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ESTIMATION FOR THE MULTIVARIATE ERRORS-IN-
VARIABLES MODEL WITH ESTIMATED ERROR
COVARIANCE MATRIX!

By YASuo AMEMIYA AND WAYNE A. FULLER

Iowa State University

The errors-in-variables model in which the unobserved true values satisfy
multiple linear restrictions is considered. Under the assumptions that the
unobservable true values are normally distributed and that an estimator of
the covariance matrix of the measurement error is available, the maximum
likelihood estimators are derived. The limiting properties of the estimators
are obtained for a wide range of assumptions, including the assumption of
fixed true values.

.

1. Introduction. In the errors-in-variables model, the true values of a set
of variables satisfy exact relationships. Inference is based on the observed values
which are the sums of the true values and errors of measurement. To define the
model, let a set of r-dimensional row vectors y, and a set of k-dimensional row
vectors X, satisfy

(1-1) Yt=60+xtﬁy t=17 27""n’

where 8, is a 1 X r vector of parameters and 8 is a k X r matrix of parameters.
We observe Y; and X;, which satisfy
Yt =Y. + eh

(1.2)
Xt=xt+uta t=1327"'1n7

where e, and u, are unobservable error vectors of dimensions r and k&, respectively.
Let ¢ = (e;, u,), and let p = r + k. The ¢, are assumed to be independently and
identically distributed with mean zero and covariance matrix Z,,. Assume that
the ¢ are independent of the x; for all ¢t and j. Equations (1.1) and (1.2) and the
associated assumptions define the multivariate errors-in-variables model.

If the x, are constant vectors, the model is called a functional model. If the x,
are independently and identically distributed random vectors, the model is called
a structural model. In the functional model, the x,, ¢t=1,2, ..., n, are incidental
parameters, which enter the distribution of only finitely many observations as
n— oo,

Most research on the multivariate structural model has concentrated on the
factor analysis model which assumes the error covariance matrix =, to be
diagonal.
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The maximum likelihood estimators for the factor model are discussed in Lawley
(1940, 1941, 1943, 1967, 1976), Anderson and Rubin (1956), Jéreskog (1967), and
Jennrich and Thayer (1973). Other work on the multivariate structural model
includes Joreskog (1970), Joreskog and Goldberger (1972), Browne (1974), Theo-
bald (1975), and Anderson (1984).

The estimation for the multivariate functional model was first discussed by
Tintner (1945) and Geary (1948). Anderson (1951a) derived the maximum
likelihood estimators for the replicated functional model with unknown Z.,in the
context of estimating linear restrictions on the coefficients of the multivariate
regression model. Gleser (1981) gave the limiting distribution of the maximum
likelihood estimators for the functional model with =, = ¢2 I. Gleser also showed
that the estimators could be obtained by minimizing certain norms. Dahm and
Fuller (1981) applied the generalized least squares method to the functional
model. Other literature on the multivariate functional model includes Anderson
(1951b), Whittle (1952), Anderson and Rubin (1956), Gleser and Watson (1973),
Theobald (1975), Hoschel (1978), Nussbaum (1979), Chan (1980), Healy (1980),
Villegas (1982), Chan and Mak (1983), and Anderson (1984).

We consider the estimation of the multivariate model (1.1) and (1.2) for both
the functional and structural cases, when there is available an estimator S,, of
... The model with intercept term B, is chosen because of its wider use in
practice. We assume that S,, is an estimator of Z,, rather than of a multiple of Z,,
because we consider this to be the usual case. There are two common sources for
S... Independent experiments in the past often provide such estimators. Also,
when replicated observations are measured at some of the true values (y,, x;),
the within replicates mean squares matrix can be used as an estimator of Z,,.
With normality of the errors, the means over replicates used as the data points
(Y,, X,) are independent of the estimator of Z.. based on the within sum of
squares.

We derive the maximum likelihood estimators for the multivariate structural
model. The large sample properties of the estimators are obtained under weak
assumptions on ¢ for a wide range of assumptions on x,.

2. The maximum likelihood estimator. Let the model (1.1) and (1.2)
hold and assume that there is available an estimator S, of Z... In this section we
derive the maximum likelihood estimators of the parameters in the model for the

normal structural case.
First, we introduce some notation. Let z, = (y;, X,), and Z, = (Y,, X,), and
define the statistics

Z=n'"3%",2=(Y,X),

— _ 1\l ' N AY _ ) — (Myy My
my = (n—1)7 St (2 - Z)'(Z - Z) <mxy mxx),
with analogous definitions holding for z and m,,. Throughout this paper, m,,
denotes the corrected cross product matrix with divisor (n — 1) for any sequences
of vectors a,and b,, t=1,2, ---, n.
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We assume that (X, ¢)’ are independently and identically distributed as
normal vectors with mean (u,, 0)’ and covariance matrix block diag{Z,,, =..},
that S, is independent of Z;, and that d S., is distributed as a Wishart matrix
with parameter 2., and degrees of freedom d. Because it is more common to work
with the unbiased sample covariance matrix mg; constructed with a divisor
(n — 1), we define a slightly modified log likelihood function

log L
(2.1) =Co— 27" (n — Dllog| Zzz| + tr(mzz272) + (Z — p2)272(Z — 1z)’]
— 27'd[log| 2| + tr(S..22)],
where
EZZ = (ﬂ) I)/zxx(ﬁy I) + zn = 222 + zcn 1174 = (60’ O) + I"x(ﬁ’ I)9

and C, is a constant. We call the function (2.1) the log likelihood adjusted for
degrees of freedom. Theorem 1 presents the maximum likelihood estimators
adjusted for degrees of freedom, that is, the values which maximize (2.1). The
maximum likelihood estimators can be obtained from the results of Theorem 1
by replacing mzz with n™'(n — 1)mg.

THEOREM 1. Let the model (1.1) and (1.2) hold. Assume that

()2 (5). G5 2)).

where Z,, and 2., are positive definite. Also, assume that S,, is independent of Z,
for all t and that the distribution of d S..is the Wishart distribution with parameter
=.. and degrees of freedom d. Let \, = Ay = -+ = 3\,, = 0 be the eigenvalues of
S.*m,S;'? and let Q = (Q., Q2) be the matrix of the corresponding orthonormal
eigenvectors such that

Smz,S:°Q; = QA;, j=1,2,
where
Al = diag{xl, i\2, ceey, Xk}, Ag = diag{xkﬂ, Xk+2, sy, Xp}

IfFh\e<1, the maximum likelihood estimators adjusted for degrees of freedom do
not exist. If N\, > 1, the maximum likelihood estimators adjusted for degrees of
freedom are

Bo, i) = (Y =X B, X), B=Pi)"'Pj=-T,T,,
2.=(n—14d)(n - 1)(my —2..) +d8S.],
Zx = Pu(Ar — DP,
where
2. =@ 1 2.3, 1) =Pi(A, - DP],
P, = SI?Q, = (P}, Pii)’, T»=S:*Q, = (T}, T}
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PROOF. Because fiz = Z maximizes (2.1) with respect to uz, the results for
B0 and u, are immediate. Using the matrix T = S3;'/?Q, we define new param-
eters

Zr. = T'2.T, Zrzz=T'Z2T=AA" + 2y,
where A is a p X k matrix satisfying
AA'"=2,=TZ,T.
Since only [kr + 27'k(k + 1)] elements in A are free, we impose a restriction
(2.2) A’A7'A =D,

where A = block diag{f&l, AQ}, and D is a diagonal matrix with free diagonal
elements. If the log likelihood (2.1) is expressed in terms of the tranformed
variables Z,T and the new parameters, maximizing (2.1) is equivalent to mini-
mizing

(23)  f(0) = (n — Dlog| Zrzz] + tr(A =742)] + d[log| Zr.| + tr(Z7L)],

where 6 contains the elements of A and the distinct elements of .. Setting the
derivatives of f(8) with respect to 8 .equal to zero, we obtain the necessary
conditions for critical points of f(6):

(2.4) Zrzz — JA\)E?%ZA =0,
(2.5) (n — 1)27%2(Zr22 — MZ7hz + d Z74(3r. — D27, = 0.
By (2.2) and (2.4),

A =Z2rA7'A = AD + 2, A7'A

and

AI/QE}LAI/Z;\_WA - A—1/2AI\1,
where I' = (I - D)™ ! = diag{yi, v2, - -+, v} is a diagonal matrix. ‘Therefore,
A7'?A.;, where A., is the ith column of A, is the eigenvector of AY?Z7LAY?
corresponding to the eigenvalue v;, for i = 1, 2, ..., k. Let T' = block

diag{T';, T;} be the diagonal matrix of the eigenvalues of AY237L AY2 where T
contains the k roots corresponding to A%/ ’A. Let H = (H,, Hy) be the correspond-
ing matrix of orthonormal eigenvectors of A/>T7LAY2 Then, by (2.2),

(2.6) A = AV H, (I - T2,

provided the k roots chosen for T, are all greater than unity. Substituting (2.6)
into (2.5), we have

(2.7)  H’AH = block diag{Ty, d[(n — 1 + d)I2' — (n — DI]Y} = A*.

Since A* and A are diagonal matrices and H is orthogonal, it follows that H is a
permutation matrix and that diagonals of A* and A are composed of the same p
elements. Let A2, AJ, ---, A2 be the roots \; chosen for T;, where A\ > 1, i =1,
2, -, k, and let Ay = diag{A?, A2, .-, AY). Then, it follows from (2.6) and
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(2.7) that the critical points of f(8) satisfying (2.2) have the form:
(2.8) A = APH((I - )2, 2. = diagléy, &, - -, 8,),

where §; =1 if \; is in the chosen set (AL, and 6, = (n — 1 + d)7'[d +
(n — 1A, ]if ), is not in the set. If \, < 1, the function f(#) has no critical point
on the open parameter space for 6 and the maximum likelihood estimators
adjusted for degrees of freedom do not exist. Now, assume A, > 1 so that AY > 1
fori=1,2, ..., k. It can be shown that the function (2.3) evaluated at (2.8) is

Cy + Xk g(\),
where C; is a constant free of k and of the choice of \?, and
(29) gw)=(m—-Dlogw — (n — 1 +d)log{(n — 1+ d)'[(n — Nw + d]}.

The function g(w) is monotone decreasing for w > 1 and g(1) = 0. If we let 6 be
the critical point (2.8) with the & largest A; chosen for the set {A?}%,, then 8 gives
the minimum of f(#) among all critical points (2.8). The parameter space Q for 8
consists of all symmetric positive definite matrices 2., and all p X k matrices A
of rank k. We note that f(#) — o if =, approaches a singular matrix or if one or
more elements of (Zr,., A) approaches infinity in absolute value. See Anderson
(1958, page 47). The boundary of Q associated with an A of rank less than k is
the union of % disjoint sets ©;, 0 < j < k — 1, where on @, f(0) is a function of a
symmetric positive definite 2., and a p X j matrix A of rank j. By applying the
above argument to the parameter space Q;, we find that [C; + Yi, g(\; )] is the
minimum of f(#) among all critical points on Q;, 1 <=j <k — 1. On Q;, f(8) — o
if =, approaches a singular matrix or if one or more elements of (Zr., A;)
approaches infinity in absolute value, and the boundary of Q; associated with an
A, of rank less than j is the union of Q,, 0 < # < j — 1. On Qo, the absolute
minimum of f(8) is C,. Since g(w) < 0 for w > 1, the absolute mlmmum of
f(8) on the union of ©;, 0 = j =<k — 1is [C, + Y51 g(A\;)]. Hence, f(8) =
[C, + 3k, g()\ )] is the absolute mlnlmum of f(6) on Q. The expressions for the
estimators follow by transforming 8 to the original parameterization. 0

Anderson (1946, 1984) gave the maximum likelihood estimators for X,,and 2.,
in the structural model where the rank of Z,, is at most k. For the functional
model, the maximum likelihood estimators of the parameters were derived by
Anderson (1951a), and alternative derivations have been given by Healy (1980)
and Villegas (1982).

The maximum likelihood estimators of 8, and 8 derived in Theorem 1 for the
structural model are the same as the maximum likelihood estimators for the
functional model. On the other hand, the maximum likelihood estimator of Z,,
for the structural model differs from that for the functional model.

Under the assumption of Theorem 1, we can perform a goodness of fit test for
the model. An alternative model is the unrestricted model where Z/ ~
NI(u%, Zzz), uz is an unrestricted p-dimensional vector, 2z is an unrestricted
D X p positive definite matrix, and S,, is a multiple of a Wishart matrix that is
independent of Z,.
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COROLLARY 1.1. Let the null model be defined by (1.1), (1.2), and the assump-
tions of Theorem 1. Let the alternative model be the unrestricted model. Then, the
likelihood ratio statistic adjusted for degrees of freedom is

x2=(n—1+d) X2 logf(n — 1 + d)7'[(n ~ DA + d]}
—(n—1) 22,4 log A,

where 7 = min{k, q}, and q is the number of \; which are greater than one. Under
the null model, the limiting distribution of the test statistic is that of a chi-squared
random variable with 27'r(r + 1) degrees of freedom.

Proor. Using the notation in the proof of Theorem 1, the maximum like-
lihood estimators of the transformed parameters for the unrestricted model are

iTZZ = A iTe:o: =L

The value of f(0) 1n (2.3) evaluated at_ the unrestricted maximum likelihood
estimators ETZZ and £, is [C,+ X5, g()\ )], where C; and g(w) are given in the
proof of Theorem 1. By the argument used in the proof of Theorem 1, the
infimum of f(0) under the null model is [Cl + Y71 g(\)]. Hence, if we let 7 be
the likelihood ratio test statistic, then x? = =2 log 7 = Y%,.; g(\;). For the
unrestricted parameter space, 2z; and 2, are any symmetric positive definite
matrices. We transform the parameters defining =, into 8, H,,, and H,,., by the
one-one transformation, where

EZZ = sz + Eccy sz = (B, I)’Hxx(ﬂ; I) + (I, O)IHyy'x(Iy 0)7

B is a k X r matrix, H,, is a B X k symmetric matrix, and H,,., is an r X r
symmetric matrix such that H,, + Z,,is positive definite. Under the unrestricted
model H,, and H,,., are not necessarily nonnegative definite matrices. Under the
null model, H,, = Z,, is positive definite and H,,., = 0. Since there are
27'r(r + 1) distinct elements in H,,.,, the result follows from the standard
likelihood theory. O

The test in Corollary 1.1 provides a test of the model specification (1.1) and
(1.2) against the unrestricted alternative. The test can be used to check the
goodness-of-fit of the model (1.1) and (1.2). Anderson (1946, 1984) discusses the
likelihood ratio test of the null hypothesis that the rank of X, is less than or
equal to k against the alternative hypothesis that the rank of X, is greater than
k. Anderson’s test statistic differs from that of Corollary 1.1 and does not have
an asymptotic chi-squared distribution.

3. Strong consistency. In this section, we discuss the strong consistency
of the estimators 8o, 8, 2., and 2, defined in Theorem 1. In the derivations we
use weaker assumptions than those of Theorem 1. We assume that S,, is based
on d degrees of freedom and that S,,— Z,,, a.s., as d — . Let

3.1) ¢ = lim,_.d™'n.
For the functional model with 0 < ¢ < », Healy (1980) showed that 8o and B are
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consistent and that the maximum likelihood estimator of Z,, constructed under
the functional model is not consistent. The following theorem shows that
Bo, B, 2.., and 2., in Theorem 1 are strongly consistent under both the functional
and structural models if both n and d tend to infinity.

THEOREM 2. Let the model (1.1) and (1.2) hold, and let S,, be an estimator of
2... Assume that the e; are independently and identically distributed with mean
zero and positive definite covariance matrix Z.. Assume that S,, — Z.., a.s., as
d — o, and that lim,_,.d = «. Also, assume either (a) X, are independently and
identically distributed with mean u., positive definite covariance matrix Z.,, and
X, and ¢; are independent for all t and j, or (b) X, are fixed and satisfy

lim, «X = g, lim,_em, =2,
where 2., is a positive definite matrix. Then, as n — %, with probability one,
ﬁ(,, /3, EN, and =, converge to By, B8, Z.., and Z,., respectwely
PrOOF. By the strong law of large numbers for case (a) and by Lemma 3.1
of Gleser (1981) for case (b), mzz— =2z, a.s., and
S:’mg;S;? — 2;1/22222;172, as., as n— o,
Let
Z, =B, DB, D] = Zu — ZuZw 2w,
where
2= - B)2.0 = B), Zuw=Zu — Zub.

Also, let v, = v, = - .- = », > 0 be the eigenvalues of Z,,/23,.2,1/2 and let R be

the matrix of the corresponding orthonormal eigenvectors. Then, the eigenvalues

of 21?2, 2. are s, =1+ v, fori=1,2, ---,kand \;,=1fori=Fk + 1,
k+ 2, --., p. The matrix of the corresponding orthonormal eigenvectors has the
form

(3.2) (Q(I)Gl, Q?Gz) = (Q(l) block diag{Gu, Gz, -+, G, Qng)a
where
Q) =228 IR, Q =2V, - £)'Z2

G, Giz, - -+, Gi,and G, are orthogonal matrices, and s is the number of distinct
roots »;. The eigenvalues A; are locally continuous functions of the elements
in 832 my,S;% (See Franklin, 1968, page 191.) Thus, \; — \;, a.s., for
i=1,2, ..., p. Let w be a point in the probability space of all sequences of
observations. The following arguments are similar to those used in the proof of
Lemma 3.3 by Gleser (1981). Fix w such that 87/’ mz;8;'? — 27/?2,,2.'?, and
A—\,i=1,2, ---,p. The set of such w has probability one. Since Q(w) is
orthogonal for all n, each element of Q(w) is bounded. Thus, for every subsequence
of {Q(w)}, there exists a convergent subsubsequence. The limit of such a conver-
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gent subsubsequence has the form (3.2) for some orthogonal matrices Gy, - - -,

G1,, and G.,. Hence, the limit of Q;(w)A1(w)Q{ (w) over such a subsubsequence is
Q(I)Gldiag{}\l s Tty Xk}G{Q? = 2;1/2[(3’ I),E/»/»(B, I) + Ezz]zl:_el/:2 = E11-

Since the limit Z;; does not depend on the subsubsequence,

Qi (@)A1 (0)Q] (@) — Zy;.

Therefore,
(3.3) QA Q! - 2, as.
Similarly,

QQ — 228, 1)'Z,,(8, DI, as.
Thus,

B, 1)’'2. (B, I) = S/°Q, (A, — DQ{S?
—2.=B D281, as.,

g_nd the strong consistency of 8, 2., gnd 3., follows. For either case (a) or (b),
X — uy, a8, Y = By + .8, a.s., and 8o — By, a.s. 0

4. Limiting distribution. In this section, the limiting distribution of the
estimators 8y, 8, =.., and Z,, is derived. Under the assumption that the degrees
of freedom for S, increases at the same rate as the number of observations n,
the limiting covariance matrix contains a contribution from S, as an estimator
of Z... We show that the limiting distribution of 3, 8, and 2., can be derived
under relatively weak assumptions on x,, and that the limiting covariance matrix
has a common form for a wide class of x,. A stronger assumption on X; is
necessary to obtain the limiting distribution of 3, for the structural case. For
the functional model, Anderson (1951b) discussed the limiting distribution of the
maximum likelihood estimators under the assumptions that the x; are fixed, that
n is fixed and that the error variances tend to zero. For the univariate case, Fuller
(1980) gave the limiting distribution for fixed error variances and identified the
contribution to the limiting covariance matrix of 8 associated with the estimation
of Z...

For an m X n matrix A, let vec A be the mn X 1 vector obtained by listing the
columns one beneath the other beginning with the first column. For an m X m
symmetric matrix B, let vech B be the 27'm(m + 1) X 1 vector obtained by
listing the elements that are on or below the diagonal beginning with the first
column. Let ®,, be the m? X 27'm(m + 1) matrix and ¢,, the 27'm(m + 1) X m?
matrix such that

vec B = &,vech B, ¥,, = (9,%,,) '®..
See Henderson and Searle (1979) for a discussion of the vec and vech operators.

The following lemma will be used in the derivation of the limiting distribution
of the estimators. A proof is given in Amemiya (1982).
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LEMMA 1. Assume that ¢/ ~ NI(0, Z,). Assume either (a’) X, and ¢; are
independent for all t and j, and X, are independently and identically distributed
with covariance matrix Z,,, or (b’) X, are fixed and satisfy lim,_,.m,, = Z,,. Then,
asn— o,

/o[ Vee My N 0 2. ®Z, 0
Vech(mcc - Ecc) L 0/’ 0 2 ‘//p(zcc ® zcc)wxl) ’

The following theorem presents our principal results on the limiting distribu-
tion of the estimators /30, /3, Em and ...

THEOREM 3. Let the model (1.1) and (1.2) hold, and let S,, be an unbiased
estimator of Z.,. Assume that ¢, are independently distributed N (0, Z.,) random
variables with positive definite ... Assume that S,,is independent of Z, for all t,
and that d S., is distributed as Wishart with parameter 2., and degrees of freedom
d. Also, assume that 0 < ¢ < «, where c is defined in (3.1).

(i) Assume that the X, satisfy either assumption (a) or assumption (b) of
Theorem 2. Then,

Bo— Bo) [0 'Vo0 Vos Vo ||
2\ vec(B — B) -, N\ |0 Vs Vs Vﬁc
‘vech(Z,, — Z,,) N0/ Wi, Vi, 'V,
where
VOO = Euu + (Irxr ® #x)vﬁﬁ(lrxr ® “;’)7 VOﬁ = —'(Irxr ® I-Lx)vﬁﬁ,
VO: = _(Irxr ® I-"x)vﬁn Vﬁﬁ = Euv ® {2 [zxx + (1 + C)Epp]z
Vﬁ: = —2C{Evc ® [zx—xlzpp(ﬁ) I)]}wé’
V.. = 2c0,[(2.. ® Z.) — (1 + ¢) (02w Z) ® (2uZu ) Vs,
EUE = E':C = (I7 - ﬂ,)ztt'

(ii) Assume that X, are independently distributed N (u,, Z..) random variables
and that x, and ¢; are independent for all t and j. Then,

(Bo = Bo)’ 0) (Voo Vos Vo Vo

2 | vee(B — B) 0 Vs Vas Vi Vi
" ven3, -2 | TEN o [ Vi Vi v v ||

Vech(Em - Exx) 0 V(’)x Véx Velx Vxx

where
Vor = =(Lr ® p)Vir, Ve = 2{20u ® 2L [Zee + (1 + )2, 1104,
Vo = 20 Yp[(Z0Zi/ 2o ® 20 Z) — (Bu ® Zu0)Vk
Vi = 2 Yi[(Sxx ® Zxx) + c(Zuw © Zu)
= (1 + ) (CuZw 2w © ZuZe Zu) Vi,
Zxx = Zu + Zuu
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PRrOOF OF (1). Observe that

vee[(8, DS7'mzz (1, — 8)']
= vec[(8, DSZ2(QiAQ] + Q:A.Q5)SY(I, — 8)']
= vec[Fu(8 — B) + (B — BF,]
= (Ir ® Fi + F/, ® Lii)vec( — 8),

where I.x, and I,x; are identity matrices of dimensions r X r and k X kK,
respectively, and

Fy = (8, SZ' (B, DPwAPhy, F,. = —T, AT/, — 8)S.(I, - 8)".
The argument used to obtain (3.3) can be used to show that, as n — oo,

A I -1
PkkAIPI:k - Exx + Epp) a.s., TrrAQTr{r - zuv , as.,

(4.1)

(4.2)
T, T, — =3}, as.
Thus,
(4.3) Lu; ® Fr + F/, @ Lk — Lixk ® (Z,)2,,), as.,

and the limit is nonsingular. Also,
8, DS my(I, — B)
= (8, DZ.[(B, )'m,, + m,, — 2. ]I, — B’)’
— (8, DZL'(S.. — Z.)@, — ') + 0,(n7")

=3, (m, +my —S,) +0,(n™!) = Op(n—l/Q)’

(4.4)

where

m,, = m.(I, - 8'), my=Z%,6, D'm. (I, — 8'),

Se = Z,,(8, DZZ'S.(0, — ).
By (4.1), (4.3), and (4.4),
45)  vec(B — B) = (I, ® Z3!)vec(m,, + my, — Sy,) + 0,(n™"2).
Also,
(46 Bo—Bo=7 — [vec® — A (L, ® ) + 0,(n").
Observe that

(I, = 8 )my, (I, — B')'T, = (I, — ")m,,S;/°Q,

= (I, - 8)S.(I, — B')'T,A,.

Hence, by (4.2) and (4.5),
@D To(hs = DT, = 23 (my, — 8,,)25 + 0,(n7™2) = 0,(n™7).



MULTIVARIATE ERRORS-IN-VARIABLES 507

We also have

(4.8) mz = B, D'2.8, 1) + S. + S.(, - 8")'T.(A; — DT;, (A, — 8')8...
By (4.5), (4.7), and (4.8),

49) 2.=8S.+ (n—1+d)7(n - DZWZal (my, — Su)Z0l e + 0,(n 7).

By the Wishart assumption on S.., the joint distribution of n'?vech(S,, — Z..),
n'*vec 8;,, and n'*vech(S,, — Z,,) tends to a normal distribution. By Lemma 1,
the joint distribution of n'/?¥’, n'/?vec m,,, n**vec m,,, and n*vech(m,, — Z,,)
tends to a normal distribution. Using Lemma 1, (4.5), (4.6), and (4.9), we obtain
the result by evaluating the limiting covariance matrix.

PROOF OF (ii). Observe that
(4.10) S.I—8) =Zu+0, (n‘l/z)
Using (4.7) and (4.10), we write the lower right k X k corner of (4.8) as
(411) 2, = mxx — S — 2w (M — Su) 2w B + 0,(n712).

Hence, the result follows from Lemma 1, (4.5), (4.6), (4.9), (4.11), and the
argument used in the proof of part (i). 0

In Theorem 3, if the normality of ¢, in part (i) and part (ii) and the normality
of X, in part (ii) are replaced by the existence of fourth moments, and if the
Wishart distribution of d S,.is replaced by the condition that the distribution of
d'*(S,, — Z..) tends to normal as d — o, then the estimators have a limiting
normal distribution, but with different parameters than those given in Theorem
3. It can be shown that the results of Theorem 3 hold when X, is singular,
provided Z,, is nonsingular.

In the literature on the structural equation model, the limiting distribution of
the estimators is often derived by the standard normal likelihood theory. Such
an argument is not directly applicable under the assumptions of part (i) of
Theorem 3.

Under the assumptions for the functional model stated in part (i) of Theorem
3, n'?>vech(Z,, — m,,) has a limiting normal distribution. The limiting covariance
matrix takes the form of that given in part (ii) with (Zxx® Zxx) in V,, replaced
by (2 2, ® Zuy + 2 ® Zu).

It can be shown that the results for 8, and 8 in Theorem 3 with ¢ = 0 provide
the limiting distribution of the maximum likelihood estimators Bo and B for the
model (1.1) and (1.2) with known Z,,, where Bo and § are obtained from 8, and
8 by replacing S.. by the known =... Gleser (1981) obtained the limiting distri-
bution of 8o and 8 for the functional model with Z,.= ¢*I, where ¢ is unknown.
If 2., and Z,, are replaced by lim,_.n"~ 1¥3r  x!x,and o2, respectively, the limit-
ing covariance matrix for 8 is the same as that obtained by Gleser for the no-
intercept model. Also, the limiting covariance matrix for 8 reduces to Fuller’s
(1980) result for the univariate model.
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The limiting covariance matrices in Theorem 3 are simple functions of the
unknown parameters 8, 2., and Z,,. Thus, consistent estimators of the limiting
covariance matrices can be obtained by replacing 8, Z.. and 2., with 3, ﬁu, and
... The expression for the limiting covariance matrix in Theorem 3 is of practical
importance because the only matrices to be inverted in the evaluation of the
covariance matrix in Theorem 3 are 2., and £,,. These matrices are of dimension
k X k and r X r, respectively, while the total number of parameters in the model
isr+kr+k(k+1)+%%(k+r)k+r+1).
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