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ASYMPTOTIC BEHAVIOR OF TWO-SAMPLE RANK TESTS IN
THE PRESENCE OF RANDOM CENSORING!

By SUE LEURGANS
University of Wisconsin-Madison

Two samples, {Xj, 1 < i< n(j)} (j = 1, 2) are assumed to be composed
of iid random variables with survival functions (1 — F;)(1 — H;), where H is
the cdf of the “censoring times” and F is the cdf of the “true lifetimes.” A
unified derivation of the Pitman efficiencies of a class of rank statistics for
censored samples is presented. The conditions under which the result holds
do not require contiguous alternatives, since convergence to normality is
shown to hold uniformly in equicontinuous (Fy, F,, H;, H,) with bounded
hazard rates. The uniformity is obtained by studying a convenient joint
representation of several counting processes. The results are applied to the
translated exponential distributions, a noncontiguous family of alternatives.

1. Introduction. Spurred by practical problems in clinical trials, many
statisticians have proposed two-sample rank tests which can accommodate right-
censoring. This paper studies the large sample behavior of a large class of linear
rank tests for censored data under fixed alternatives. As one application, Pitman
efficiencies of these tests under general, not necessarily contiguous, alternatives
are derived. ‘

Efficiency calculations summarize the behavior of sequences of statistics S,
and T, under a sequence of alternatives indexed by 8(n) = 6, + cn™"2 + o(n""/2).
If, under the sequence of alternatives, n'/?(T, — u(6(n)))/s(6(n)) is asymptotically
standard normal and the functions u and ¢ are, respectively, continuously
differentiable and continuous at f,, then the efficacy of the sequence T, at 6, is
given by the limit of (u’(6o)/o(6o))®. (Some refer to the square root of this quantity
as the efficacy of T),.) Consistent estimation of o(6,) does not change the efficacy
of T,. The Pitman relative efficiency of the sequence T,, with respect to the
sequence S,, is then the ratio of the efficacy of T, to the efficacy of S,. The
asymptotic normality of the statistics under the sequence of alternatives is usually
obtained from LeCam’s third lemma, which implies that the joint asymptotic
normality under 6, of the sequence of statistics and the log likelihood ratio of 6,
to 6o, if the ratio of the limiting mean of the log likelihood ratio to the limiting
variance is —2, is a sufficient condition for the asymptotic normality of the
sequence of test statistics under the sequence of alternatives. (See Hajek and
Sidak, 1967, page 208.)

For noncontiguous alternatives (such as the translated exponentials of Section
5) the log likelihood ratio can fail to be asymptotically normal. (For the translated
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exponentials, the log likelihood ratio is nf(n), which diverges for the usual
sequences of alternatives.) However, the sequence of centered and scaled test
statistics may nonetheless converge weakly to a normal distribution under every
fixed alternative. Noether (1955) proved that in this case it suffices, but is not
necessary, to show that the weak convergence of n**(T, — u(8))/s(#) is uniform
in 6 for 0 in a neighborhood of 6,. Section 3 contains a proof of the uniformity of
the convergence in distribution of appropriately centered and scaled statistics,
since this uniformity is of independent interest.

The proof in Section 3 is based on the construction of a convenient version of
the sequences of statistics. This construction and some deterministic lemmas are
presented in Section 2. In the fourth section, the theorems of Section 3 are
applied to local sequences and formulas for Pitman efficiencies are derived. The
formulas are applied in Section 5 to particular tests to-verify that this approach
gives known efficiencies and to obtain efficiencies not heretofore calculated.

This section concludes with a description of the details of the testing problem
and the class of statistics to be considered.

Suppose that the true lifetimes Y11, - -+, Y1) form a sample from F; and
that Ya1, « -+, Yone form an independent sample from F,. The null hypothesis
being entertained is that F; and F, are equal. If the lifetimes are randomly
censored, then Cy 1, - - -, Cy ), and Cyy, - - -, Co () Will be samples independent
of the Y’s, from censoring distributions H; and H,, respectively. The two
censoring distributions can differ. The observed lifetimes Xj; = min(Yj;, Cj)) and
the indicators 6; = [X;; = Y;;] are the variables on which test statistics must be
based. (Throughout this paper, the indicator function of the set A will be denoted
by [A].) Define the random functions R},;(t) = Y¥{ [Xj; = t], the number
of individuals in the jth population “at risk at time t,” and D},;(t) =
Sud) [ X < t][8;; = 1], the number of “deaths” in the jth population before ¢t. The
second subscript of R¥, ;) and D¥,;, will be omitted when no confusion will result.
Set R*(t) = R¥(t) + Ri(t), DX(t) = D¥(t) + D3(t) and n = n(1) + n(2). The
cumulative hazard functions A;(t) = —In(1 — F;(t)) are estimated by

oy = | dDIG) _ g [Xi = Ao = 1]
fro= | B -2 R

The cumulative hazards of the censoring distributions will be Aj.(t) =
—In(1 — Hj(t)). The derivative of A at ¢ will be denoted by A.
The class of statistics

(1.1) Th = f K3(s)[dAt(s) — dAz(s)],

where K*(t) is a possibly random function determined by {Dj(s), R}(s), s < ¢,
j =1, 2}, includes many of the standard censored data rank tests. This class has
been studied by Gill (1980) and the related k-sample tests are discussed in
Andersen, Borgan, Gill and Keiding (1982). This class of statistics includes the
two-sample form of the linear rank tests proposed in Prentice (1978), if a natural
condition is imposed on the weights. (See Prentice and Marek, 1979, expression
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(9).) Mehrotra, Michalek and Mihalko (1982) show that this condition is satisfied
by the members of Prentice’s class that he proposed as locally most powerful
tests. If K,R*/(R¥R%) = j(R%/n), where j is a nonrandom function defined on
[0, 1], T, is a member of the class studied by Tarone and Ware (1977). If

K./(RtR%) = L(R,) for some function L, T, is one of the tests Aalen (1978, page
720) proposed as a linear rank test. If K,R%¥/(R¥R%) is a power of the pooled
product-limit estimator, the resulting test is a member of the class proposed by
Harrington and Fleming (1982). Cox (1972) proposed partial likelihood score
statistics for testing 8 = 0 in the model \s(t) = eV \(t), where j is a deterministic
function. If K, is taken to be jR¥R3/R%*, the class (1.1) includes Cox’s tests. For
specific examples, see Section 5.

2. Notation and representation. This section contains further notation,
some assumptions, statements of deterministic lemmas, and the representation
of the counting processes to which the deterministic lemmas apply.

The notation introduced above is extended to define D}z ,(;)(t) = Z[X;; < t]
- [8; = 0], a process that counts censored observations. Set R}, = R} and
n(j + 2) = n(j). If all the random variables are continuous, the probability that
no two of the D*-processes jump simultaneously and that R¥(t) = n(1) —
D¥(t—) — D%(—) is one. The process D} has cumulative intensity process
n(J)7iniiy, Where

o[BI
Y in(8) J; n(j) Ai(s) ds.

Therefore, the following processes are orthogonal martingales:
M7)(t) = Dinp(t) = n()viap@®), j=1, -, 4.

See Aalen (1978) or Gill (1980) for details.

The weight function K} is assumed to be a predictable process such that
Ky Jt1Js = K5, where J},;(t) = [R} n(,)(t) > 0]. With this assumption, K}/R* will
be taken to be zero whenever R} =

A bar above a distribution function will denote the corresponding survival
function. The product limit estimator of the survival function F; will be denoted

by F, n(j)- The following deterministic functions will appear below:

oi(t) = P{X;; = t} = Hi(t)F)(t), pire=pj, j=1,2,
'Yj(t) = L 'Pj(s))\j(s) dS, ] = ]-’ tt 4’

N Y0 Cfeds
7i(t) = f o1(5) ds X Ff(s)l'_lj(s) y Tire =17, J=1,2.

The four distribution functions Fl, F;, H, and H, determine the distribution of
T+ . The class of quadruples of distribution functions under consideration will be
denoted by Z The induced set of quadruples of functions (y1, 2, v3, v4) Will be
denoted by T.



CENSORED DATA RANK TESTS 575

A convenient version of the processes described above will now be constructed.
The use of this version will be indicated by the omission of the asterisk (*). In
the manner of Breslow and Crowley (1974) and Pyke and Shorack (1968), the
pointwise convergence of the sequence of random variables based on these
versions to a praper random variable will imply the weak convergence of the
corresponding random variables based on the original processes to the distribu-
tion of the limit of the versions.

The version is based on {Z;,), n(j) = 1}, four independent sequences of
standard Poisson counting processes defined on a common space (2, B). Theorem
3.3 of Billingsley (1971) implies that the sequences can be chosen so that the
sequence of normalized sample paths

Gini(t) = n}A(Z; niy(n(j)t)/n(j)-— t)

converges, for every w in Q, to independent standard Wiener processes G;
uniformly on bounded intervals as n(j) diverges. Kurtz (1982) shows that
processes D; and R; can be constructed on this space such that

Djniy = Zjni»in(3)¥inii ()}, j=1,---,4
(2.1) Rit) = n(j) — Di(t=) = Djss(t=); Rz =R;, j=1,2
t
R',n j (3) .
YinG) = J; % Ai(s) ds, j=1,--.,4

and the vector processes D;,;y and D},; have the same distribution. The
processes v; are predictable, because they are continuous. The versions D;,,;, are
thus randomly time-changed standard Poisson processes, with the same standard
Poisson processes for every member of %

Since normalized statistics based on the version (2.1) will converge pointwise,
the deterministic lemmas below will apply.

LEMMA 2.1. Let & be a collection of functions g, on [0, ©) satisfying L1. If
the sequences of signed measures v, . satisfy L2 and L3, then

f 8« dVa,n - f 8« dVa
0 0

L1. & is an equicontinuous family of uniformly bounded functions.
L2. For each a, the signed measures v, , converge weakly to a continuous signed
measure v,, and this convergence is uniform in « in the sense that

=0.

lim,,_,.sup,

lim,,_SUP, | Van([0, x]) — va([0, x]) | = 0
for all finite x.
L3. The total variation of v, is bounded uniformly in a and n.

This lemma is an extension of a result of Ranga Rao (1962), given as problem
2.8 of Billingsley (1968).
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LEMMA 2.2. If & is a set of functions satisfying L1, if the signed measures
v satisfy L2 and L3, and if the functions g.,. satisfy L4; then

f 8a,n dVa,n - f 8a dVa
0

lim,,SUPSUPo=s<c | Gapn(X) — galx) | = 0.

lim,,_,.Sup, =0.

L4.

Since L3 implies that », ,([0, ®)) is uniformly bounded, this lemma is a trivial
consequence of the preceding lemma.

LEMMA 2.3. If {u., o € o7} is a uniformly equicontinuous family of monotone
functions on [0, ©) such that

L5. lim,_wSUPaeo | Ua(x) — a(°°‘)| =0,

if {Uan, n = 1, a € 7} is a family of uniformly bounded monotone functions, and
if

Le6. lim, SUPseo | Uan(x) — Uu(x) | =0 for every 0 < x < oo,

then

1im,,_SUPe o/SUPo<x<w | Un,n(X) — Ua(x) | = 0.

3. The fundamental theorems. In this section, the limiting behavior of
statistics based on the version described above is obtained. Since this section
uses the specially constructed versions (2.1), it will be sufficient to establish
convergence for these versions. All limits in this section are pointwise for the
special versions (2.1). Weak convergence for the original processes will then
follow immediately. The first lemma shows that the random time changes
converge uniformly to deterministic functions. The main theorem is stated with
fairly complicated conditions; the corollaries and lemmas indicate how these
conditions can be obtained.

The lemmas are preceded by a list of the conditions which will be imposed.
The behavior of the weight function is specified in T1, T1’, T5, and T5’. These
conditions are most easily verified by inspection. Corollary 3.1 gives one set of
sufficient conditions. Regularity conditions on & are in T3.

T1. The total version of n(j)K,/R;. is bounded uniformly in n and K is a
deterministic function such that

n(HKdAt) _ K@) | _

R; n(t) pi(t)

T1’. The total variation of n(j)K,/R; . is bounded uniformly in n and in &
and there is a deterministic function K such that

n(DEAD) _ K@) | _

R; nij)(t) pi(t)

limn——wosuposl<oo

lim,,_,SUP .+ SUPo<t<o
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T2. lim,_«(n(j)/n) = p; € (0, 1).

T3. The hazard functions (A1, A2, As, As) induced by & are uniformly bounded
and

limt__,wsupjpj(t) = 0, ] = 1(1)4
T4. The constant u defined by

li=fK()\1—)\2)

T5. There is a function § satisfying

f|6!|xl—x2|<w

n'?(K,(t) — K(t)) — W(t) | _
o(t)

where (W, G, G,) is a vector Gaussian process and the process W has

(almost surely) continuous paths and its covariance function r satisfies

is finite.

and

lim,,_.sup; 0,

f ri/%(s, s) | Mi(s) — Aa(s) | ds < oo,
T5’. The expansion in T5 holds, with

Sllp:ffléllkl—}\ﬂ =B <,

LEMMA 3.1. Under the model described in Section 1, if n(j) diverges to infinity,

(3.1) lim,,_,SUP . SUPo<z<wo E’—'M —pix)| =0, j=1,2
n(j)

and

(3.2) lim,,SUPo=s<eo | Vjin((x) — vi(x) | = 0.

If T3 also holds, then

(3.3) 1im,,_.SUp ~SUPosz<es | Yjn(n(*) — ¥j(x) | = 0.

PROOF. Set Xj .y = Rjn5/n(j) — p;. The lemma will be proven in four steps.
First a process ¢;.(;(¢t) will be defined satisfying

t
Xinp(t) + J; Xin()(8)(N(s) + Nj+a(s)) ds = ginp(t), j=1,2.

The second step shows that the ¢;,(j processes are bounded by random variables
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&;.n(jy Which do not depend on vy and which converge to zero for every element of
the sample space. Assertion (3.1) is then established by showing that if ¢ is a
positive number such that

(3.4) SUP.+ SUPo<t<eo | Xjn(j)(t) | > 2e,

then ¢;,;) > e. Since this inequality can hold for only finitely many n(j), (3.4)
can hold for at most finitely many n(j), and so (3.1) holds. The concluding
paragraph explains why (3.2) and (3.3) follow.

The definition of R;,;, and the representation (2.1) imply that

Djn»(t=) _ Djuoniip(t—)
n(j) n(j)

Xinp(t) =1 — pi(t) —

Ziny ) Yird(E)) | Zyso (D) Vi (t= )))
n(J) n(J)

i=12

= vi(t) + vjs2(t) — <

Adding and subtracting «v; .y + Yj+a,n(j), Fewriting in terms of G; ,(;), and substi-
tuting the definitions of v; ;) and of v, gives

X = Gin) Vi) (E2))  Giron() (Viranin (62))
e n(j)"”? n(j)”?

- f (Rj(n(;) (s) = Pj(s)>()‘j(s) + Nuals)) ds, j=1,2

Therefore (3.1) holds with

(G] n(])('Y] n(])(t )) + Gj+2 n(j)(71+2 n(])(t_)))
n(j)"?

The next step is the construction of ¢; ;. Because each of the n(j) individuals
in the jth sample can die at most once, no sample path of D; . has more than
n(j) jumps and n(j)y;ni(°) < T(n(j)), the time at which Z; ,;, hits n(])

Therefore | ¢;.(;)(t) | < &), Wwhere

&in(p(t) =

I GJ ) (X) + GJ+2 ﬂ(!)(x)l
&n(j) = SUP0sz<T)(n(;)/n(j) n(j)”2

The assumption that Gj.;(x) = Gix) + o(1) on compact intervals as n(j)
increases and the relation Z; .;(n(j)t)/n(j) = n(j)"V?G; (t) + t imply that for
every element of the sample space 1 = Tj(n(j))/n(j) + n(j)™2G{(T(n(j))/n(j))
+ o(n(j)™/?). Since the second two terms become small compared to the first
term, the limit of Tj(n(j))/n(j) must exist and equal one. (The ordinary strong
law of large numbers does not apply to T;(n(j))/n(j), because of the special
choice of Poisson processes Z; ,;.) Because of the uniform convergence of G; .,
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to Gj, it follows that
lim sup,(j)—wen(j)%ejn;) < SUPo=e=1 | Gi(x) + Gia(x) |, Jj =1, 2,

and that ¢; ,(;) converges to zero.

Now take ¢ > 0 and suppose that for some (v, v2, vs, v4) there is a t such that
X n(j)(t) > 2¢. Because Xj () is continuous except for jumps of size —1/n(j), there
is a random variable Tj ., < t such that X .)(Tj.;) < ¢ and Xj .(;(s) > ¢ for s
in (T n(j, t]. It follows from (3.1) that

t
Xin()(&) = Xin)(Tinp) + J; Xinih(8)(Ni(s) + Nj+2(s)) ds

= &n()(8) = &ni)(Tin(h) < &inii-
The definition of T, implies that the left-hand side of the equation above is
greater than e(1 + Aj(t) + Ajuo(t) — A(Tjnih) — Ajs2(Tjn))) and hence that
&in(j) > ¢ A similar argument also gives ¢ () < ¢ if Xj(;)(t) < —2¢. As explained
above, (3.1) follows.

It remains to establish (3.2) and (3.3). If A;(¢) < oo, then | vjaj(t) — vi(t) | =
¢j.n(hAj(t), and hence converges to zero as n(j) diverges. Since both ;) and v;
are continuous bounded monotone functions, v;.; — <; converges to zero uni-
formly on the closure of the set of t’s such that Aj(t) < o. If Ai(t) = o, both R;
and p; are zero. Consequently v;.() and v, are constant on' this set, and (3.2)
follows. If T3 holds, the uniform bound on the hazard rates implies that the
functions v; are uniformly equicontinuous and that the v;,(;’s and the v;’s satisfy
L6. The tail condition on the p;’s implies that L5 holds for the functions v;.
Therefore (3.3) follows from Lemma 2.3.0

The random variable

Mn = f (Kn — K)O\l - >\2)

provides a natural random centering for T,,. Theorem 3.1 examines the limit of
nY%(T, — u,) and Lemma 3.2 gives conditions under which n'/*(u, — x) has a
tractable limit.

THEOREM 3.1. If T1 and T2 hold, then
85) limpen(T, = i) = 7 | Gity d(i—f) + o7 [ Gt d(ﬁ—i)
If T1’ and T3 also hold, then the convergence (3.5) is uniform in &
PrOOF. As in Gill (1980, page 46),
nYA(T, — up) = n1/2[ % dM, — %: dMg].
Integrating by parts (and recalling that M;(0) = (K,,/R,)(%) = 0) and substituting
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the representation (2.1) gives the following chain of equations:

K,
f_ dM, /2 f [D1,n1)(8) — nayYLnw(s)] d{Rl,n(f)s()s)]

n | f [ann(s)]
(E) Gl,n(l)('}’l,n(l)(s))d——Rlyn(l)(s) .

By Lemma 3.1, v;,a1) converges (uniformly in s and in T, under T3) to the
continuous subdistribution function v;. Since each sample path of G; is uniformly
continuous on [0, 1], which contains all the intervals [0, ¥;(®)], Ginm°Y1n)
converges uniformly (in s and in T') to G; © v,. Since T1 (T1” and T4) ensures
that n(1)K,/Rs ) satisfies the conditions on v, , for Lemma 2.1 (2.2),

limn_mnwfRK dMlnm —P1 fGl(’Yl) d< >
1,n(1)

The convergence of the other integral follows by symmetry.

LEMMA 3.2. If T4 and T5 hold, then

(36) limn—wonlﬂ(ﬂn - ”') = f W( A — >\2)

If T5’ also holds, then the convergence is uniform in &%

PrOOF. The lemma follows immediately from the assumptions, since the
integrability condition on the covariance function r implies that the integral (3.6)
can be interpreted as an ordinary Lebesgue integral. (See Sections 5.3 and 5.4 of
Cramer and Leadbetter, 1967.) 0O

COROLLARY 3.1. If K, = Q(Rl,n(l)/n(l), Rz,n(z)/n(z)) and Q satisfies C]., C2 and
C3, then conditions T1’ and T5 hold. If C4 is added, then T5’ holds.

C1. The two functions Q;(x1, x2) = Q(x1, x2)/x; (j = 1, 2) are continuous and have
bounded variation on the unit square.

C2. A Taylor expansion Q(x) = Q(x,) + q7(x)(x — Xo) + 0o(q”(x)(x — Xo)) holds
uniformly in the unit square.

C3. The vector function q is bounded and continuous on the unit square and its
component functzons satisfy

f 1gilp/? |\ = A| <o and f [l A — A2| < oo
C4. The integrals in C3 are bounded uniformly in %
ProOF. The total variation of n(j)K,/R, . is automatically less than the

total variation of @, which is uniformly bounded. The uniform convergence to
K/p; = Qj(p1, p2) is a consequence of the continuous mapping theorem, since the
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functions €); are uniformly continuous and R;.(/n(j) converges uniformly to p;.
This establishes T1’.
Condition C2 implies that

R, ,1/n(1) — Pl)
1/2 - K)=q" A
n (Kn ) q (pl’ pZ)n <R2,n(2)/n(2) = P2

1/2,T, Ry nw)/n(1) = py
+ 0<n g ey, p2)<R2,n(2)/n(2) - Pz>>.
For the version here, n'/2(R; .(;/n; — p;) converges uniformly in ¢ to the Gaussian
process V; = pjV4(G; ° v; + Gj+2 © ¥j+2). The boundedness of g and the uniformity
of the remainder term therefore imply that n'/%(K,, — K) converges uniformly to
a Gaussian process W = p7%q,(p1, p2) V1 + pz2q2(p1, p2) V. Since q is continuous
and the sample paths of the Brownian motion G are continuous, W has continuous
paths. The variance function of W is piqipi(1 — p1) + p2q3p2(1 — p2), which is
dominated by q2p; + g3p.. Therefore the integral conditions of C3 will imply the
remaining part of T5. Clearly C4 will ensure T5’.

The following corollary is an immediate consequence of Theorem 3.1 and
Lemma 3.2:

COROLLARY 3.2. When T1, T2, T3, T4 and T5 hold,

limn—->°°n 1/2( Tn - /1')

= p7'/? f Gi(v1) d<f)—f> + p3'/? f Ga(v2) d(g) + f WA — No).

If T2’ and T5’ also hold, the convergence is uniform in .

This limit will have a mean zero normal distribution. The variance is difficult
to obtain, because the third term is correlated with the other two. When \; = X,,
however, the simple expressions of Corollary 4.1 apply.

4. Pitman efficiencies and asymptotically distribution-free tests.
In this section, the results of Section 3 are applied to local alternatives. The
conditions used here result in formulas for Pitman efficiencies which coincide
with those of Gill (1980) (formula (5.2.15), page 105) for contiguous alternatives.

" The notation for the local alternatives in Sections 4 and 5 differs from the
notation used above. The role of the subscript is changing from population
number to parameter, and the parameter for the first population will be sup-
pressed. Thus the distribution function of the first sample, heretofore F;, will be
denoted by F, which is presumed to be F,, a member of the parametric family
{Fy, 0 € O} to which the distribution function of the second sample, formerly
denoted F,, is restricted. The symbols A and f denote the hazard rate and density
corresponding to F'; Ay will be the hazard rate for Fy. The censoring distributions
are H and H,, with hazard rates » and 7. It is not assumed that H = H,. Note
that p will not equal po and v will not equal v, whenever H and H, differ.
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The following assumptions apply to the local alternatives indexed by 8(n):

Al. The deterministic quantities below are finite and the function v is continuous
at 0.

2 2
v(0) = f K, N, V= f K A, w((n) = f Koy (N = Nogmy).
Py P

A2. The sequence 0(n) converges to zero at a rate such that py,) converges to po
and the random variables u, satisfy

lim, n*(pn — u(6(n))) = 0.
A3. The functions {Ag, 4, 14, | 8| < ¢} are uniformly bounded for some positive e.

Not all contiguous alternatives satisfy Assumption A3, but some noncontig-
uous sequences of local alternatives do satisfy A3. One such sequence is the
exponential location family discussed in Section 5.

COROLLARY 4.1. Let & = {(F, H; F,, Hy), 0 € 0}. If A1, A2, A3, T1’ and T2
hold, then

nYY(T% — w(0(n))) —a N(O, 24 M>.
D1 D2

If, in addition, H = H,, the limiting variance is v/(p1ps).

PrOOF. The assumption A2 implies that the corollary can be proved by
showing that for the special versions based on (2.1),

(4.1) limyn (T, — un) = p1*/? f Gi°ovy d<I—{> + pz'? f Gz ° o d<5>.
p po

Since G, and G, are independent Gaussian processes, the limit of (4.1) has a
normal distribution with variance v/p; + v(0)/p.. Take Z to be {H, Hy, Fy, | 0|
< ¢}. The assumption that 6(n) converges to zero implies that for n sufficiently
large, F; and H, are in % The rest of A2 implies that T3 holds for # Since T1’
and T2 are assumed to hold, Theorem 3.1 implies that the following limit is
uniform in & :

limywn (T, — u.(0))

(4.2) ,
- p;1/2 f G, °w d<&> + p51/2 f Ga © v d(&) .
P Po

The uniformity of (4.1) implies that the limit of n'/*(T,, — u,) must be the right-
hand side of (4.2) with 0 replaced by 0. The first conclusion follows. The second
conclusion results from the equality of v and v(0) when H = H,.

The following corollary is a consequence of Noether (1955).
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COROLLARY 4.2. Assume Al, A3, T1’ and T2 hold.
1. If A2 holds for the sequence of parameters 0(n) = 0n~/2, then the efficacy of
Tk is
©'(0) — limaw J Ko((A — No)/0)
a(0)  {f K3 ((1/(p1p)) + (1/(p2p)))}/?”

2. Furthermore, if H = H,, if the limit and the integral in the numerator above
can be interchanged, and if

n’(0) — —(p1p2)1/2 f KOx
a(0) ([ (K§\/p))'2 -~

. 9
As) = 30 Ao(s) o then

When performing hypothesis tests based on T, the null hypothesis variance
must be estimated, unless the null hypothesis variance is independent of both F
and H. In particular, the variance ¢% under any pair of censoring distributions
must equal the variance under no censoring, which can happen generally only if
the integrands in the variance formulas are equal. If o is the limiting weight
function in the absence of censoring and L, is the null hypothesis limit of the
weight function of the corresponding asymptotlcally distribution-free test, the
following equation must hold:

1 1 1 1
il L Ll Lo L
‘ Pip  DP2po (ko) piF  p.F

This equation reduces to the following requirement for Ly:

Hﬁo 1/2
Lo = Ko(plI'_I + p2ﬁ0> '

If a weight function satisfies this requirement, the null hypothesis variance is

Ko\’
o® = (p1p2)~" f <f> f.

If ko is a function of F, the value of this 1ntegral will be the same for all continuous
densities f. The product limit estimators Fl and F2 can be used to construct
consistent estimators of x and thus to generate test statistics whose limiting
variances are distribution free. Fleming and Harrington (1982) have exploited
this idea. The examples in the next section show that the efficacies of such tests
depend on the censoring pattern and may be less than the efficacies of other
tests whose distributions depend on the censoring. This discussion is summarized
by the following corollary:

COROLLARY 4.3. If J is a continuous function on [0, 1] such that

1 2
V=f<£@> dx < o
0 x

and if the weight function of a test statistic of the form (1.1) is L,, where L, meets
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the conditions of Corollary 4.2 and its limiting value L, satisfies

H(t)Hq(t) )/
p1H(t) + paHo(t))

Ly(t) = J(F"(t))(

then n'/?T% converges weakly under the null hypothesis to a normal distribution
with mean 0 and variance V/(p.p,).

5. Examples and comments. Formal calculations for extensions of two
common two-sample rank tests are given under the familiar exponential scale
family (Fy(t) = 1 — exp(—(1 + 0)t) for t positive) and under the less familiar
exponential location family (Fy(t) = 1 — exp(—(t — 0)) for ¢ greater than 6). This
latter family is noncontiguous, although covered by the corollaries of the
preceding section and of some practical interest. (See Zelen, 1966.) The regularity
conditions are easy to check for the location family for all the weight functions
considered here. For the scale family, conditions on the censoring distribution
are required for some of the tests. However, in all cases, the formulas are correct
if the integrals on [0, «) in statistics and formulas are replaced by [0, T'].

Computation of u’(0) is easy in both cases. For the scale family,

(A(E) — No(2))/0 =1,
and u’(0) is the integral of K,. For the location family,

0
w(6) =J; K,(t) dt.

If K,(t) is jointly continuous in ¢ and 6 at the origin, u’(0) will be K,(0). The 6 =
0 member of each family is the standard exponential distribution, so ¢%(0) is the
same for both families.

EXAMPLE 5.1 The logrank test. The weight function for the logrank test is

Ri(t) R(t) n
nm ny Rut)’

In the absence of censoring, this test reduces to Savage’s two-sample rank test.
This test is closely related to tests proposed by Cochran (1954), Mantel and
Haenszel (1959), Peto and Peto (1972) and Cox (1972). Mantel and Haenszel
propose a hypergeometric variance estimate, Cochran and Cox suggest a slightly
different variance, and Peto and Peto refer to a permutation distribution. The
limiting weight function is K{¥(t) = p(t)ps(t)/( p1p(t) + P2ps(t)), and therefore

ol8) = f pos(A = \)

KP() =

pip + papy
If the censoring distributions H; and H are equal,
FF,H
po(0) = —— (A= \)

piF + p,F,
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and the null hypothesis variance is

a%=fp)\=fFIf=P{Y$C}.

The null hypothesis variance is controlled by intensity of the censoring as
measured by the probability of events being uncensored. These formula are
equivalent to those deduced from Crowley (1974), who discussed the case in
which group membership may change once in time.

Since «0(t) = F(t)Fy(t)/(p F(t) + p.Fy(t)), a test whose asymptotic variance
is distribution-free can be based on the weight function

Fi@Fy() ( H0Hy() )“2
piFi(t) + poFo(t) \piHy(t) + poHo(8))

If all observations are complete, L and K” are equal and this test is Savage’s
test. The mean function reduces to

. FF, -
0 = f pr—s — H1/2 }\ - }\ .
Ho(6) oiF + poF, ( )

L) =

This expression differs from u(f) only in the power of H. Since Corollary 4.3
applies with J(u) = 1, 63 is one. The location family efficacies are inversely
proportional to the reciprocals of the limiting variance, because K%(0) = L©(0)
= 1. Table 5.1 gives the formulas for the two families and equal censoring.
Jensen’s inequality implies that the standard logrank test is more efficacious
for the proportional hazards, or exponential scale family, than the Savage test

TABLE 5.1
Savage Tests.

Asymptotically Distribution-Free

Logrank Test Test

FF,H FF,H"?
plF_ + szo plF + pZFI)

0
A
20)= | K- 7 _
70 ‘b fo ff‘l

Scale Family

u’(05 L H(t)e dt fo HY*(t)e™ dt

K

) 1/2 o
(p1p2)™*  Efficacy (J; ﬁ(t)e“dt> foﬁ‘/z(t)e"dt

Location Family

w’(0) 1 1

o —1/2
(p1p2)~Y?  Efficacy <J‘; H(t)e™ dt> 1
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with variance free of censoring. This comparison is expected, since Peto (1972),
Prentice (1978) and Gill (1980) have argued that the logrank test is the most
powerful rank test for this family. For the exponential location family, the
efficacy comparison is similar.

EXAMPLE 5.2 Generalized Wilcoxon tests. Four extensions of the Wilcoxon
test are described. The asymptotic variance of the fourth extension is distribu-
tion-free. Each test is discussed in turn, and the formulas for equal censoring are
collected in Table 5.2. .

1. The first extension of the Wilcoxon test to allow censored observations was
that proposed by Gehan (1965) and Gilbert (1962). Tarone and Ware (1975)
show that Gehan’s test can be thought of as a weighted logrank test, with the
weight at each event time being proportional to the number at risk. In the
present notation, the weight function is

R,

n

Ry Ry

n nz.

Kizl) — KLO) =
This test reduces to the Wilqoxon test if none of the observations are censored.
These formulas are equivalent to those of Gehan (1965) for the exponential
scale family and those of Breslow (1970) reduced from k samples to 2 samples.

2. Peto and Peto (1972) derived another extension of the Wilcoxon test. This
latter extension was also obtained by Prentice (1978). (As with generalized
Savage tests, there are several variants, depending on how the variability of
the test is assessed.) Prentice and Marek (1979) show that this statistic is also
a weighted logrank test, with the weight at each time proportional to the value
of the pooled product-limit estimator at that time:

2 0) 7
K® = K;’Fp.

Heuristically, this weight function is the multiple of the logrank weight
function and the estimated proportion of the sample that would be under
observation in the absence of censoring, rather than the actual proportion
under observation, the factor used in K. Since the pooled product limit
estimator is equal to R./n if no times are censored, this statistic reduces to
the Wilcoxon statistic if no observations are censored. When the censoring
distributions differ and 6 # 0, the pooled product limit estimator does not
converge to p; F + p,F.

3. A third extension of the Wilcoxon test was proposed by Efron (1967). The
weight function for Efron’s test replaces E; in Gehan’s weight function with
the corresponding product limit estimator Fj:

3 _ -9 -9
Kfz) - Fl,n(l)FZ,n(Q)Jl,n(l)JQ,n(Z)-

The unstable behavior of the test under heavy censoring, as pointed out by
Efron, is apparent in the presence of H in the denominator of the variance
expression.
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4. Asymptotically distribution-free extensions of the Wilcoxon test are possible.

One such test uses
. n ﬁ A 1/2
L, = F1F2<—$> )
p1H; + p.H,

The tables show that the order of the efficacies depends on the alternative.
For the location family, if H is not identically 1, Gehan’s test is most efficacious,
followed in order by Peto and Peto’s test, the logrank test and the asymptotically
distribution-free logrank test. Efron’s test is always less efficacious than the
asymptotically distribution-free Wilcoxon, which is in turn always less efficacious
than Peto and Peto’s test. For the scale family, the logrank test is always most
efficacious and Peto and Peto’s test is always more efficacious than Gehan’s test.
This reverses the ordering of these three tests under location alternatives. Other
comparisons depend on the censoring distribution.

In the absence of contiguity, tests of the form (1.1) may not have the best
possible asymptotic behavior. For the exponential location family, an extension
of Rosenbaum’s (1954) test is more efficient. Such a test is based on the rank in
the pooled deaths of the first death in the second sample. The asymptotic
distribution of this test statistic is geometric, and the power of the test converges
to 1 if nd(n) diverges.
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