CORRECTIONS

THE N^{-2}-ORDER MEAN SQUARED ERRORS OF THE MAXIMUM LIKELIHOOD AND THE MINIMUM LOGIT CHI-SQUARED ESTIMATOR

BY TAKESHI AMEMIYA

It was pointed out by Linda Davis that equation (30) should read

$$E
\nu_i\nu_j = \frac{1}{2} \sum \sum \frac{\partial^2 \beta_i}{\partial r_i \partial r_j} \frac{\partial^2 \beta_j}{\partial r_i \partial r_j} \frac{P_t(1 - P_t)}{n_t} \frac{P_t(1 - P_t)}{n_t}$$

$$+ \frac{1}{4} \left[\sum \frac{\partial^2 \beta_i}{\partial r_i^2} \frac{P_t(1 - P_t)}{n_t} \left[\sum \frac{\partial^2 \beta_j}{\partial r_j^2} \frac{P_t(1 - P_t)}{n_t} \right] \right]$$

$$= 2m_{ij} + m_{ij}.$$

This change implies that one should add

$$\frac{1}{4}(X' D_1 X)^{-1} X' D_2 (\hat{A} - \hat{A}) D_2 X (X' D_1 X)^{-1}$$

to the right-hand side of equations (34), (70), and (76), which define MSE_1, CMSE_1, and DMSE_1 respectively. Consequently, one should subtract the same term from the right-hand side of equation (72).

Since the term given above is a nonnegative definite matrix, all the conclusions of the paper are unchanged. (In fact, they are slightly strengthened.)

Department of Economics
Stanford University
Stanford, California 94305

Received January 1984.