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BAYESIAN NONPARAMETRIC INFERENCE FOR QUANTAL
RESPONSE DATA

By LARRY P. AMMANN

The University of Texas at Dallas

The problem of nonparametric Bayes estimation of a tolerance distribu-
tion based on quantal response data has been considered previously with a
prior distribution based on the Dirichlet process. In the present article, a
broad class of priors is developed for this problem by allowing the hazard
function of the tolerance distribution to be a realization of a nonnegative
stochastic process with independent increments. This class includes the
Dirichlet prior as a special case. In addition, priors over a space of absolutely
continuous tolerance distributions, which includes IFR, DFR, and U-shaped
failure rate distributions, are constructed by taking the'failure rate to be the
superposition of two processes with independent increments. Posterior La-
place transforms of the corresponding processes are obtained based on quantal
response data with binomial sampling. These posterior Laplace transforms
are then used to find Bayes estimates, and examples are given to illustrate
the results.

1. Introduction. Recently, Bhattacharya (1981) and others have consid-
ered the problem of determining the posterior distributions of a Dirichlet process
from quantal response data to estimate the distribution of the tolerance level to
some drug in a population. As shown by Antoniak (1974), these posteriors are
complicated mixtures of Dirichlet processes. Bhattacharya (1981) was able to
express the finite-dimensional posterior distributions in terms of Markov chains
which were then used to obtain the asymptotic posterior distributions.

In a reliability application, Doksum (1974) and Ferguson and Phadia (1979)
constructed priors over a space of life distributions by taking the hazard function
to be a completely random measure (called by Doksum a process neutral to the
right). This results in priors over purely atomic life distributions. Dykstra and
Laud (1981) constructed priors over a space of absolutely continuous life distri-
butions by taking the failure rate function to be a completely random measure.
Because the sample paths of such processes are nondecreasing a.s., the resulting
life distributions are IFR. In the present article, the approaches of Doksum,
Ferguson and Phadia, and Dykstra and Laud are used for the problem of Bayesian
nonparametric inference of tolerance distributions based on quantal response
data.

Section 2 discusses the model in which the hazard function is a completely
random measure. This includes the special case in which the tolerance distribu-
tion has a Dirichlet process prior. Posterior Laplace transforms of the hazard
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function are obtained for binomial sampling, and Bayes estimates are obtained
under squared error loss. These estimates are evaluated for the Dirichlet process
prior and for the prior in which the hazard function is a gamma process.

In Section 3, the approach of Dykstra and Laud (1981) is expanded to include
IFR, DFR, and U-shaped failure rate tolerance distributions by taking the failure
rate function to be the superposition of two independent processes, one with
nondecreasing sample paths and the other with nonincreasing sample paths.
Joint posterior Laplace transforms of thesé processes are obtained for binomial
sampling. These posterior Laplace transforms are then used to obtain Bayes
estimates of the failure rate function, and an example is given to illustrate the
evaluation of these estimates.

Specifically, let X denote the tolerance level of an individual to a drug and let
F denote the population distribution function of X. The hazard function of F is
defined to be

H(t) = —log(1 — F(t)),

and the failure rate function, when it exists, is defined to be
a
h(t) = —: .
(t) o H(t)

Fix m dosage levels, 0 < z; < --- < z,, and for convenience, set zo = 0. Under
binomial sampling, r; individuals are randomly assigned to level z;. This sampling
scheme is denoted by B(r, z).

2. Random hazard functions. Ferguson and Phadia (1979) developed
Bayesian nonparametric methods for some reliabilty problems by taking the
hazard function H to be a nonnegative stochastic process with independent
increments that has no deterministic component. Such processes generate ran-
dom measures called completely random measures by Kingman (1967). In what
follows, no notational distinction will be made between the stochastic process
with independent increments and the generated random measure.

It is well-known that such processes, H, are infinitely divisible, and so their
Laplace transforms have the special form given by

V(g) = Eiexp{— J; g(t)H(dt)} = expllJ; J; (e7"® — 1)Q(dv, dt)},

where £ is a Borel-measurable function on [0, ®) and Q is a measure on (0, ®) X
[0, ) that satisfies

(2.1) fo (v /\ 1)Q(dv, A) < «

for every compact Borel set A C [0, ), where a A b = min(a, b). The measure @
is called the Lévy measure of H. See Kallenberg (1976) for a thorough discussion
of infinitely divisible processes.
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For the binomial sampling scheme, define U; to be the number of survivors at
dosage 2z, 1 <j < m. Then

P(U, = ky, "'yUm=km|H)

(2.2) .
=Tnle e Tl (<) < >exp{— Zio1 (k + nj)H(z)},

where
(k n) H,’"l (r)[kInt(r; — k; — n)'] 7%

In order to obtain the posterior Laplace transform of H given the complete
observations, ‘

(Ul=k1) "'yUm=km);

>

define a functional uy by
(2.3) wu(§ k) = EP(Uy =k, -+, Un = Ral H)exp{—J; £(t)H(dt)}-

Note that if £, denotes the zero function, then

pu(Eo; K) = P(Ur = ky, -+, Un = kn).
Hence, the posterior Laplace transform of H is given by
(2.4) mu (& K)/un(&o; k).

This posterior Laplace transform can be evaluated from Theorem 1.

THEOREM 1. Under the B(r, z) sampling scheme,
un(E k) = Yot o St (—1) ( ) V(£ + f),

where,

‘Z_j(k+nl), z1<t=z,l=sj=<m,

£(t; 2k, m) = T

?

The posterior Laplace transform of H for the special case in which no failures
have been observed at all dosage levels can also be obtained from Theorem 3 of
Ferguson and Phadia (1979) by noting that

P(U;=rj|H) = P(X(1) >z, ---, X(ry) > 2| H),

where X(1), ---, X(r)) are i.i.d. random variables with hazard function H and
represent the tolerance levels of the r; individuals who were exposed to, and
survived, dosage level z;. Theorem 1 can also be applied to a sequential sampling
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scheme in which individuals are assigned to the dosage levels until a specified
number of failures have been observed.

To complete this section, Theorem 1 is applied to an estimation problem.
Suppose that the loss function has the form

LH, A) = f [H(t) - HO*W(db),
0
where W is a measure which satisfies
f var H(t) W(dt) < o.
0

The Bayes estimate of H(s) for this loss function is the mean of H(s) with
respect to the posterior distribution. This estimate can-be obtained from Theorem
1 by setting

lo, 0<t=<s,

ED =10 ¢>s,

and then evaluating the derivative of the posterior Laplace transform with respect
to 6 at 6 = 0. The Bayes estimate, H(s), based on B(r; z) sampling is given by

2 e 2 (_1)n<k,rn> j(: J(: Ue—vf(t;z,k,n)Q(dU’ dt)\I/(f)

O=nj=rj—k;

(25) H(s) =
D) (—1)"<kfn>\1/(f)

O0=n;j=r,—k,

Bayes estimates for other loss functions can also be obtained from (2.4) and
Theorem 1. Suppose for example, that the loss function has the form

L(F, F) = f (F(¢) = F()*W(dy),
where W is a finite measure, Then the Bayes estimate is
F(s) =1 - E@"|U = k),
which can be obtained from (2.4) and Theorem 1 by setting

1, o=t=s,

£@t) = o, t>s.

ExAMPLES. As noted by Ferguson (1974), the Dirichlet process prior for F
can be obtained by taking H to have Lévy measure

Q(dv, dt) = e Vle®=«®(1 — o=%)"1(dt) db,
where a(t) is a nondecreasing function with «(0) = 0 and a(t) — a(R) < .
From Lemma 1 of Ferguson (1974),
i I'a(R) — a(zi-1))T(a(R) — a(z) + ¢;)
. 4 = ]|
(26) =5 G®) — @) M @®) - at) + )
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where
Cj = E:lj (k, + ni).
Also,

( ff ve UEzkmo) (dy, dt)
2.7) 0 o

= Yo [dia(R) = a(sji-1) + ¢) — di(a(R) — a(s;) + ¢))],

where sy, - - -, 5,,4; denote the ordered values of s, z,, - - - , 2,,, r denotes the rank
of s in this set, ¢.+1 = 0, and di denotes the digamma function,

. 0
di(a) = ™ logT' (1) |u=q-

The Bayes estimate of H can be evaluated lpy substituting (2.6) and (2.7) into
(2.5). Bhattacharya (1981) has expressed H in terms of Markov chains and
obtained large sample approximations for this estimate.

An alternative prior to the Dirichlet process can be obtained by allowing H to
be a gamma process. This process has Lévy measure given by

Q(dv, dt) = ve"Pa(dt) dv,

where 8 > 0 and «(t) is a nondecreasing function with «(0) = 0, a(t) —  as ¢
— o, In this case,

Ee ") = (1+ 06)—"(8)’ EH(s) = a(s)ﬁ, var H(s) = a(s)ﬁ2.
Also,
(2.8) V(f) =TI, (1 + Bey) lmta-0),

and

(2.9) f | f ve™Q(dv, dt) = 35, B(1 + ) [as) — also))

The Bayes estimates for the gamma process prior can be obtained by substituting
(2.8) and (2.9) into (2.5). To implement this prior, the statistician can specify
the expected prior hazard function, H,(t), and the variance of the prior hazard
function, o*(t), by
Hy(t) = a(t)B, o*(t) = a(t)B* = BHy(¢).
Note that in this case the coefficient of variation,
o(t)/Ho(t) = B’ [Ho(t)]? —> o as t— 0.

This implies that the relative uncertainty regarding the hazard function (and
hence the tolerance distribution) is high for low dosage levels, which is often the
case in applications.

3. Random failure rates. Since the processes used to generate priors in
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the preceding section are purely atomic, then the resulting tolerance distributions
are discrete with probability one. In a reliability application, Dykstra and Laud
(1981) constructed priors over a space of absolutely continuous life distributions
by taking the failure rate function to be a gamma process. Since the sample paths
of gamma processes are nondecreasing a.s., then this prior chooses IFR tolerance
distributions a.s. In this section the approach of Dykstra and Laud is expanded
to include IFR, DFR, and U-shaped failure rate tolerance distributions by taking
the failure rate to be the superposition of two completely random measures.
Specifically, let X; and X, be two independent completely random measures with
Lévy measures @, and @, respectively, where @, satisfies (2.1) and Q, satisfies

(3.1) f (v A 1)@s(dv, [0, ®)) < .
0
Note that (3.1) implies that X5[0, ©) < ® a.s. Next, let the failure rate of the
tolerance distribution be given by
(3.2) h(t) = X,[0, t] + Xa(t, ).

Here X, represents the increasing component of the failure rate and X, represents
the decreasing component.
Under B(r, z) sampling,

P(U1=k1, Tty Um=km|X1, Xz)

(33) ri—k; ro,—k r ] m K |
= Zn1=0 e En”,:.=0m (_1)n<k’ n) eXpl_Zj=l (kj + nj) o h(t) dtl

As in Section 2, define a functional u, by
pi2(€1, £o; K) = EP(Uy =Ry, -+, Un = kn| X1, Xo)

-exp{—- fo & (t) X, (dt) — J(: Ez(t)Xz(dt)}-
For the purpose of evaluating this functional, define g, and g, by
gl(t; z, ky n) = Z;’.’—_l (kj + nj)(zj - t)+7
&(t; z, k, m) = 371, (ki + nj)(z A t),

where a* = max(a, 0).

THEOREM 2. The joint posterior Laplace transform of X, and X, under
B(r, z) sampling is given by

#1,2(51, &5 k)/ﬂl,z(fo, &o; k),
where

(34)  malt, 2 k) = SpTh .o ymh (—1)"<k

and ¥; denotes the Laplace transform of X;,1 =1, 2.

r

n>\I/1(51 + g1)¥2(&: + 82,



642 LARRY AMMANN

PROOF. The proof follows directly from (3.3) by noting that

E exp;—Zﬁl (k + ny) J;J h(t) dt - fo £(1)Xi(dt) — J; Ez(t)Xz(dt)=

=k exp{+z;"=1 (kj + n;) Uofo X, (ds) dt + fof X;(ds) dt]
- j; £(8)X,(dt) — J{: Ez(t)Xz(dt)ll
=E exp{—Z}';l (ki + ny) [J; (z = s)*Xl(ds)‘ + J(: (z A t)XQ(ds)}

—J; El(t)Xl(dt)—L Ez(t)Xz(dt)}

=V, (& + 8)Va(& + ).

The interchange of integrals above is justified by Tonelli’s Theorem (see Royden,
1968, page 270).

This posterior Laplace transform is next applied to an estimation problem.
Supposeé that the loss function for h satisfies

L(h, ii)=f0 (h(t) — h(t)]2W(dt).

Then the Bayes estimate of h is

h(s) = E(h(s) | Uy = ku, -+, Up = k).
This estimate can be obtained from Theorem 2 by setting
p _]0, OStSs, _lO, 0=st=<s,
&i(t) = IO» t> s, &(t) = |0’ t>s,

and then evaluating the derivative of the posterior Laplace transform with respect
to 0 at 6 = 0, This gives

he) =3 .. 3 (_1)n<krn)

7

[ f f ve 41Q, (dv, dt) + f f ve29Q, (dv, dt)}
0 0 s 0

r

‘ifl(gl)‘Pz(gz)[Z S ) (_1)n<k n)‘l’l(gl)‘l’z(g2)]_1-
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ExaMPLE. Let X; and X, be independent gamma processes with Lévy meas-
ures

Q. (dv, dt) = av~le~""dt dv,
Q. (dv, dt) = a~'e~(1 + t)~2dt dv,

where «, 8, A, 6 > 0. Note that @, satisfies (3.1). Now, if 2, <s=<z,1<r=m,
then

f‘ f v exp{—vg: (t)}@:(dv, dt)
=a Y ci'log(l + B I, (ki + ny)(z — 2i1))
—log(1 + B X7 (ki + n)(z — 2)))]
+ aci'[log(l + B X0, (R + nj)(z, — 2-1))

—log(1 + B8 X ,.7 (K, + ny)(z; — s))],
and if s > z,,, then

J; J; v exp{—ug: (t)}@ (dv, dt)
= a S, ¢i'llog(l + B X7 (ki + 1m))(z, = 2i-1))

—log(1 + B8 X2, (ki + nj)(z — 2))] + aB(s — 2m).
Also,

¥.(g) = expl—a S7, | logll + B £7 (kb + my)(z — £)dt},

2

which can be evaluated from the indefinite integral,
f log(a + bx)dx = b7 '[(a + bx)log(a + bx) — (a + bx)].
Finally, note that if z,_, <s < z,,1 = r < m, then

f J; v exp{—vgx(t)}Q=(dv, dt)

=NEL | S[1 46 XT) (ki + )z + deit] ML + t)dt

+ N[l + 6 X7, (B + 1)zl (1 + 2,) 7

where u,_; = s, u; = 2z, r < j = m. This can be evaluated from the indefinite
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integral,

(a — b)? f (@ + bt) ™1 + t) 2 dt = b%log(a + bt) — (a — 2b)(1 + )"
+bt(1+¢t)'—blog(l+t), a#b.

If s = z,,, then

f l: v exp{—vga (t)}Q:(dv, dt) = N6(1 + 2,) ' [1 + 8 X2, (ki + nj)z] 7L

Also,

z2,

Vo(g,) = exp{—)\ i, log[1 + & Zj: (kj‘+ n;)z + ocit](1 + t)~2dt

+5a+agﬂ%u+azﬁm@+mmﬂ,

which can be evaluated from the indefinite integral,

f (1 + t)%log(a + bt) dt

=bm—br%41+t

a+ bt

) — (1 + t)7'log(a + bt), a#b,

For this example, the expected failure rate, hy(t), satisfies
ho(t) = EXi[0, s] + EX,(s, ©) = afs + Ao(1 + s)7,

so that if A6 > «f, then hy(s) initially decreases but eventually increases.
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