) = B) or a probability restriction (e.g. a
requirement that P(N = v) < « for all v). The objective of detecting a change “as
soon as possible” after its occurrence is usually formalized in terms of functionals
of N — ». (See Aroian and Levene, 1950; Page, 1954; Shiryayev, 1964; Lorden,
1971; Pollak and Siegmund, 1975; Chen, 1978; Kenett and Pollak, 1983).

Shiryayev (1963, 1978) solved the problem in a Bayesian framework. He
considered a loss function whereby one loses one unit if N < v and one loses ¢
units for each observation taken after » if N = ». The prior on » is assumed to be
Geometric (p). Shiryayev showed that the Bayes solution prescribes stopping as
soon as the posterior probability of a change having occurred exceeds a fixed
level. He also solved a non-Bayesian version, minimizing the mean detection
time after the onset of a stationary regime.

In the non-Bayesian setting of the problem, the only other optimality
result is that of Lorden (1971). His results are based on the restriction that the
stopping rules N must satisfy E(N|v = o) = B. The speed with which
a stopping rule N detects a (true) change of distribution is evaluated by
supesssup E(N—v+ 1)*| Xy, .-+, X,—1). Lorden showed that a certain class
of stopping rules is asymptotically (B — ) optimal (in a first-order sense) and
that Page’s aforementioned procedure belongs to this class.

In this article, the problem is also treated (in a non-Bayesian setting) under
the restriction that the permissible stopping rules N satisfy E(N|v = «) = B.
We first study a stopping rule N, considered by Roberts (1966), defined as the
first time n = 1 that a certain (nonnegative) statistic R, (defined in Section 2)
exceeds the level A. (Shiryayev, 1963, considered a continuous-time analog.)
Roberts (1966) compared this rule to other procedures using Monte Carlo
methods, and found it to be very good. We show this rule to be a limit as p — 0
of the Bayes solution of the aforementioned Bayesian problem considered by
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Shiryayev. We also show this rule to be asymptotically (p — 0) Bayes risk
efficient. (See Theorem 1.)

Following Pollak and Siegmund (1975), the speed with which a stopping rule
detects a (true) change of distribution is evaluated by sup;<,<wE(N — v | N = »,
v). An almost minimax rule is presented (see Theorems 2 and 3); i.e. a stopping
rule N} is defined which satisfies E(N%| v = ) = B and, to within an o(1) term,
minimizes supi<,<«E (N — v| N = », v) over all stopping rules N which satisfy
E(N|v=x)= B, where 0(1) > 0 as B— oo,

The construction of the rule and the proof of its almost minimaxity is based
on the idea that “if an equalizer rule is extended Bayes, it is a minimax rule”
(Ferguson, 1967, page 91). We first show that R, is a time-independent function
of R, and the (n + 1)th observation X,;. We then let R have an arbitrary
distribution and define R},, to be a function of R} and X, in the same manner
as R, depends on R, and X,,.;. We show that there exists a choice ¢} for the
distribution of R# which creates a sequence {R}}n—o for which the distribution
of R} conditional on {N¥ > n} is the same for all n = 0 (when » = ®) where
N} = min{n| R} = A}. Note that the distribution of N} — » conditional on
{R¥.,, N% = v} is the same for all v = 1. Therefore, E(N% — v| N} = v) is the
same for all » = 1 (making N an “equalizer rule”). The proof is concluded by
embedding this setup in a sequence of Bayesian problems which allow » =0 as a
prior possibility, showing N} to be an asymptotically Bayes risk efficient limit
of Bayes rules, and showing that the event {y = 0} is asymptotically negligible.

Explicit examples are presented in Section 4.

2. A limit of Bayes rules. Consider the following Bayesian problem and
denote it by B(y, p, ¢). Suppose v has a prior distribution

Pv=0)=4v
Pwo=n)=Q1Q-y)pQ-p)" n=1

where p and v are known constants, 0 <p < 1, 0 < vy < 1. Conditional on », if
v > 1 the observations Xj, - - - , X,—; are independent with density f, with respect
to a o-finite measure u and are independent of X,, X,.;, - - - which (conditional
on v) are independent with density f; (# fo) with respect tou. If v =0o0rv =1
then X, X, - - - are independent with density f; with respect to u. The aim is to
choose an optimal stopping time N. The losses are 1 or ¢(N — ») if N < » or
N = v, respectively, where ¢ > 0 is a fixed constant.
This problem was solved by Shiryayev (1978), Section 4.3. Define

LX) s ﬁ%ﬁau%

B = Tk T 5 PX) q
| (mx> ) 1
A—lnfl x| Po L) = >OI<1

P,(.), E,(-) will respectively denote probability and expectation conditional on »
when 1 < » < o, (The case » = o corresponds to the possibility that no change

;
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from f, will ever take place; i.e. X;, X,, --- are iid with density f, with respect

to u.)
For ease of exposition we will assume that P;(f1(X;)/fo(X,) = ) = 0.
Analogous results can be formulated when this probability is positive.

THEOREM 1. (I) Suppose that the P.-distribution of f,(X1)/fo(X1) has no
atoms.

(i) For any A < A < o« there exists a constant 0 < c¢* < » and a sequence
{pi, €;}i21 With P; =% 0, ¢; = C* such that the stopping time

(1) Ny=min{n|R, =z A, n=1}
is a limit as i — % of Bayes rules for B(y =0, p = p;, ¢ = ¢;).
(ii) For any set of Bayesian problems B(v, p, ¢) withy =0,p — 0, ¢ — c*

1 — {Expected loss using a Bayes rule for problem B(0, p, ¢)} _

1 — {Expected loss using N, for problem B(0, p, c)} .

lim supp—.o,cc*

(iii) For any 1 = B <  there exists a unique A < A < « such that B = E.N,.

(IT) If the P-distribution of f,(X1)/fo(X1) has atoms, then for any 1 < B < o
there exists A < A < o such that B = E.N}, where N} is defined as N4 in (1)
with the modification that there may be randomization (whether or not to continue
sampling) if R, = A. N is also a limit to Bayes rules, and a result analogous to
(ii) above holds.

REMARK. Part (ii) of the theorem should be seen in light of the fact that as
p — 0 and ¢ — c¢*, the Bayes rule stops before » with probability tending to 1, so
that 1 minus the expected loss is an appropriate quantity to consider asymptot-
ically.

PROOF. The idea of the proof is to note that R,, — R, as ¢ — 1, that, with
g=1-p, Nya = min{n|R,,= A} is a Bayes rule for some B(0, p, ¢) (and vice
versa) and that for fixed c the threshold A (governing N, 4) remains bounded as
p — 0. The details are spelled out in the following lemmas.

LEMMA 1. For the Bayesian problem B(v, p, ¢) described in the beginning of
this section, there exists a constant o, such that
M,. =min{n|n =0, P(v<n|FH) = 6.}
is a Bayes rule (where ?,, =Xy, -, Xp).

PROOF. This is merely a restatement of Theorem 7 of Shiryayev (1978),
page 195.

LEMMA 2. Let M,., 6,. be as in Lemma 1 and suppose that v = 0 in the
Bayesian problem described in the beginning of this section. Then M,. = N, p for
q= 1 - b D= (l/p)(ap,c/(]- - 6p,c))-
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PrOOF. Denoting [[%; fo(X;) = 1, note that forn = 1

(ML £ (X & /(X))
Skt (T XN A(XD)) pg*™ + (TT11 fo(Xi))g"

if 1<sj=<n

Pp=j|F) = .
([T 51 fo(X))pg'™! if n<i<w
Sha1 (M X121 AXDPg ™ + (I1%1 fo(X))g" d
and therefore, forn = 1
Yi=1 [T (H1(X)/fo(X:))(1/q) _ Rq,n

P=nl ) = o e (AX)/AED(W/2) + 1/p ~ Ren + 1p°

Hence P(v = n| 4,) = 6. if and only if R, = (1/p)(6p,./(1 — 6pc)) = D and so
Mpyc = Nq,D. .
LEMMA 3. There exists 0 < qo < 1 such that for all go < q, when v = o
H, = Yo [T (A(X)/fo(X))(1/q)

is a.s. a finite-valued random variable, and R, , —3%., H,.

PROOF.

fl(x)
fo(x)

Hence there exists 0 < go < 1 such that

filx) 1
flo <f0() )fo( ) du(x) <0

whenever gy < q < 1. Therefore, for such g there exists a constant n < 0 such

that
. - fi(Xi) 1
13k ni4i) 2 )
lim supp_..k™' Y&, log< (X)) q) Sas. 1

=7 k Ml>= n < k <f1(Xi) l>>
Hyp = Yk [Ii <f0(Xi) p Y i, expl Y&, log WXy a))

For a sequence X;, X,, - - - define

0 = log fo(x) du(x) > f log(f1(x)/fo(x)) fo(x) dpu(x).

Let

s 1), |

[— (
M= maxlmlm 2,_11gf0(X)q0

M is a.s. finite (since » = x). For n > M,

1
k
Hypn < Hyps + Sieper € /2 < Hym + 1 — o
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Since H,,, increases in n, it follows that H,, —3%. H, where H, is a.s. finite.
Since H,,, and R, have the same distribution, it follows that R, , —%%, H, and
the proof of Lemma 3 is complete.

LEMMA 4. Suppose v = ®. Denote Fy(x) = inf,P(R,,, < x) and let g, be as in
Lemma 3. Then Fy(x) is nondecreasing in x for fixed q, F,(x) is nondecreasing in
q for fixed x and for ¢ = qo lim,_..F,(x) = 1.

ProOOF. Clearly F,(x) is nondecreasing in ¢ and in x. The rest of the lemma
follows easily from Lemma 3.

LEMMA 5. Let Ny4 = min{n|R,, = A}. Suppose A > (A/q)/(1 — A/q) = 0.
Then Po(Rgn<x|Nga>n) = Po(Ryn<x)forn=1,2,.--.

PrOOF. Clearly Po(N,4 < ®) = 1. Under the conditions stated above
P.(Nyja>n)>0forn=1,2,.-..

The Lemma is trivial for x = A. For x < A the proof is by induction on n. The
statement of Lemma 5 is obviously correct for n = 1. Suppose that it is correct
forn=1,2,...,m.Let Y,, = q71(X,)/fo(X,). Note that

Rq,m+1 = Yq,m+1(1 + Rq,m)'
Now
Po(Rym+1 < x| Nga>m + 1)
= Pw(Rq,m < (x/Yq,m+1) -1 INq,A > m, Rq,m < A/Yq,m+1 - 1)

— Poo(Rq,m = (x/Yq,m+1) -1 l Nq,A > m)
Po(Rym < (A/Ygm+1) — 1| Nga > m)

= Po(Rym <(x/Yqm+1) — 1| Nga > m)
= Poo(Rq,m = (x/Yq,m+1) - 1)

= Pm(Rq,m+1 =< x)

where the last inequality follows from the induction hypothesis.
This completes the proof of Lemma 5.

LEMMA 6. Let N, be as in Lemma 5 and let g, be as in Lemma 3. Suppose v
has a Geometric (p) prior distribution, 0 < p < 1. Then for each ¢ > 0 there exists
a constant D, such that forall o< q=<1,0<p<1, E(N,p —v|N,p=v)>2c™!
if D= D..

PROOF. Let Qo=qg= 1. E(Nq,p - VII/ = k, Nq,D = V) = EE(Nq,D - IIIV = k,
Nyp =k, Ryp-1).
Let xo be such that Fy (x,) = % (where F, is as in Lemma 4). Suppose D > x,.
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For k> 1, on {R, -1 < %}, since
(X)) 1 fiX) 1
o= (1 (B0 )+ e e (5001
o ( Flhx o R ¥ 2 L x4
it follows that
E(Nq,D -V I V= k, Nq,D = k, Rq,k—-l)

2) = E(Ngp —v|v=~Fk Ngp =k, Rys1 = %)
= E(Ngyp — v|lv=~Fk, Nyp = k, Ry -1 = %o)

(where the last inequality follows from the fact that, given that one has not
crossed D by time k — 1 and one is at state x, at time & — 1, one would cross D
later if the process being observed (henceforth) is R, , rather than if the process
being observed (henceforth) is R, ,). The right-hand side of expression (2) does
not depend on p and k. It obviously is finite, increases with D and tends to « as
D — o, Hence one can choose D, (regardless of 0 < p < 1, gy = q < 1) such that
this expression is larger than 4c™! (for all k> 1) if D = D,. Hence, if D = D,, for
k>1

E(Nyp —v|v="Fk, Nyp = v)
= e E(Ngp —v|v=Fk, Ngp =k, Ry r-1 = %) X dPRq,k—ll:mh,Nquv(r)
ero "
= 4C_1Pk{Rq,k_1 <xo|v=Fk, Nyp >k — 1}
= 4C_1P°°{Rq,k_1 =< xoqu,D >k — 1} = 40_1Pw{Rq,k_1 = xo;
> 2c7!

where the last inequality follows from Lemma 4 and the definition of x,, and the
inequality before it follows from Lemma 5. Clearly also E(N,p — v|v = 1,
N,p=v)=2c"". Hence E(N,p — v| Nyp = v) = 2¢™* for D = D,, and the proof
of Lemma 6 is complete.

LEMMA 7. Under the conditions and notations used in Lemma 2,
lim sup,—00p/p < D,
where D, is as defined in Lemma 6.
PROOF. By Lemma 6, cE(M,. — v|M,. =) = 2if D = §,,/(p(1 — &) =
D, and p is small enough. This would contradict the fact that M, is a Bayes

rule, for one would be doing better by stopping immediately (i.e. taking no
observations at all). Hence D, = D = é,./p.

LEMMA 8. Denote D} = inf{D.| D, as in Lemma 6}. Then D} is nonincreasing
incand D¥ — A/qo as ¢ — o,

PROOF. The proof follows straightforwardly from the definition of D,.
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LEMMA 9. Suppose v = 0 in the Bayesian problem described in the beginning
of this section and N is a stopping time. Then

>
PN>v) ,  E.N.
PROOF.
pT'P(IN=v)=p ' Yici PIN=k,v=k)
= Zoko=1 Poo(N = k)(l - p)k_l '—)p_,o EooN.

LEMMA 10. Let 6,. be as in Lemma 1 and let e(c) = lim inf, .06, ./p. Then
lim inf,_e(c) = oo.

Proor. Without loss of generality let ¥ = 0 in the Bayesian problem
described in the beginning of this section. Let M, be as in Lemma 1. Suppose
lim inf,_,e(c) = e. < . Then 6,,c/(pi(1 — b,,)) <1 + e for some subsequence
¢;— 0, p; — 0. Since

E(Loss using Mp,.) = P(Mp,.; < v) + cP(Mp,, = v)E(Mp,e, — v| Mp,c, = v)
it follows from Lemma 9 that

1 — E(Loss using M)  P(Mp,c; = »)

[1 = GEMpye, — v| Mp,e, = v)]

i

Di p:
< P(MP;:.' =) < P(Nl";‘j“ = v) <1+ EooN1+eu

for large enough i. Clearly E.N.._ < ®. Hence one would obviously do better by
applying a Page rule with large enough upper boundary (cf. Lorden, 1971),
contradicting the fact that M, is a Bayes rule.

This completes the proof of Lemma 10.

PROOF OF THEOREM 1. By virtue of Lemma 2, it can be seen from Shiryayev
(1978), pages 195-198 that for any A > A, 0 < p <1 there exists a value c4p > 0
such that N, 4 with ¢ = 1 — p is a Bayes rule for B(y = 0, p, ¢ = cap). From
Lemma 8 and Lemma 10 it follows that 0 < lim inf,_,ocap < lim supp_,0ca,, < .
Choose a subsequence p; \y 0 such that c4,, converges to a finite constant ¢* = 0
as i — . Since R,, \ R, as p \ 0 it follows that M, , —¥3= Na and so Ny is
a limit of Bayes rules.

To prove Theorem 1 (ii), regard the problems B(y = 0, p, c). For any stopping
rule N:

1 — {Expected loss using N for problem B(0, p, c)}

p
@) _P(N>v)

[1 —cE(N—v|N=v)]

Denoting by M,,. the Bayes rule for B(0, p, c¢) described in Lemma 1, it follows
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from Lemmas 1, 2, 7 and 8 that if ¢ is bounded away from zero, then for
sufficiently small p all the M, s are dominated by an Np. Examination of the
proof of Lemma 9 shows that P(M,. = v)/p — ExMp. —p—0 0 uniformly for ¢
bounded away from zero.

Consider the sequence of problems B(y = 0, p = p;, ¢ = cap,). In problem
B(0, pi, cap,), Mp,c,, = Ny,a. Therefore

lim; [P (Mp,c,, = »)/Pil/[P(Na = v)/pi] = limiwEeMp,c, ,/ExNa = 1.

isCA.p;

Also
P(Nga=k|v=Fk)P(v=Fk) . Po(N, = k)
P(Nq;»A =) T E.N,4 )

P(v=k|M,

i1CA,p; = V) =

In problem B(0, p, c¢), if one uses N4, then

P(Nszklv=RK)Pr=k)  PoNs2k)
P(N, = ») P~ E.N,

Pv=Ek|Nys=v) =

For fixed K, EIN—v|N=v=k) = Ek(N kE|N = k). Since M, ., o im0 Na
a.s. Py, it follows that
lim; B (Mp,c,, = v| Mp,c,, =v="Fk) = Ex(Na — k| Na = k)
= lim; ,wE(Ns — v|Ns = v = k).
Therefore, in problem B(0, p;, cap,),
lim o E(Mp,., —v|M,

iCA,p;

= v)/E(Ns —v|Na=v) =1.

irCA.p;
It now follows from (3) that

1 — {Expected loss using Mp,c,,, for problem B(0, p;, ca,p;)}
1 — {Expected loss using N4 for problem B(0, p;, ca,,)}

i—>00 1-

Suppose now that Theorem 1 (ii) were not true. Then there would exist a
sequence {p}, ¢/}, such that p} —;_.»0, ¢} —jc*, M,; ;+ =i Na+ a.8. P for
some A < A* < o and

1 — {Expected loss using M,; . for problem B(0, p/, c})}
1 — {Expected loss using N, for problem B(0, p}, ¢/)}

1< limj e

1 — {Expected loss using N for problem B(0, p, ¢})}
1 — {Expected loss using N4 for problem B(0, p}, ¢})} "

From considerations similar to (3) above and its sequel, it would then follow
that for large enough i, N4« would do better than N, and hence better than
M,,,.,%m for problem B(y = 0, p = pi, ¢ = ca,,), Which contradicts the fact
that M., is a Bayes rule.

Theorem 1 (iii) follows from the fact that if the P,-distribution of
f1(X1)/fo(X;1) has no atoms then E.N, increases continuously from 1 to o as A
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increases from A to «. Theorem 1 (II) follows from considerations similar to
those of the proof of Theorem 3 below. The details are omitted.

3. Almost minimaxity. Let A/(1 — A) <A < » and let ¢ be a probability
measure on [0, ©). Let R§ be a random variable with distribution ¢ and define

* — fl(Xn+1)
" fo(Xns1)

In other words, N, is a stopping time constructed by randomizing R§ according
to the distribution ¢, defining the sequence {R}}:-, to be a sequence {R,}n-:
started at R (instead of at R = 0, as is in effect the case in the previous section)
and stopping the first time n that R} attains the level A.

For ease of exposition we will again assume that P, (f,(X;)/fo(X;) = ®) = 0.
We will first consider the case that the P.-distribution of f;(X;)/fo(X;) has no
atoms.

(1 + R}), Ni,=min{n|R;= A, n=0}.
¥

THEOREM 2. Let f, and f, be such that
Ex[(f1(X1)/fo(X1)) X log*(fi(X1)/fo(X1))] < oo,

Suppose that the P.-distribution of f1(X;) /fo (X1) has no atoms. Then for every 1
< B <  there exists a value A, A/(1 — A) < A < x, and a probability measure
Y such that B = E, N ;s and such that if N is any stopping time which satisfies

E.N = B then
SUP1<y<w 0, (N — v | N = ») = SUP15y< B, (N3 — v | N4 sz = ») + 0(1)
where 0(1) — 0 as B — ®. E,(N% s — v| N%y = ») + o(1) is constant in 1 <

y< o,

REMARK. One can obtain ¢% by solving the functional equation (4) in the
sequel. For examples see Section 4. See also Remarks 1 and 3 in Section 5.

ProOF. Let (A/q)(1 — A/q) < A, 0 < g <1, let ¥ be a probability measure
on [0, ), let R%, be a random variable with distribution y¥ and define

el = %g-"ii—% $ (1 + R%,), N}ay=min{n|R¥,> A, n =0}
v n+

F.(x) = Po(R%, < x|N}ay > n)
p(t, x) = Poo(R:;,n.H = xIRZ‘,,. =t N:;,A,‘[, >n+1)
£(t) = Po(Niay>n+ 1|Ri, =t, Niay > n).

Note that p(t, x), £(t) depend on ¢, A but are independent of ¢, n. Since the
P.-distribution of f;(X;)/fo(X;) has no atoms, £(¢) is continuous in ¢ and p(¢, x)
is continuous in ¢, x for 0 < ¢, x < A.

LEMMA 11. Let T(F) be a transformation mapping the set of probability
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measures on [0, A] into itself defined by

_[4 o(t, 2)E() dF(t)
T ="y dF (o)

Then

(i) Fp+1=T(Fp).
(ii) There exists a solution to the equation

(4) T(¢) = ¢
REMARK. For later purposes, note that T'(¥) has no atoms.

PROOF. Since
(5) Po(R*, €dx|N*s,>n+1) = Pu(R*, € dx|NXa, > n, Nia, >n + 1)

_ Po.(N}ay>n+ 1|R%, = x, Nisy > n)Puo(RE, € dx| Njsy > n)Pu(Ngay > n)
[8 P(N*ay>n+ 1| R}, = x, Njay > n)Pu(RY: € dx| N¥ay > n)Pu(Njay > n)

_ _&(x) dF,(x)
f8 E(x) dF,(x)

it follows that

_ I8 p(t, x)E(t) dF,(t) _
Fn+1(x) = fg E(t) an(t) = T(Fn)(x)-
This accounts for (i). Because of the continuity properties of p and &, clearly
T(F)(x) is a weak* continuous functional of F for any x and therefore T'(F) is a
weak* continuous transformation of F. Hence, by the Schauder-Tychonoff fixed
point theorem (cf. Dunford, Schwartz, 1958, page 456, Theorem V.10.5) there
exists a probability measure ¢ on [0, A] (actually on ((A/q)/(1 — A/q), A)) such
that T'(¢) = ¢, completing the proof of Lemma 11.

Denote by B (¥, p, ¢) the Bayesian problem analogous to the one described in
Section 2 but in which # is a random variable defined by v = R}o/(R¥, + 1/p)
where the distribution of R}, is . (It is assumed that one knows the value of vy
before taking the first observation.)

Let p =1 — g, let ¢ be a solution of (4), and choose ¥ = G where G is defined

by
(6) ’ dG(x) =

(1 + px) d¢(x)
J 1 +pt)de(t)

It is easy to see that the distribution of R}, conditional on {r > 0} is ¢. Hence,
by induction, it follows that the distribution of R, conditional on {N%4 ¢ > n,
v =k, k > n}is ¢. It follows (by conditioning on R¥,;) that E(Nfac —
v|Njae = v, v) is constant in » for » = 1.

Let 0 <c <, 0 <p <1 be such that N, is the Bayes rule for B(0, p, c).
Regard now the Bayesian problem B(G, p, c¢). Since the random value of v =
P(v = 0) is assumed to be known prior to taking observations, the Bayes rule for
the problem B(G, p, ¢) is N} 4. In a manner similar to the proof of Theorem 1,
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choose a subsequence {T%, p;, c:, ¢:, G:}i=1 such that, as i — o, p;— 0, ¢; — ¢* and
¢; converges in distribution to a limit ¢*, where ¢; is a fixed point of the
T = T; defined by A and by ¢; = 1 — p; as in (4), G; is derived from ¢; as G is
derived from ¢ in (6), and such that N¥ ¢, is the Bayes rule for the problem
B(G;, pi, ci). Note (using, for instance, Prohorov metric on the set of probability
measures on [0, A]) that T;(F) — T(F) uniformly in F where T is defined by A,
g = 1. Therefore ¢; = Ti(¢:;) =i T'(¥*) and so y* = T(¥*). It follows that y*
has no atoms. Note that G; —i_.»{*, and therefore one can imagine the sequence
of problems B(G;, p;, c;) with their respective R, o to be embedded in a probability
space in such a way that R o —52.0R%, so that N,y is the limit as i — o of
the Bayes rules N 4. Note that P(N¥ 46, = 1) = 1. Likewise, since y* has no
atoms, N¥s .« = N, andso P(N%-=1)=1.

LEMMA 12. Let

o x dy*(x) k=0
& x dy*(x) + E.N%,’
m(k) = .
Pm(NAM*Zk) E=1,2 ---.

[4 x dy*(x) + Ex-N%y’
If one uses N} 4, in the problem B(G;, pi; c;) then P(v = k| N¥ag =v) > m(k)
as i — . Also, if one uses N% 4+ instead of N} 4, in problem B(G:, p;, ¢:) then
P(v=Fk|N}y=v) > m(k)asi— .

PrOOF. Note that P(v = 0)/p; — [# x dy*(x) as i — . If one uses Nj 4,
in problem B(G;, pi, ¢;) then (by using an argument similar to the proof of
Lemma 9)

P(Niac =v)

(7 )

A
- f x dy*(x) + ExN% .
b: Y

Therefore
P(Ntag =k|v=Fk)P@ =k)
P(Nj a6 =v)

P(V = klN:;i,A,G,' = V) = i m(k)°

A similar argument applies when using N+ instead of N§; ac;.

LEMMA 13.
lim, ., L= (Espected loss using Niy- for B(Gs ps e}
1—>00 pl
= lim. 1 — {Expected loss using N a, for B(Gi, pi, ¢i)}
- bi
fA dy*(x) + E=N3 JI—- *| B (N% » — 1) E.N¥ 4
p T T M I T O T T 1 2 dy ) + BNy
4 *
& x dy*(x) - i ~ 1
¥ [4 xdy*(x) + ExN¥ lim; . E(N%y+|v = 0) [
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ProOOF. Note that

1 — {Expected loss using N for problem B(y, p, c¢)}

P
®) _P(N =)

[1-cE(N —»|N =)

For any n, the distribution of R} conditional on {N% ,« > n, v > n} is the limit
of the distribution of R}, , conditional on {N§ 46, > n, v > n} as i — . The limits
lim; . E(N% 4+ v = 0), lim;_,oE(N§ a6|v = 0) exist and are equal. One can
compute E (N} 46| v = 0) by conditioning on R o, and one can compute its limit
(as i — «) by noting (as can be shown by direct computation) that the limiting
distribution of R¥, conditional on {r = 0} has the density xdy*(x)/[§ t dy*(t).
(This is also the limiting distribution of R conditional on {r = 0}.) Therefore,
after computing E(N% - — v| NX 4~ = v) by conditioning on » and on R§ or R},
for v = 0 or v = 1, respectively, Lemma 13 follows from (8) and (7).

LEMMA 14. [§ x dy*(x)/[[§ x dy*(x) + E=N% ] = O((log A)/A) where
O((log A)/A)/((log A)/A) remains bounded as A — .

ProoF. Since R}y = (1 + R}¥)fi(Xpn+1)/fo(Xn+1), it follows that E..(R}1| Fy)
=1+ R}, and therefore R} — n is a P.-martingale with expectation E.(R} — n)
= E.R§ = [§ x dy*(x).

From the optional sampling theorem it now follows that [§ x dy*(x) =
EmR}"vz'W_ — E.N}+. Hence [§ x dy*(x) + EoN} y» = EwR,’f,h_ = A.

By a method analogous to the proof of Lemma 5, one can show that for all n
V*(x) = Po(R} < x| N5y~ > n)
= P.(R} = x) —pow im0 Px(R, = x) = P(H; = x)

where the limit follows from the fact that R} — R, = R§ exp{}>%; Z;} > 0 a.s. P
as n — o, Hence

A A x A
f x dy*(x) = f [1 - f dn//*(t)] dx = f P(H, > x) dx.
0 0 0 ()

By Kesten (1973), Theorem 5, xP(H; > x) — 1 as x — oo,
It follows that lim_,. [§ x dy*(x)/log A < 1, from which Lemma 14 follows.

To prove Theorem 2, note that forall 1 = v <
E.(N%y — v| N3y = ») = E;(Ny- — 1).
Suppose there existed a sequence {A;}j~;, Aj — © as j — o, and a sequence of
stopping rules {M;};Z, such that P(M; = 1) = 1, E.M; = ExN} . (where ¢} is

the y* of A;) and that there existed n > 0 such that sup;<,<wEu(M; — v| M; = v)
< E:(N%,y; — 1) — n. Without loss of generality, one can assume (by defining
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R$* to be distributed as R§ and to be independent of R§, R%o,i=1,2, ---, and
applying M; to the sequence R3*, X;, X,, ---) that M; is independent of R§,
Rio,i=1,2,---.

Note that

/

Niy, =Ny =< min~ln

maXi<g=<n

A, -, A(X) A}
f(Xa), -+, foXa) ~

which is Page’s stopping rule. Hence (cf. Lorden, 1971) E;N% ,» = O(log A),
where O(log A)/log A remains bounded and bounded away from zero as A — .
By Lemma 14, [§ x dy*(x)/[[§ x dy*(x) + E.N% -] = O((log A)/A), and so, for
large enough j,

4, 4
J n
£ x d‘bf(x)/[‘[ X d‘ﬁ;‘(x) + EooN:j,lﬁj‘:, < EIN:J,",,;'

Letting {p;, G;, c;}i1 be as in Lemma 12 for A = A;, note that when using M; in
problem B(G;, p;, ¢;)
EM;—v|M;=v)
= E(M; — v|M; = v> 0)P(M; = v> 0) + E(M;|v = 0)P(y = 0)

. E.M;
e lime e B = v 1 M; 2 v > 0) e,
- _ J& x dyf (x)
TR EM =1y = D) )+ Bl
[& x dy}(x)
* . 1) —
< El( AjY; 1) n + J‘g‘, x d‘l/;k(x) + EooM]
[8 x dy) (%)
* . —
S E(NZy; —1) —n+ Jo x dyf (x) + E-NJ
A; *
. 3 B x o’ X dl,b] (x)
= El(NAj,,ﬁj 1) ElNAj"i’j _"6‘;‘ x d‘p;"(x) + EmN:j,wj
J& x dyf (x)
8 xdy)(x) + EoN3 .y

E.N ﬁj,,;;
% x Y} (x) + EoNjy

= Ei(N3,y;— 1)

< liminwE (Nys — v| Niys = v).

It would follow that if j and i are large enough, M; would do better than the Bayes
rule N 4g for problem B(G;, p;, c;), which obviously cannot be the case.
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Therefore
limg e [SUP1<y<a E(NE yr = v) -
- inf;MENNZENN;W.Isuplsv@E(N —-v|N=vp)]=0.
To complete the proof of Theorem 2, it is only left to establish a connection
between B and A.

LEMMA 15. Let 6 = A/(1 — A) and let P* denote the P-distribution of the
sequence R§, RY, RS, - - - given that R = x. There exists 6 < x < A and a constant
0 < w such that forall0 = n < x

P*(N% > n) = wPN% > n)

where N = min{n|n=0, R} = A}.

PROOF. There exists 6 < x < A, 0 < w such that
P4{R, < A} — P¥R, < x)/P}R, > x) = w.
Now

PNi>n+1)
P*(N% > n)

©

X, * * z *
=f P*(N% > n, Rt € dz)P*(R?} <A) . pagr<a)> o0,
[0,4)

P*N% > n)
Also,
P¥N% <= n+ 1) = PRt = x)P*(N% < n) + PR} < x)P*(N% < n)
= PR} = x)P*(N% < n) + PR} <x)
[PXN)=n+1) — P(N%=n+1)].

Therefore
8 * <
PN <n+1) = P*(N%=<n)— %—E—; PN =n+1)
or
" PYR¥ < x)
P“(N,*;>n+1)5P(N;§>n)+mP"(NX=n+l).
Thus by (9)

PNi>n) P(Nj>n+1) P'Ri<x) PPNit=n+1)
Pi(N%>n)~ PYN%>n) P¥R}¥ =x) PYN%>n)
PRf<zx) _ y

P¥R¥ = x)

= PARI< A) —
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This concludes the proof of Lemma 15. (This proof is due to David Siegmund.)
Note that the proof utilized only the monotonicity properties of R}.

LEMMA 16. If T(¢1) = ¢1 and T(¢2) = ¢2 (for T defined as in Lemma 11)
then [§ £(t) dg:(t) = [§ £(t) dea(t).

PROOF. Suppose without loss of generality that [§ £(¢) do.(t) > [§ £(t)
d¢s(t). Note that the P.-distributions of N, are geometric (p;=1— [ 8 £(t)
d¢;(t)) respectively, i = 1, 2. Using the notation of Lemma 15, letting x and w be
as in Lemma 15, it follows that for all n = 1,

A n
< A £(t) d¢2(2)> = Pu(N%g4, > n) = ¢p2(x)P*(NA>n—1)

> g3 (X)P*(N% > n) = ¢y (x)wP (N% > n)

A n
= ¢o(x)wPo(N% 4, > n) = ¢2(x)w<f £(t) d¢1(t)) .

Since clearly ¢,(x) > 0, this will be violated for large enough n if [§ £(t) d¢:(t)
> [§ £(t) do2(t) as supposed above.
The following lemma will conclude the proof of Theorem 2.

LEMMA 17. (i) EoN% ,is the same for all measures ¢ satisfying T(¢) =

(ii) Let {¢a}, A/(1 — A) < A < o, be a set of measures satisfying Ta(¢a) = da
(where T, is the T of Lemma 11 for the value A). Then E.N3},, is a continuous
function of A, ranging from 1 to  as A ranges from A/(1 — A) to oo.

PRrROOF. Since the P.-distribution of N% , is geometric with parameter p =1
— [8 £(t) d¢(t), (i) follows from Lemma 16.

Let A/(1 — A) < Ay < =, and suppose that 4;, i = 1, 2, --- is a sequence
converging to Ao. Let ¢;, j =1, 2, - be a converging sequence of probability
measures on [0, A;] satlsfylng ¢ = TA (¢;;), where {A;}72, is a subsequence of
{A;}Z1. Denote the limiting measure by I. It is easy to see (again by employing
Prohorov metric) that there exists A* = A, such that TA (F) =) TAO(F )
uniformly in F whose support is contained in [0, A*]. It follows that Ty, (T) =
and that i

A, Ag
J; £a,(t) d¢i,(t)—->£ £a,(t) dT'(2)

(£a(t) is the function &£(t) indexed by the A to which it corresponds), so that
E.N. ‘*"‘f"’"}- —j—w E«N%,r. Therefore (by virtue of (i)) E=N%,, is continuous in A.

Clearly, E.N%,, — 1 as A — A/(1 — A), and (by Lemma 14 and its proof)
E.Njy, > ®as A — o,

This completes the proof of Theorem 2.

If the P.-distribution of f,(X;)/fo(X1) has atoms, a similar result holds. What
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remains to be shown (so that the proof of Theorem 2 could be carried through)
is basically that there exists a solution to (4). This can be shown by a continuity
argument. Assume first that there are at least 2 atoms. Since the number of
atoms is countable, one can assume without loss of generality that these atoms
are at the x;-points 1, 2, .., nor 1, 2, ---, where all the atoms are different,
and all of the rest of the mass is concentrated on (—o, 0]. Define {U;, U}z to
be independent among themselves and independent of X;, X;, - .., where Uy;
are Normal(0, ¢2) variables conditioned on being in [0, 1] and U,; are Normal(0,
o2) variables conditioned on being in [—1, 1].
Define (where possibly n = ):

X; if X;=<0
Xi + Uli if X,’ =1
Xi + Ugi if 1< X; <n
Xi - Uli if Xi =n.

Y,'=

The P.-distribution of the likelihood ratio of Y; has no atoms. Clearly, Y; —
X; a.s. as ¢ — 0. It is not difficult to see that one can choose a sequence s; \y 0
such that the respective N} -type rules with expected P.-stopping time B con-
verges a.s. P,, v = 0, to a rule of a form similar to that described in Theorem 2.
From this convergence one gets the existence of a solution ¢ to (4). The property
that possibly does not hold using the above argument is the fact that ¢ may have
atoms, so the rule may randomize in case R, = A. A continuity argument shows
the resulting rule to be a Bayes risk-efficient limit of Bayes rules. The details are
omitted.

If the P.-distribution of f1(X1)/fo(X1) has exactly one atom (and is of mass
less than one), assume, without loss of generality, that the atom is at x, = 1 and
all of the rest of the mass is concentrated on (—, 0]. Let {Uy;}2, be independent

and independent of X;, X;, - - - ; Uy; being Normal(0, ¢2) variables conditioned
in [0, 1]. Let 2z be such that P (f1(X1)/fo(X1) € (z — ¢, 2+ ¢)) > 0 for all ¢ > 0,
where z # f,(1)/fo(1).

Define

1-U;, if X;=1
Y; =3 Uy if Xi<0, (A(X)/fo(X) E(z—¢2+¢)
X; if Xi<0, (L(X)/fo(Xi)) & (z—¢, 2+ ¢).

An argument, similar to the above can be carried through by decreasing ¢ and o.

As a consequence, we get Theorem 3, where N%%. is a stopping rule defined
like N} ,« of Theorem 2, with the added possibility of randomizing as to whether
to stop or continue sampling when R} = A.

THEOREM 3. Let fy and f; be such that
E.[(fi(X1)/fo(Xi)log*(f1(X1)/fo(X1))] < .

For every 1 < B < o there exists a value A, A/(1 — A) < A < o, and a measure
¥* such that B = E.N}%« and such that if N is any stopping time which satisfies
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E.N = B then
SUP1s,<w B, (N = v N = v) = sup1<,<uE, (NSy — v NXY = v) + 0(1)

where 0(1) —» 0 as B — .

REMARKS. Under additional technical assumptions, the solution of (4) can
be shown to be unique, and for any probability F on [0, A], T™(F) converges as
n — o to this solution. The methods required are those of Theorem 6.3 of Krein
and Rutman (1948) and its proof. These assumptions hold, for instance, if f, and
f1are N(0, 1) and N(0, 1) densities, respectively.

The requirement that

E.[(f,(X1)/fo(XiDlog" (f1(X1) /fo(X1))] <

was used only in the proof of Lemma 14, enabling application of Theorem 5 of
Kesten (1973).

4. Examples. It is generally difficult to find explicitly the measures y* of
Theorem 2 and Theorem 3. We discuss here two examples, one a discrete case
(Bernoulli random variables) and one continuous (exponential), in which some
solutions are presented and difficulties in obtaining a general solution are made
apparent. For most other examples—even when the random variables are nor-
mal—an explicit solution is not apparent.

EXAMPLE 1. Suppose X; are Bernoulli variables, fo(x) = p§qi™*, fi(x) =
pigi ™, x =0, 1. Suppose p; > po. Then

filx) pigi* @ <p1qo)’

fox) ~ PEG go \pot

6=A4/(1—A) =37 (@1/90)" = a1/(qo — q1)-
Let A =4. Regard Nf,,.Foro<t,x <A

X,
- 41 P19o = Qo _x P19
o(t, x)&(t) Pw[qo<poq1> 1+t =< x] Pw[ 1< log(ql 1+ t) / log<p0ql):,

{ 1 if pi/po==x/(1+1¢t)

g0 if qi/qo = x/(1 +t) < (p1/Po)
0 if x/(1+1t)<qi/qo

1 if pi/po<A/(1+ 1)
Eit) =19 q if qi/go <= A/(1 +t) < pi/po
0 if A/(1+1t)<q/qo

quJ<x&)— l,x@— IJ] +F<x29— 1)

l b1 qQ1 J D1

qOFl<A’—’9—1,A92— 1]1 +F<A@— 1>'
‘ P qQ1 J b1

T(F)(x) =
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We want to solve F = T'(F). Clearly the solution must be fully concentrated
on {6} if A < (p1/Po)(go/(go — q1)).

Suppose now that
(10) (P1/P0)(go/(go — @1)) < A < (P190/P0g1)(g0/(qo — q1)) — 1.
Let w denote the denominator of T'(F). For
(11) d=x=(q/9)A+1) (= (p1/Po)(q/(qo — q1)))

solving for F = T'(F) yields
(w/qo)F(x) = F(x(go/q1) — 1)

(for x satisfying (11)). Hence F(5) = 0 (unless w = go, which cannot be the case
for A satisfying (10)). Set y = xqo/q: — 1; i.e. x = (¥ + 1)q1/qo. It follows that for
b=y<A

(12) F((q1/90)(y + 1)) = (go/w)F(y).

For

(13) (@1/90)(A + 1) = x = (p1/Po)(qo/(q0 — q1))
solving for F = T'(F) yields

(14) F(x) = qo/w

(for x satisfying (13)). Let a; = (A + 1)q1/qo, b1 = (P1/P0)q0/(go — q1), and define
recursively fori =2, 3, - - - @; = (ai—1 + 1)q1/qo, b: = (b;-1 + 1)q1/qo. Applying (12)
to (14) recursively yields

F(x) = (go/w)*

for a; = x < b; (see Figure 1). For

(15) (P1/Po)(qo/(go — q1)) = x < A
solving for F = T'(F) yields
(16) F(x) = [go + poF (x(po/p1) — D]/w

(for x satisfying (15)). Applying (16), one is able to partially fill the void in Figure
1 for x satisfying (15) by a series of horizontal lines analogous to those in Figure
1. One similarly partially fills the void for b, <x < a;, i =1, 2, - - - by employing
(12). The voids still remaining are partially filled, recursively, in an analogous
manner. Thus one arrives at an expression for F in terms of w. In particular, one
arrives at an expression for F(Apy/p, — 1) in terms of w, so that setting x = A in
(16) yields a solution for w. (For sample, if py = Y5, p; = %,

A =[(p190)/(Poq1)1qo/(go — q1) — 1,

a short calculation shows that Apy/p, — 1 = a, = by, so that F(Apy/p; — 1) =
F(az) = (go/w)?. Applying this to (16) gets w to be the positive solution of w? —
%w? — 4/27 = 0.) One can show that the solution y* of F = T'(F) is continuous,
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F(x)
1+ -
AR

2

@/ T I

(ag/m)° -

0 t H—— t 1 1 x
1 § aSbS a, b, a bl A

Fic. 1.

and so N4y = N4y and the rule requires no randomization (whether to stop
or continue sampling) when R} = A. If A = (p1/Po)qo/(qo — q1) then go/w =1 so
a solution ¢* of F = T(F) must be concentrated on {4}. (Note that this ¢* is
actually not a solution when regarding N7 4 -, but is a solution when regarding
N ».) So again the rule does not randomize on {R} = A}.

When B is such that to satisfy B = E..N}%« one has to choose A = §, one may
have to randomize on {R} = A = §}.

EXAMPLE 2. fo(x) = e™*1(x > 0), fi(x) = e *1(x > 0), 6 > 1. Here
fi(x)/fo(x) = 0 exp{(1 — 8)x} for x > 0. Hence, A = 0. So:

1 1 «x
= 1-0X, - L
p(t, x)E(t) = Pw(fe 1+1¢) =<x) Pw<X1 = 11— log 01+ t)

1 x \YeV
=|-— Al
(0 1+ t)

1 A 1/(6-1)
E(t) = <5 1+: t) Al

Hence, for F concentrated on [0, A],
T(F)(x)

_ ((1/0)x) ™ [fame—nvo (1/( + )V dF(t) + F((1/6)x — 1)
T (1/0)A)D [uma-nve (L/(L + £)VO7V dF(t) + F((1/6)A — 1)

Thus, if 0 <A <6 and 0 < x < A then
T(F)(x) = ((x/A))V¢D
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and so
0 if x<0
v*(x) = ](x/A)l/“’"” if 0sx<A
if A=<aux.

For larger values of A, a method similar in nature to that employed in Example
1 may be employed. For 6 < 1 an explicit solution is not apparent.

5. Remarks.

1. Theorem 2 and Theorem 3 are an improvement of the result of Lor-
den (1971), who computed the minmax value up to a o(log B) term, where
o(log B)/log B — 0 as B — «. See also Remark 3 in the sequel.

2. The analogs of the statistics R, and the stopping rule N, presented in this
article can be applied to much more general situations. In general, suppose
P, and {P,};=, are probability measures on the sample space of X;, X;, X,

. such that the marginal P,-distribution of X;, ---, X,—; is equal to the
marginal P.-distribution of X, ---, X, for all 1 < » < ». Let R}, =
Yi g Y 4P (X, -+, X,)/dPu(Xy, -+ -, X,), let R% = Rf, and suppose
v ~ Geometric (p), p = 1 — q. Then it is still true that P(v < n| &) =
R!./(Rt, + 1/p). Hence N4 = min{n|R} = A} is the limit as p — o« of
min{n | P(»r < n|%,) = pA}. While this in general may not be a limit of Bayes
rules, under certain circumstances it may still be a good procedure.

As an example, consider the problem considered in Section 2 in the more
" practical case that fo is known but f; is not. Suppose it can be assumed that f
belongs to a subset of a parametric family {f;}sco, and suppose that J is a prior
on ©. Then R? becomes a mixture-type analog of R,. It can be shown that the
resulting rules N are optimal in the sense of Pollak (1978).

3. It is of practical importance to evaluate the operating characteristics of the
proposed rules. As in the proof of Lemma 14, it can be shown that Rt—nisa
P.-martingale with zero expectation, so that E.N% = E.R% %, = A may hold. A
better approximation may be obtained by evaluating the overshoot R”A/A This
is done in Pollak (1983) for the stopping rules N4 considered in Section 2 and
their mixture-type analogs. Operating characteristics of the average run length
after a change occurs are also derived in Pollak (1983), and these can be used to
obtain explicit expressions for the asymptotic minmax value of N of Section 2.

4. A theory for Brownian motion is presented in Pollak and Siegmund (1984).
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