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A LAW OF THE ITERATED LOGARITHM FOR
NONPARAMETRIC REGRESSION FUNCTION ESTIMATORS!

BY WOLFGANG HARDLE

Universitat Heidelberg

We study the estimation of a regression function by two classes of
estimators, the Nadaraya-Watson Kernel type estimators and the orthogonal
polynomial estimators. We obtain sharp pointwise rates of strong consistency
by establishing laws of the iterated logarithm for the two classes of estimators.
These results parallel those of Hall (1981) on density estimation and extend
those of Noda (1976) on strong consistency of kernel regression estimators.

1. Introduction and background. Let (X, V), (X, Y),i=1,2, --- be
i.i.d. bivariate random variables with common joint distribution F(x, y) and
joint density f(x, ¥). Let fx(x) be the marginal density of X and let m(x) =
E(Y|X =x) = [ yf(x, y) dy/fx(x) be the regression of Y on X. In the present
paper we obtain sharp pointwise rates of strong consistency for the following
type of regression estimator

(L1) Ma(x) = 7' T2y Ko (x5 X)) Y

where {K,: r € I} denotes a sequence of “delta functions” (or kernel sequence).

Many nonparametric estimators of m(x) have this form, for instance, the
Nadaraya-Watson kernel estimator (more generally estimators based on delta
function sequences, as introduced by Watson and Leadbetter, 1964) or orthogonal
polynomial estimators.

Nadaraya (1964) and Watson (1964) independently introduced a kernel type
variant of (1.1) and demonstrated weak pointwise consistency. Rosenblatt (1969)
obtained the bias, variance and asymptotic distribution of kernel type regression
estimators. Schuster (1972) and Johnston (1979) demonstrated the multivariate
normality at a finite number of distinct points. The strong pointwise consistency
(without rates) of the Nadaraya-Watson estimator was shown by Noda (1976).
For this particular kernel type estimator Collomb (1979) gave necessary and
sufficient conditions on the sequence {K,,} for strong consistency of m,. Stone
(1977) gave general conditions on the weights K, (x; X;) for m,(x) to be consistent
in L, i.e. for E|m,(X) — m(X)|" — 0. From his conditions, however, it is not
clear when ‘the Nadaraya-Watson kernel sequence is consistent (Stone, 1977,
page 607).

Recently, Schuster and Yakowitz (1979) derived uniform consistency on a
finite interval for a kernel type estimator. Wandl (1980) and Johnston (1982)
studied the global deviation and Revesz (1979) obtained analogous results includ-
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ing nearest neighbor regression estimators. In addition, Wandl (1980) obtained
rates of uniform consistency, but under the rather restrictive assumption that
the marginal distribution of Y has bounded support. The assumptions in Mack
and Silverman (1982), who show weak and strong uniform consistency on a
bounded interval of the Nadaraya-Watson kernel estimator, are less restrictive
than in Wandl (1980); the difficulties with an unbounded support of Y are
overcome by a truncation argument. A similar technique, together with strong
approximations of the two dimensional empirical process, will be used in the
present paper. Different criteria measuring the closeness of m, to m, including
the L,-distance, for kernel type estimators were considered by Devroye (1978,
1981) and by Devroye and Wagner (1980a, b).
. The method of orthogonal polynomial estimation was originally introduced by
Cencov (1962) for density estimation. Rutkowski (1982a, b) defined a regression
estimator based on orthogonal polynomials in the case of fixed design variables
X. He also presented conditions for (weak) consistency and discussed the appli-
cations of such estimators to a broad class of system identification problems. For
more work and related problems concerning both kernel type and orthogonal
polynomial type estimators, we refer to the review article of Collomb (1981).

In the present paper we show a law of the iterated logarithm for the centered
estimate

(1.2) m,(x) — Em,(x).

This result thus gives the exact order of convergence of m,(x) — Em,(x). For
statistical interpretations it is desirable to have exact pointwise strong conver-
gence rates for m,(x) — m(x), but since the bias is purely analytically handled,
it suffices to consider (1.2). The handling with the bias terms using different
smoothness assumptions on m and K, is delayed to the sections where we apply
the general result of Section 2. In Section 4 we show a law of the iterated
logarithm for the Nadaraya-Watson kernel type estimator and for a related
estimator that is useful if we know the marginal density fx of X. In Section 5 we
derive an analogous result for estimators based on orthogonal polynomials.

As a footnote, we would like to mention some related works on density
estimation. These include among others Wegman and Davies (1979), Hall (1981),
Stute (1982).

2. Alaw of the iterated logarithm for a special triangular array. Let
(X1, Y1), (X3, Ys), - - - be a sequence of independent and identically distributed
random variables with probability density function f(x, y) and cumulative distri-
bution function F(x, y) and EY? < «. As in (1.1), let {K,: r € I} be a sequence of
real valued functions each of bounded variation and define

Su(r) = T {K/(X) Y — E[K(X) Y]}

Note that this sum is a multiple of (1.2), and that we omitted the dependence on
the design point x for convenience. Define also

a(r,s) = coviK,(X)Y, K,(X)Y} and o%r) = a(r, r).

We will now establish conditions under which S, (r) = n[m,(x) — Em,(x)] follows
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the law of the iterated logarithm. We demeonstrate that
lim sup,_. * [¢(n)]'S,(r(n)) =1 as,

where ¢(n) = (2no*(r)log log n)*/2. An application of this result to the two classes
of nonparametric regression function estimators, to be defined below, provides
thus a precise description of the order of strong consistency of m,(x). '

The set {S,(r), n = 1} is a triangular sequence and in this section it is seen
that S, may be strongly approximated by a Gaussian sequence with the same
covariance structure. The law of the iterated logarithm will then be shown usihg
parallel results on density estimation by Hall (1981) and Cs6rgd and Hall (1982).
We shall also make use of the Rosenblatt transformation (Rosenblatt, 1952)

T(xy y) = (FY|X7 FX)(xy y)y

transforming the original data points {(X;, Y;)}%, into a sequence of mutually
independent uniformly distributed over [0, 1]2 random variables {(X/, Y{)}%..
This transformation was also employed by Johnston (1982) as an intermedlate
tool; also by Mack and Silverman (1982) to obtain (strong) uniform consistency
of the Nadaraya-Watson kernel type regress1on function estimates. It will be
convenient to define

vn(un) = J; = IdKr(n)(x) I + IKr(n)(_un _) I’ nx=1

with a sequence of constants {u,}, 0 <u, =

THEOREM 1. Suppose that the sequence of kernels K., and {u,} satisfy
(2.1) anVn(un) = 0(n'?a(r)(log log n)*?/(log n)?),

where {a,} is a sequence of positive constants tending to infinity. In addition,
assume that the following holds.

(2.2a) Y s E{K2(X)I(| X | > ua)}/(c2(r)log log n) < o
(2.2b) w3 E{KXH(X)I(| X | < u) YA(| Y| > an)}/(a*(r)log log n) < .

Then on a rich enough probability space there exists a Gaussian sequence {T,} with
zero means and the same covariance structure as {S,(r)}, such that

S,.(r) = T, = o(n"?c(r)(log log n)*?) a.s.

The device that is used in the proof is the strong uniform approximation of
the empirical process by a Brownian bridge. Hall (1981) employs for density
estimation in the one dimensional case the results of Komlés, Major and Tusnady
(1975). As in Mack and Silverman (1982), we will make use of an analogous
result by Tusnady (1977) for the two dimensional case, Note that although the
two dimensional case is considered here, the technique can be extended to higher
dimensional design variables X = (x*, - . . , x‘?), d = 2. The assumption, however,
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will not be compatible with the case considered here since it is still unknown
whether the strong approximation of the multivariate empirical process by a
multivariate Brownian bridge has a compatible rate as in the one- or two-
dimensional case.

The fundamental connection between S, (r) and its strong approximation by
a Gaussian sequence is established by the following lemma. The proof will be
clear from Tusnady (1977) and the fact that n'/?[F, (T (x,y’)) — F(T '(x’,y"))],
(x’,y’) € [0, 1]? is the empirical process of {(X;, Y;)}, (Rosenblatt, 1952).

LEMMA 1. On a rich enough probability space there is a version of a Brownian
bridge B(x’,y’), (x’, y’) € [0, 1]? such that

P{sup,,|e.(x, ¥)| > (Cilog n + u)log n} < Cre
where C,, Cy, Cs are absolute constants and

e.(x, y) = n[F,(x, y) — F(x, y)] — n'?B(T(x, y)).

In the following theorem it is now seen that under regularity conditions on
the covariances o(r, s) a law of the iterated logarithm (LIL) holds for m,(x) as
defined in (1.1)

THEOREM 2. Suppose that (2.1) and (2.2a, b) hold and that
(2.3) lim,_olim sup,—.«Supmer,,| o(r(m), r(n))/o*(r(n)) — 1| =0,
where Ty,= {m: |m — n| < en}. Then

lim sup,—« [0 (n)]7!S,.(r) =1 as.

3. Proofs. To establish Theorem 1 we set

T, = n'/? f J; K. (x)y dB(T(x, y)),

B(x’, y') being the Brownian Bridge of Lemma 1, and show that the difference

Rn = n_l(Sn(r) - Tn) = n_l f f Kr(x)y den(xy y)

satisfies

(3.1) R, = o(n 26 (r)(log log n)?) a.s.

Note first that 7', has the covariance structure ascribed to it in Theorem 1. This
follows from the fact that the Jacobian J(x, y) of T'(x, y) is J(x, y) = f(x, y), the
joint density of (X, Y) (Rosenblatt, 1952) and the following lemma, stated
without proof.
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LEMMA 2. Let G, (x, y) = K.(x)y. Then
1 1
(Zy, Z,) = <f0 J(: G, (T '(x', y")) dB(x", y'),

fOfOGm(T-’(x',y'» dB(x',y'))

has a bivariate normal distribution with zero means and covariances

COV(Z], Zg) = f f Krl(x)Krg(x)ny(x’ y) dx dy

—[ffKrl(x)yf(x, y) dx dy][ffKrz(x)yf(x, y) dx dy]

a(ry, re).

To demonstrate (3.1), we split up the integration regions and obtain

IRnI = Z}=1 Rj;"

n‘lf f K. (x)y den(x, y) ‘
|x|=su, Ylyl=a,

< 20, (un)a,n"'sup;, | e (x, ¥) |,

Ron=|n7' 3, R,
R = [K(X)I(| Xi| > un) V(| Yi| < a,)]

— E[K,(XI(| X| > u)YI(| Y| = a,)]
Ry, =|n' 3L, BRI,
RY) = [K/(X)I(1 Xi| < un) YiI(] Yi| > an)]

— EK.(XI(| X| = u)YI(| Y| > a,)]
Rin=|n7" T, RE,
RY = [K.(X)I(| X;| > u) YiI(] Y] > an)]

— E[K,(X)I(| X| > u.)YI(| Y| > an)],

R5,n = n_l f f Kr(x)y dB(T(x’ y)) "
lx|>u, Ylyl=a,

R6,n = n_l f f Kr(x)y dB(T(x’ y)) "
|x|=u, vYlyl>a,

R, =n"! J;I J;| K.(x)y dB(T(x, y))‘-
x|>u, yi|>a,

where

Rl,n =




A LIL FOR NONPARAMETRIC REGRESSION ESTIMATORS 629

From Lemma 1 we deduce that n™'sup,,|e,(x, y)| = O(n"*(log n)? a.s., and
so by condition (2.1) we conclude that
(3.2) Ry, = o(n "% (r)(log log n)"?) as.

Next observe that {R\”} 1 < i < n are independent and identically distributed

iLn

random variables. We then have by Markov’s inequality that for any ¢ > 0
P(n7'| 2L, R?| > e-a(r)n 2. (log log n)'/?)
< % (r)(log log n) - E(R®)2

So with the assumption EY? < o and condition (2.2 a) it follows with the Borel-
Cantelli Lemma that

(3.3) Ry, = 0o(n 26 (r)(log log n)/?) aus.
The terms R; ,, R4, may be estimated in the same way using Markov’s inequality

and condition (2.2b) and we therefore have

-1/2

Rs, = o(n™26(r)(log log n)"?) a.s.

(3.4)
Rin = 0o(n™%(r)(log log n)'?) a.s.

The remaining terms, R;,, Rs, and R;, are all Gaussian with mean zero and
standard deviations

(ERE)YY, BB, (ERS)Y
respectively. Therefore, R; ,, for instance, can be computed by
P(Rs,, > en"%6(r)(log log n)'/?)
= 2[1 — ®lea(r)(log log n)/[E(R{))*]V2}],

where ® denotes the cdf of the standard normal distribution. A similar equality
holds for R, and R ,; therefore, we conclude in view of condition (2.2a, b) and
the usual approximations to the tails of the normal distribution that

Rs, = o(n 26 (r)(log log n)?) a.s.
(3.5) Rs, = o(n™ 26 (r)(log log n)"?) as.
R:, = o(n™26(r)(log log n)'/?) a.s.

Theorem 1 follows now by putting together statements (3.2)-(3.5) respectively.

The proof of Theorem 2 follows in the same way as the proof of Theorem 1 in
Hall (1981, page 49). We only have to note that Lemma 1 in Hall (1981, page 49)
has to be replaced by (2.3).

4. Kernel estimators. Two types of kernel estimates of the regression
function m(x) will be considered here. The first is due to Nadaraya (1964) and
Watson (1964):

mi(x) = (nh)™ L, K((x — X))/h)Yi/[(nh)™" T2, K((x — Xi)/h)].

We may think of applications where the marginal density fx of X is known to
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the statistician. It is then appropriate to replace the density estimator in the

denominator of m} by the known density fx. This leads to the following estimate:
m,(x) = (nh)™ XL, K((x — X))/h)Y./fx(x)

considered by Johnston (1979, 1982).

Let us define S*(x) = E(Y?| X = x), V*(x) = S*(x) — m*(x), and assume that
fx(x), m(x) are twice differentiable and S?(x) is continuous. We assume further
that the kernel K(-) is continuous, has compact support (—1, 1) and that
L uK(u) du = 0. This implies that v,(u,) as defined in (2.1) is constant for
large u,,. We will make use of the following assumptions:

(4.1) nh®/loglogn —-0 as n—
(4.2) Y= (h/log log n)E[Y’I(| Y| > a,)] <
where {a,} is as in (2.1), (2.2 a, b) such that
(4.3) a. = o((nh'log log n)?/(log n)?).
' lim, _olim SUp, «SuPper,. | h(m)/h(n) — 1| = 0.

We then have the following theorem for m, (x).

THEOREM 3. Under the assumptions above

lim sup,_. * [m,(x) — m(x)](nh/2 log log n)'/?
= [S*(x) f K*(u) du/fx(x)]'? as.
The Nadaraya-Watson estimate follows also a LIL.

THEOREM 4. Under the assumptions above and Y -1 n"2h™' <

lim sup,_.. * [mX¥(x) — m(x)](nh/2 log log n)'*
= [V*(x) f K*(u) du/fx(x)]'? as.

Note that the only difference between Theorem 3 and Theorem 4 is the different
scaling factor. As was shown by Johnston (1979), m, (x) has asymptotic variance
proportional to S?(x), whereas m}(x) has asymptotic variance ~V?*(x). Since in
general S%(x) = V%(x), we expect therefore closer asymptotic confidence intervals
for m}(x) than for m, (x).

PrROOF OF THEOREM 3. We first show that we could center m,(x) around
Em,(x). This follows from

Ema(x) = fx(x)'h™! f K((x — u)/h)m(u)fx(u) du = m(x) + O(h?)

using the smoothness of m(-) and fx(-) and the assumptions on the kernel K(-)
(Parzen, 1962; Rosenblatt, 1971).
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From assumption (4.1) it thus follows that the bias term (Em,(x) — m(x))
vanishes of higher order. So it remains to show that

lim SUP,—w * [ (x) — Em,(x)]/(nh2 log log n)*?

(4.4) , ‘
= [8%(0)-fx(x) f K*(u) du]"* as.

where m,(x) = ¥ K((x — Xi)/h)Y: = ¥ Kn(X)) Y.

From the assumptions on the kernel K(-) we conclude that 6,(u) =
h™'K(u/h) is asdelta function sequence (DFS) in the sense of Watson and
Leadbetter (1964). We now make use of this general approach in terms of DFS’s
and obtain the following:

2

ho?(h) = h f 0%(x — u)SZ(u)fx(u) du — h[f 6,:(3.c - u)m(u)fx(u) du

%82(x)¢f?((x)fK2(u) du as n— o,

This follows from Watson and Leadbetter (1964) by noting that S2(-)fx(-) is
continuous and {h ([ -K?) 7162 (u)} is itself a DFS. We may note that the use of
this DFS-technique would also provide a slight simplification of Hall’s proof
(1981) for Rosenblatt-Parzen kernel density estimates.-

To establish (4.4) with the use of Theorem 2, we have to show- that (2.3) holds.
We thus have to demonstrate that if h, & — 0 such that h/k — 1 (in view of
assumption (4.3)), then,

(4.5) ‘ h7'coviK((x — X)/h)Y, K((x — Y)/k)Y} — 1.

But EK((x — X)/h)Y = h [ 6,(x — u)ym(u)-fx(u) du = o(h'?), and so by the
computations for ¢%(h) above it remains to demonstrate that

h7! f [K((x — u)/h) — K((x — w)/kR)]*S*(u)fx(u) du — 0.

From the boundedness of S%(-) and fx(-) it is clear that the integral above is
dominated by

M f [K(u) — K(uh/k)]? du.

The kernel K is continuous and so K(uh/k) — K(u) a.e. and it follows that (4.5)
holds.

Assumption (2.1) follows from (4.2) since K(-) has compact support and thus
v,(u,) = const. for n large enough. In view of the asymptotic formula for ¢%(h)
above we have by assumption (4.2)

a, = o((na*(h)log log n)'?/(log n)?

which is assumption (2.1). Finally, assumptions (2.2a, b) follow immediately from
(4.2) since K has compact support and as above ¢2(h) ~ h~!. Theorem 3 thus
follows from Theorem 2.
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PROOF OF THEOREM 4. To prove Theorem 4 we decompose
m3(x) — m(x) = [(nh) 7'M, (x) — m(x)f,(x)]/fx(x)

+ fx' (®)[m3(x) — m(x)]-[fx(x) — fa(x)]
where f,(x) = (nh) ' YL, K((x — X;)/h) is a density estimate of fx(x). Now from
Hall (1981), Theorem 2 it follows that
lim sup,_ * [fn(x) — fx(x)](nh/2 log log n)'/?
(4.6)
= [fx(x) f K*(u) du]'? a.s.

if we use assumption (4.1), ensuring that the bias (Ef,(x) — fx(x)) = O(h?). From
Noda (1976) we conclude that with ¥ n™>A™' < o0, m}(x) — m(x) = 0(1) a.s. This
and (4.6) thus yield that the second term on the RHS of the decomposition above
is of order o((nh/2 log log n)'?) a.s.
The first summand of the decomposition above can be written as
(nh) (i — Er) _ (nh)"'Er — mfs _ m(f — Ef,) . m(fx — Efy)
+ — + .
fx fx fx fx
As in the proof of Theorem 3, it follows by assumption (4.1) that the bias terms
((nh)'Em — mfx) and (Ef, — fx) vanish. It remains to show
(4.7) (nh)~'(m — Em) — m(f, — Ef,)
follows the LIL, i.e.

lim sup,_.. * [(nh)"'(m — Em) — m(f, — Ef,)](nh/2 log log n)'/*

= [V3(x) fx(x)- f K*u) du]'? as.
This can be deduced from Theorem 2, if we rewrite (4.7) as
(nh)™" XL, [Kn(X)Y: = EKi(X)Y] — m(x)(nh)™" T, [Kn(Xi) — EKx(X)]
= (nh)™' L, {Ku(X)[Y: — m(x)] — EK,(X)[Y — m(x)]}.

Next we show that (4.3) holds. The variance for the sequence above is now:

2
h-o*(h) = h-f 87 (x — w)[S*(u) — m*(x)]fx(u) du

- h[f on(x — u)[m(u) — m(x)]fx(u) du]

— V2(x)-fx(x) f K*u) du as n— oo.

As above in the proof of Theorem 3, we conclude that (2.3) holds. Theorem 4
thus follows from Theorem 2.
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5. Orthogonal polynomial estimators. Estimators of the regression
function m(x) based on orthogonal polynomials fit also in the general framework
developed in the first section. We define the estimate based on a system of
orthonormal polynomials on [—1, 1] as follows:

ma(x) =n7' T, Knlx; X)Yi/n™ T, Kn(x; X))
where m = m(n) tends with n to infinity and
K (x; Xi) = ¥, ej(x)e;(X:)

and {e;(-)} is the orthonormal system of polynomials. As a technical more
tractable estimator we consider also:

m(x) = n7' Y, Kn(x; Xi)Yi/fx(x).

As in Section 4, let S%(x) be the second conditional moment of Y and V?(x) the
conditional variance respectively. We further assume that

fx(x) has compact support in (-1, 1)
(1 — x®)~"fx(x) is integrable on (-1, 1).

For reasons of simplicity we only consider the case of ¢;(-) = p;(-) = orthonormal
Legendre polynomials here and assume that the following holds:

(5.1) lim,_lim sup,_..supyer,,| m(p)/m(n) — 1| =0
(5.2) Yn=s m~ - (log log n) 'E(Y*.I(| Y| > a,)) < o,

when {a,} is as in (2.2), (4.2) a sequence of constants tending to infinity such
that

1/2

a, = o(n**m(log log n)?/(log n)?.

(5.3)
n/(m°log log n) - 0 as n — .
We have then the following Theorem for m/ (x) and m,(x).
THEOREM 5. Under the assumptions above
1/2

llim SUPr—ew £ [M)(x) — m(x)](n/2m log log n)

= [S(x)/(fx(x)-m)]"*(1 — 237/ as.

lim supn_« * [Ma.(x) — m(x)](n/2m log log n)*/*

= [VAx)/(fx(x)-7)]V2(1 — x)7*  as.

ProOOF. We first show the LIL for m/(x). The second assertion will then
follow as Theorem 4 from Theorem 3. As in Theorem 3, we show first that the
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bias (Em}(x) — m(x)) is negligible.
Em;(x) = [fx(x)] - EKn(x; X)Y

[l‘x(x)]f1 f Kon(x; uym(u)fx(u)d
m(x) + O(m™?

by a slight modification of the argument proving Theorem 1 in Walter and Blum
(1979). By the same arguments as in Hall’s (1981) proof of his Theorem 3 (page
60) we conclude that

o ~ E[Kn(x; X)Y?] ~ m-S*(x)/([fx(x)7x](1 = x%)').

Assumption (2.1) follows now from (5.2) and

f | dKn(x; u) | = O(m?).

Assumption (2.2) follows also from (5.2) so we finally derive the desired result
from Theorem 2, since (2.3) may be proved as in Theorem 3 using (5.1).

REMARK. There is a wide variety of density estimators based on trigonome-
tric series or Fourier transforms. In the same way as orthogonal polynomial
regression estimators are deduced from orthogonal polynomial density estimators,
one may construct regression estimators based on trigonometric series. It may
be possible to show a law of the iterated logarithm for trigonometric series
estimators, but as is indicated in Hall (1981) the computations may be more
tedious than for the two classes that are considered here.
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REFERENCES

CeNcov, N. N. (1962). Evaluation of an unknown distribution density from observations. Soviet.
Math. 3 1559-1562.

CoLLOMB, G. (1979). Conditions nécessaires et suffisantes de convergence uniform d’un estimateur
de la régression, estimation des dérivées de la regression. C.R. Acad. Sci. Paris 288 161~
164.

CoLLOMB, G. (1981). Estimation non-parametrique de la Regréssion: Revue Bibliographique. Inter-
nat. Statist. Rev. 49 75-93.

CsOraGO, S. and HALL, P. (1982). Upper and lower classes for triangular arrays. Z. Wahrsch. verw.
Gebiete 61 207-222.

DEVROYE, L. P. (1978). The uniform convergence of the Nadaraya-Watson regression function
estimate. Can. J. Statist. 6 179-191.

DEVROYE, L. P. (1981). On the almost everywhere convergence of nonparametric regression function
estimates. Ann. Statist. 9 1310-1319.

DEVROYE, L. P. and WAGNER, T. J. (1980a). Distribution-free consistency results in nonparametric
discrimination and regression function estimation. Ann. Statist. 8 231-239.

DEVROYE, L. P. and WAGNER, T. J. (1980b). On the L; convergence of kernel estimators of regression
functions with applications in discrimination. Z. Wahrsch. verw. Gebiete 51 15-25.



A LIL FOR NONPARAMETRIC REGRESSION ESTIMATORS 635

HALL, P. (1981). Laws of the iterated logarithm for nonparametric density estimators. Z. Wahrsch.
verw. Gebiete 56 47-61.

JOHNSTON, G. (1979). Smooth nonparametric regression analysis. Inst. of Stat. Mimeo Series No.
1253, University of North Carolina.

JOHNSTON, G. (1982). Probabilities of maximal deviation of nonparametric regression function
estimation. J. Multivariate Anal. 12 402-414.

KoMLds, J., MAJOR, P. and TUSNADY, G. (1975). An approximation of partial sums of independent
rv’s and the sample df 1. Z. Wahrsch. verw. Gebiete 32 111-131.

MACK, Y. P. and SILVERMAN, B. W. (1982). Weak and strong uniform consistency of kernel regression
estimates. Z. Wahrsch. verw. Gebiete 61 405-415.

NADARAYA, E. A. (1964). On estimating regression. Theor. Probab. Appl. 9 141-142.

Nopa, K. (1976). Estimation of a regression function by the Parzen kernel type density estimators.
Ann. Inst. Math. Statist. 28 221-234.

PARZEN, E. (1962). On estimation of a probability density function. Ann. Math. Statist. 33 1065~
1076.

ROSENBLATT, M. (1952). Remarks on a multivariate transformation. Ann. Math. Statist. 23 470-
472.

ROSENBLATT, M. (1969). Conditional probability density and regression estimates. In Multivariate
Analysis I1. 23-51. Ed. Krishnaiah.

REVESZ, P. (1979). On the nonparametric estimation of the regression function. Prob. Control. Inform.
Theory 8 297-302.

RUTKOWSKI, L. (1982a). On system identification by nonparametric function fitting. IEEE Trans.
Int. Control 27 225-2217. '

RUTKOWSKI, L. (1982b). On-line identification of time-varying systems by nonparametric techniques.
IEEE Trans. Int. Control 27 228-230.

SCHUSTER, E. F. (1972). Joint asymptotic distribution of the estimated regression function at a finite
number of distinct points. Ann. Math. Statist. 43 84-88.

SCHUSTER, E. F. and YAKOWITZ, S. (1979). Contributions to the theory of nonparametric regression,
with application to system identification. Ann. Statist. 7 139-149.

STONE, C. (1977). Consistent nonparametric regression. Ann. Statist. 5 595-645.

STUTE, W. (1982). A law of logarithm for kernel density estimators. Ann. Probab. 10 414-422.

TUSNADY, G. (1977). A remark on the approximation of the sample df in the multidimensional case.
Period. Math. Hung. 8 53-55.

WALTER, G. and BLUM, J. (1979). Probability density estimation using delta sequences. Ann. Statist.
7 328-340.

WANDL, H. (1980). On kernel estimation of regression functions. Wiss. Sitz. zur Stochastik. WSS-
03 1-25.

WATSON, G. S. (1964). Smooth regression analysis. Sankhya A 26 359-372.

WATSON, G. S. and LEADBETTER, M. R. (1964). Hazard analysis II. Sankhya A 26 101-116.

WEGMAN, E. J. and Davies, H. 1. (1979). Remarks on some recursive estimators of a probability
density. Ann. Statist. 7 316-3217.

UNIVERSITAT HEIDELBERG
SONDERFORSCHUNGSBEREICH 123
IM NEUENHEIMER FELD 293
D-6900 HEIDELBERG 1

WEST GERMANY



