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ROBUST REGRESSION DESIGNS WHEN THE DESIGN SPACE
CONSISTS OF FINITELY MANY POINTS!

By KER-CHAU LI

Purdue University

We consider the nearly linear regression problem when the assumed first
degree model is contaminated by some small-constant, and the design space
consists of finitely many points, symmetrically distributed on the interval
[=Y, ¥2]. Under the usual squared loss function for the estimation of the slope

-and the intercept, and with the use of the least squares estimators, the problem
is to find the designs which are optimal in the sense of minimizing the
maximum risk among symmetric designs. The results turn out to be quite
different from those obtained by Li and Notz (1981) in a setup that is similar
except that the design space is the whole interval [—1%, %2]. In many cases the
optimal solution has a support containing more than two points.

1. Introduction. Suppose we have a regression setting given by
(1*1) Y(xi) =f(xi) +ei’ i= 17 e, n

where the {e;} are uncorrelated random variables with mean 0 and variance o2
The x; are elements of a compact subset X of a Euclidean space, and f is a real-
valued function on X from a class F,. Without robustness considerations, F, is
typically composed of linear combinations of specified functions fo, f1, -- -, fx.
The regression problem is concerned with making some inference about the
unknown coefficients of these specified f; and the associated optimal design
problem is to choose the x;’s in an optimal manner for this inference (see Kiefer
(1974) and the references given there for results on optimal regression designs).
However, as first discussed by Box and Draper (1959), there are some dangers
(e.g. in estimation, there may result a large bias term) inherent in a strict
formulation of F, which ignores the possibility that the true f may only be
approximated by an element of Fy; in other words, the true f may be equal to an
element f, in the assumed model plus a contamination g, which is not in F,.
Thus, instead of (1.1), we consider

Y(x;) = fo(x:) + gx;) +e;, i=1,---,n

where x;’s and e;’s are as before, f, is in Fy, and g is in another class G. A careful
description of some problems in this context is given by Kiefer (1973) in the case
where G is a finite dimensional space, which is a common assumption made by
most authors before then.
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270 KER-CHAU LI

In this paper, we consider the case that Fy, = {fo| fo(x) = a + Bx; a, B € R}
and G = {g||g(x)| <8, min,s [ (g(x) — a — Bx)* du(x) = [ g%(x) du(x)}, with
6 = 0 and u(-) being the uniform probability measure on X C R. When é = 0,
this is exactly the ideal straight line model. To allow the true mean function to
be deviated from the ideal straight line, we may set 6 > 0. This 6 measures the
amount of model-violation by the sup-norm, a quantity that is extremely simple
for the designer to think of. The equality that min,s [ (g(x) — a — B(x))* du(x)
= [ g%(x) du(x) is merely to make the slope and the intercept of the ideal straight
line identifiable. Hence our assumptions provide a natural model-robust setting
for guarding against possible departures from straight lines. Since our purpose is
to find good designs, the estimates will be restricted to the least squares ones
(denoted by &, £). Consider the loss function w(a — &)® + w3(8 — B)® with w,
and w, being specified non-negative numbers. Apparently, the design minimizing
the maximum risk may depend on ¢2, §, n, w;, w,; and X. We shall focus on the
case that X = {k/2N, —(k/2N) |k =1, 2, ---, N} for a fixed natural number N
(similar results may be obtained for the case that X consists of any 2N or 2N +
1 points symmetrically distributed on [—Y%, 2]). As usual, a design will be denoted
by a probability measure ¢ on X. Thus the number of observations to be made at
point x = k/2N is n&(k/2N). Approximate designs for which n&(k/2N) needs not
to be an integer will be considered here. In addition, since the problem is
symmetric about 0, we shall seek designs among those symmetric ones; i.e.,
£(k/2N) = &(—k/2N), for k=1, - - -, N. Denoting the set of all symmetric designs
by =, we shall find an £ in = minimizing

(1.2) max,c, . per E{wia — &) + w8 — B)?}.

Put
2 w20_2 -1
R(g, & wl,w2)=w%< f g(t) dé(ﬂ) = ( f £ df(t)) :

2
+w%( f g(t)t de(t) / f t? d&(t)).

A straightforward computation shows that Efw}(a — &) + wi(8 — B)?} =
R(g, &; wy, ws) + wi(a%/n). Since wi(o?/n) is a constant, minimizing (1.2) amounts
to minimizing

(1.3) MaXec,qoserR(8, £; W1, w2).

Mathematically, it is easier to consider two classes of contaminations: G° =
{glg € G and g(x) = g(—x), x € X} and G° = {g|g € G and g(x) = —g(-x),
x € X}. Respectively in Section 2 and Section 3, we shall find the designs
minimizing
(1.4) max.ecs,«ser (8, £ w1, w2).

(1.5) maXeegeaserR(8, §; w1, we).

Section 4 combines the results of Sections 2 and 3 to yield the solution of
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minimizing (1.3). Denote the uniform measure on {+(i/2N), + ((i + 1)/2N),

-, = (N/2N)} by w; and the uniform measure on {+(i/2N)} by {;. Qualitatively
the robust optimal design we obtain is either a mixture of x; and {x, or a mixture
of up and ¢, or a mixture of u; and {;—, with j < j°, where j° is a fixed (depending
only on N) integer defined by a certain cubic polynomial P (see Section 3 for the
definition). For large N, j° = (V6 — 2)N. Bickel and Herzberg (1979) and Bickel
et al. (1981) obtained designs robust against the distributional dependence among
observations. Their designs look somewhat similar to ours. The theoretical
connection is still unknown, however.

As an illustration of the results obtained, we list the robust designs for N = 7
in Section 5. Section 6 discusses what may happen when N tends to .

Let us briefly review some relevant papers before closing this section. Huber
(1975) considered essentially the same problem as ours with X = [—Y, 14] and
took L,-norm to measure the amount of model-violation. However his formulation
leads to the restriction that the designs must be absolutely continuous with
respect to Lebesque measure, which means no implementable designs are consid-
ered. Although Huber mentioned that his designs should be approximated by
finite support designs, the crucial problem about the sense and manner of
approximation have still not been discussed. Marcus and Sacks (1976) considered
a different class of model-violations. They took G = {g||g(x)| = ¢(x)} for a
specified function ¢ with ¢(0) = 0. The designs they considered have finite
supports and they did not restrict to the least squares estimates. But the
assumption that ¢(0) = 0 means that there is no contamination at the point
x = 0. Pesotchinsky (1983) extended some of their results to linear regression in
R*. Li and Notz (1981) essentially used the same formulation as that of our paper
except that they took X to be the entire interval [—Y, %]. The results they
obtained, however, were rather different from what we have here. They showed
that the design putting masses equally on two points % and — is optimal for
any values of ¢, §, n, w;, and w,. Note that in Li and Notz, designs with infinite
support were not considered. In fact there exist designs with infinite supports
that are better than the two point design. Li and Notz also considerd the case
that X C R*.

To avoid triviality, we assume that N = 3.

2. Symmetric contaminations. In this section, we shall find an ¢ € &
minimizing (1.4).

First, because any symmetric g contributes no bias for the estimation of the
slope, we have

2 -1
R(g, & wi, wy) = w%( f g(t) dé(t)) 4 2he ( f £ dé(t)) :

Let £ be the ith smallest values in {§(k/2N): k =1, --., N} and define £* by
E(k/2N) = £*(—k/2N) = £y, k=1, - - -, N. It is clear that

(2.1) f t2 de(t) < f t2 dE*(¢).
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The least favorable contamination, say h, for £* can be constructed easily. When
N is even, h(k/2N) = h(—k/2N) = § for k = (N/2) + 1, and h(k/2N) =
h(—k/2N) = =6 for k = (N/2). When N is odd, h(k/2N) = h(—k/2N) = 6 for k>
(N + 1)/2, h(k/2N) = h(—k/2N) = =6 for k < (N + 1)/2, and h(k/2N) =
h(—(k/2N)) = 0 for k = (N + 1)/2. Now taking h; to be the function in G} ; such
that if £(t) = &) then h.(t) = h(k/2N), we have

2

maxgeasw%’(f &(t) dE(t)) = ( f he(t) dE(t)) =w ( f h(t) dE*(t))
2
= maxgea'w¥< f &(t) dE*(t)) .

This together with (2.1) shows that to minimize (1.4), we need only to minimize

2 w2a2 -1
(2.2) w%( f hit) ds(t)) + = ( f t2 dem) :

subject to

1
(2.3) 0= E(é%\f) = g(%) =...= E(ﬁ)'

£ will be said to be nondecreasing if (2.3) holds.
For any a = 0, define =, = {£: [ h(t) d&(t) = a}. We first minimize (2.2) subject
to (2.3) over the class E,. This is equivalent to maximizing

(2.4) 2 S, <i> (2';.)

subject to (2.3) and

s s (A -

Thus by the knowledge of linear programming, we claim that the solution vector
(£(1/2N), - --, £(N/2N)) cannot take more than 2 distinct nonzero values as its
coordinates. Note that besides (2.5) there is another linear constraint involved:

(2.6) 2 ¥, z(%,) =

The above claim can also be verified directly by taking x; = £(i/2N) —
£&(@—1)/2N),i=1, ---, N, rewriting (2.2)-(2.6) in terms of x;, and showmg that
at most two x;’s are nonzero.

Next, the following lemma further reduces our consideration to ¢ with the
form p{nx + (1 — p)u; where 0 < p < 1. Recall the definition of u; from Section 1.
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LEMMA 2.1. For £ of the form pu; + (1 — p)u; where 1 = p = 0 and {i, j} #
{1, N}, there exists a £’ such that maxgecR(g, £; w1, w2) = maxeqR(g, ¢';
Wi, wZ)-

The proof of this lemma will be given in the Appendix. Write Sy = [ ¢ du,(¢).
Now, by a simple computation, we get
maxgeqeR(g, p{nv + (1 — p)us; wy, wo)

2.7) .

w3a? i
= wip®® + —; <Zp + Sv(1 - p)) .
Thus minimizing (2.7) over {0 < p < 1}, we obtain the solution { minimizing
(1.4). This is stated in the following:

PROPOSITION 2.1 Suppose p solves the equation

N A T

Then puy + (1 — p)u; minimizes (1.4) over £ € E.

3. Antisymmetric contaminations. In this section, we shall find the £
minimizing (1.5). All the proofs of the lemmas will be given in the Appendix. For
any g € G° it is clear that

2 -1 2
R(g, & wi, wy) = w%["; ( f ¢ dé(t)) + ( f 8(t)t di(t) / f ¢ dé(t)) ]

Thus we may assume w, = 0 and w, = 1 without loss of generality. For
convenience, write R(g, &) = R(g, &; 0, 1). We proceed to compute

maxgeqR(g, £). Leti = (iy, ---, iy) be a permutation of (1, 2, ---, N). Define h;
by

1, for j> j*

i (i) (=Zjmjr 1 + Tjsjr ), for j=j*

(8.1) h‘(ﬁ\i) - for j<j*’

—hi(—i;/2N)
where j* is the unique integer such that
(3.2) =l < Xjmjr b = Lj<ir b S e

Take

IxI

lede e = 5



274 KER-CHAU LI

LEMMA 3.1. Ift € &;, then
maxgEG"R(g’ E)

(3.3) . » 2

Unlike the case of Section 2, the nondecreasing £* (defined in Section 2) does
not always improve £. This makes the problem of minimizing (1.5) more difficult
to solve. But some techniques used before will still be useful. More precisely, for
any a = 0, take 5;, = {¢£: £ € 5; and [ hi(¢)t di(t) = a}. First we minimize
(3.3) subject to ¢ € X;,. This is equivalent to maximizing [ t* df(t) =
2 YN, (k/2N)?¢(k/2N), subject to the conditions that 2 Y&, hi(k/2N) - k/2N
- £(k/2N) =a, 2 T, £&(k/2N) =1, and 0 < £(i1/2N) < - - - < £(in/2N).

Thus as in Section 2 we obtain that the solution vector (£(1/2N), ---,
£(N/2N)) cannot take more than 2 distinct nonzero values as its coordinates.
But this class of design measures is still too large. We need the following lemma
to focus the search of the solutions to a smaller class.

LEMMA 3.2. The design measure £ minimizing (1.5) over £ € £ is nondecreasing
and takes at most 2 distinct nonzero values as its probability masses.

Write h = h; fori = (1, 2, ..., N). By Lemmas 3.1 and 3.2, it suffices to
minimize

2 -1 2
(3.4) % ( f £? dg(t)) + 52( f h(t)t dE(t) / f t2 dg(t))

over the class
(3.5) E'={t=pu+(1—-pujl0=<p=<landl=<i<j=<N}

The problem now looks relatively simple. But to directly carry out the minimi-
zation (i.e., to express (3.4) in terms of p, i and j and then to take derivatives
etc.) is still not easy because of the complexity of h. We find that the following
lemma helps simplifying the matter greatly.

Take 7; to be the uniform design measure on {+(j/2N), =((j + 1)/2N), ---,
+((N — 1)/2N)}; denote P(x) = x® + 3(N — 1)x* — 6(N? + 3N — 2)x +
N(N + 1)(2N + 1); let j° be the largest integer such that P(j°) >0and 1 < j’ <
N. .

LEMMA 3.3. For any j such that 1 < j < N, there exists a pair of nonnegative
numbers (r;, s;) such that rj + s; =1,

(3.6) f B0 dn) = | - RO i + 5000,

(3.7) f t* dn;(t) < f t? d(ri§-1 + s;¢n)(t), for j>j°
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and

(3.8) f t% dni(t) = f 2 d(ri¢—1 + sitn)(¢), for j=j°

Take Z' = {{ = p{n + (1 — p)up: 0 = p < 1} and E* = {{ = py; + (1 — p)§ju:
j=2,--,7%and0<1—p=<p . (N—j+ 1)!}. Clearly, ' U Z2 is a subclass
of Z° Using Lemma 3.3, we now demonstrate that the solution of minimizing
(8.4) over =° can be found in E' U =2

For any £ = pu; + (1 — p)u; in E°, consider the following six different cases:

(i) j=Nandi=j°
(i) j=Nandi> j.
(i) j= N and i < j°.
(iv) j°<j<N.

(v) j=j%andi=j—1.
(vi) j=j%andi<j—1.

Cases (i) and (v) lead to the desired “¢ € 5' U 52”. For case (ii), write
E=p(N=DIN=-i+D) "'+ [pWN—-i+1)"+ Q1 —-plin.

Construct ¢’ =p - (N=i)(N—=i+ 17" - (1 —e)m + e(rifis + si6n) +[p - (N
— 14+ 1)7'+ (1 — p)]¢{ny where ¢ > 0, and r; and s; are defined in Lemma 3.3.
Clearly, for a suitably chosen &, £’ is of the form p’u; , + (1 — p’){n. Also, by
(3.6) and (3.7) of Lemma 3.3 and (3.4), £’ is at least as good as £. Repeating the
above argument several times, we end up with an ¢ of the case (i). This settles
Case (ii). For Case (iii) the argument is similar. But instead of moving some
masses from {+(i/2N), ---, £((N — 1)/2N)} to {£(( — 1)/2N), £(N/2N)}, we
now use (3.6) and (3.8) of Lemma 3.3 and move some masses from {*(i/2N),
+(N/2N)} to {£(( + 1)/2N), ---, £((N — 1)/2N)}. Repeating this argument
several times, we may end up with the Case (i) or the Case (v) as desired. For
the Case (vi), moving some masses from {+(i/2N)} to {+((j — 1)/2N)}, we can
reduce the bias [ h(t)¢ d£(t) (here note that h(t) <0 for | ¢ | < j°/2N) and increase
the design variance [ t* d(t). For the Case (iv), using argument similar to that
in Case (ii), we may obtain an ¢’ of the form p’u; + (1 — p’){y or pu; +
(1 —=p)p'ue + (1 — p’)n]. The former case belongs to Cases (i) ~ (iii); for the
latter case, the arguments similar to those for the Case (vi) and the Case (iii)
will then lead to the desired result.

We now restrict our attention to ' U E° The design variances [ t d&(t) in
this class run from Sy to % and the correspondence between designs and design
variances is one to one. Moreover, as the design variance increases, the bias
[ h(t)t d&(t) decreases. Thus each design in this class should be optimal for some
(o, 6). To actually find the optimal design for a given (o, 6), we need to compute
(3.4) for £ € E' U E2 This is done in the following.

Let V; = (TN, k*)/AN*(N — j + 1) and B; = j(j — 1)/4AN(N — j + 1). For
tEE,

maxeecR(g, £) = (e*/n)x + 6% (1 — 4Vjo)™2 [2(1 — 2Bjo) — x(2V,0 — Bp)J?,
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where x is defined as ([ t> d£(t))™ = (%p + (1 — p)Vp)™'. For £ € E?,

2
maxgec-R(g, §) = %x + 6%(4V; — (j — 1)’°N?%)~?
-1\ x(j—1) . ~ >
: [2<2BJ+JN )— ]N 2V, + (j— 1)N7! -Bj)},

where x is defined to be ([ t2 d&(¢))™ = [((j — 1)/2N)°p + V(1 — p)]™". These
two functions are quadratic in x and can be rewritten as

Q(x) = 6°F?H?x* + ((6*/n) — 26°F?H;G))x + 6°F}G?,
forx € [ViY, ViAL j=2, ---, j° o, where

._12—1 ._1
F,-=[4V,-—<J——N—>] , G=4B+21—

H =(—-1)N7'2V,+ (j —1)N'B))

forj=2,---,j%and F. = (1 — 4Vjo)™", G.. = 2(1 — 2Bjo), Hx = 2Vjo — Bjo, Vo, =
Y, and Ve, = Vjo.

LEMMA 3.4. Q(x) is convex for x € [V}, V11].

Let T)= (G; — H;V;!)F?H; and R; = (G; — H;V;4,)F?H; for j =2, ---, j°, .
By standard techniques and Lemma 3.4, the minimizer of Q(x) over x €
[VZL Vi1 =[4, Si'] (hence the £ minimizing (1.5)), can be derived directly. This
is stated in the following

PROPOSITION 3.1. The design £ which minimizes (1.5) is described below:
(i) If R, < 6%/2nd® < T, for some j such that 2 < j < j°, then

3 Vi — a a— (j—1)2N2
£ (w -G- 1>2N-2)‘7‘“ * (V,- - (- 1>2N-2)“"’

where a = ¢’F}H?/(26°F;G;H; — ¢*/n);
(i) If T, < 0%/2nd® < R;, for some j such that 2 < j < j°, then £ = pj_i;
(Gii) If Too < 0%/2n8% < R.., then £ = wp;
(iv) If Rw < 02/2n6% < Tw, then £ = (@ — Vio)(Ya — Vio) v + (4 — o) (%4 —
Vo) ujo, where a = 26°F.Hy/(26°F%H..G» — */n),
(v) If 62/2n6% = T, then £ = {.

4. Robust designs. In this section we shall find the £ minimizing (1.3).

First, suppose w; = 0. It is easy to see that max,cR(g, & 0, w)) =
max.eq-R(g, £; 0, wi) because any g can be written as the sum of a symmetric
function g, and an antisymmetric function g, and the bias [ g(t)t di(t) =
[ g:(t)t d&(t). Thus Proposition 3.1 is applicable.
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THEOREM 4.1. When w, = 0, the £ minimizing (1.3) is equal to the ¢ of
Proposition 3.1.

Next, we turn to the case w, # 0. The designs of the form pux + (1 — p)u, are
reasonable candidates because of Proposition 2.1. In fact,

R(g, pun + (1 — p)us; wy, wy)
= Up*(g(%) + g(—%))* wi + (¢*/n)wi - (Y4p + Sn(1 — p))*
+ Y6 w3 (8(%2) — g(—))*p*(*4p + Sn(1 — p)) 2

The maximum over g € G occurs when g(%2) = g(—%) = 6 or g(¥2) = —g () = 4.
The former occurs when

(4.1) wo/wy < 2(%p + (1 — p)Sn).

This is the case where the symmetric contamination dominates the antisymmetric
one; i.e., maxegR(g, p{n + (1 — plu; w1, wy) = maxeeR(g, pin + (1 — p)u).
Now, we obtain the following.

THEOREM 4.2. If 6%/né? = Ya((wy/2w,) — Sn) (Y4 — S,) "% and w,/w, < Y%, then
£ =pin + (1 — p)u, minimizes (1.3), where p solves the equation (2.8).

ProoF. By Proposition 2.1 and the above argument, if p solves (2.8) and
(4.1) holds, then ¢ = p{y + (1 — p)u; minimizes (1.3). On the other hand, it is
straightforward to see that (2.8) and (4.1) imply the sufficient conditions in this
theorem. O

In a similar spirit, we shall derive the conditions under which the antisym-
metric contaminations dominate the symmetric ones. This is suggested by the
following lemma whose proof was given in Li (1981).

LEMMA 4.1. Forany t € E' U 52,

maxeecR(g, & w1, we) = maxgeeucR(g, & wi, we).

It remains to actually compute max,eqR(g, £; w1, we) and max,ecR(g, &; ws,
w,) for £ € E' U E2 This involves only straightforward calculation. It turns out
that the equality max,ecR(g, §; wi, We) = max,ecR(g, &; w,, we) holds

‘

(i) for £ € 2! (i.e., £ = pin + (1 — p)w), if
2 \~1
(4.2) W2 =2N—=-7"+ 1) [j—1+p(N - 2°+ 2)]F.H. (l‘i) ’
wi né
and

(ii) for ¢ € E® (i.e., £ = p§i-1 + (1 — p))), if

2 -1
(4.3) 22N -j+ 17 -1 - pNEH ( ) :
1

g
no?
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Now, by Proposition 3.1, we have

THEOREM 4.3. If the choices of ¢%/nd”* and w./w, are such that the assumptions
of Proposition 3.1 hold and either (4.2) or (4.3) is satisfied, then the design & in
Proposition 3.1 minimizes (1.3).

5. An illustration. In the following example, we take N = 7.

First, consider the case that 0 < w./w; < Y. Theorem 4.2 is applicable here,
with Sy = S; = 0.1020. The design space X is {*V14, +%14, --., £14}; {; puts
masses equally on i/14 and —(i/14); u; puts masses uniformly on {*i/14,
+((i + 1)/14), ---, +%}. Denote 62/né* = X and (wo/w;) = w. Table 1 lists the
solutions according to different values of A and w.

Note that p(0.1480p + 0.1020)? is an increasing function of p. Thus we see
that for a fixed w, as A increases, p also increases. This simply says that if the
sampling variances tend to dominate the model violations then we tend to use
the classical two-points design {;. On the other hand, if the amount of the model
violation turns out more serious than the sampling variances then we tend to use
the uniform design p;. Table 1 illustrates how to actually achieve optimality by
a suitable mixture of {; and ;.

Next, we turn to the case that w,/w; = %. Theorem 4.3 is applicable now. The
value of j° here turns out to be 3. Table 2 provides the optimal designs found by
this theorem.

TABLE 1
Designs found by Theorem 4.2. (N = 17).

17503 2 .
Range of — ot _ Optimal
w, Range of _mSz (=N designs P
(= w)
0.2041 ~ 0.5000

0.0000 ~ 0.2041
0.0000 ~ 0.5000

11.420 —2.331 ~ 0.8448 - w2

Ipts + (1 — p)ur | p(0.1480p + 0.1020)2 = 0.07398w\

0.000 ~ 0.8448 - w™*
0.8448 - w2~ +o

$ —

TABLE 2
Designs found by Theorem 4.3. (N =17).

a2
=2 w.
Range of nd, ;’—2- = this value

(=N !

Optimal

designs Values of p

.0000 ~ .01514

A1[.01749(.1108 — )™ — .1583]

puz + (1 —p)h

.09972(.1108 — A\)™! — .04511

01514 ~ 03528 1.655 e —
03528 ~ 1090 | \"1[.2564(.5544 — \)™' — .4356] | pus + (1 — p)i2| .5229(.5544 — \)™' — .1739
1090 ~ .3224 1.286 4 —
3224 ~2072 |AU[2.975(4.221 — \)7' — .3486]| p& + (1 — pua| 4.784(4.221 — N1 — 1.227
2.072 ~ 40 5000 I —
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6. Asymptotics. Let £, denote the measure to which the £ minimizing (1.3)
tends, as N — . Denote the uniform probability measure on {¢: x < | t| < %} by
u. First it is clear that as N — o and j/2N — x, we have

1/2

1
2 -
SN b d e t dt 12,
M —> My,
N73P(j) — 2(2x — 1)(2x% + 4x — 1),
J° V-2
oN~ 2
1
V,-—)E(1+2x+4x2) for j =< j°
B, — x%(1 — 2x)™" for j=j°
and
7} - Rj b d O

Let ¢ be the design which puts masses equally on points %2 and —%. Then the
following is an asymptotic version of Theorem 4.2.

THEOREM 6.1. If ¢2/né2 =9 - (wo/w1) — %2 and we/w, < Y, then &. = p{ +
(1 — p)uy, where p is a nonnegative number solving

p(2p + 1) = min{12 (;“f) % 9}-.

Similarly, we obtain the following asymptotic version of Theorem 4.3.

THEOREM 6.2. Let A = 6?/nd%. There are three cases:

() If A = 2v6/3 and wo/w, = Y, then £. = §.
(i) If 2v6/9 < \ =< 2v6/3 and wy/w, = % - [2 + (V6 — 2)p] - N7, where

__2V6+2) Ve
P=oB+2 -3 2

I

then §o =pS+ (1 =P 5y -
(iii) If A < 2v6/9 and wy/w, = (1 + 2x + 4x2)/6x, where x solves the equation

24x3(1 + 4x3)

A=A 20°0 + 400 + 22 + 427)

then £. = u,.
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APPENDIX

PrOOF OF LEMMA 2.1. Consider the case that N is even only. (The case that
N is odd can be established similarly).

(i) Suppose that j =i = (N/2) + 1. Then it is clear that R(h, §; w,, wy) =
R(h, {n; wi, wy).
(i) Suppose that j = i> 1 and i = N/2. Choose ¢ > 0 small enough so that

£ =Q-puw+(p—eu+edN/2)(N—-i+ 1)y
+e((N/2) =i+ 1D)(N—-i+ 1)

is non-decreasing. Now it is clear that R(h, &; w,, ws) = R(h, £'; w;, ws).
(iii) Suppose that N > j = (N/2) + 1 and i = 1. Then R(h, §; w,, wy) =
R(hy Dbu + (1 _p)g-N; Wi, w2)'
(iv) Suppose that N/2 = j > 1 and i = 1. This is similar to (ii). 0

ProoF oF LEMMA 3.1. First, we see that if g € G® is such that g(k’/2N) <
g(k”/2N) for some k’ and k” with £(k’/2N) > £(k”/2N), then there exists a g*
€ G° such that g*(k’/2N) = g*(k”/2N) and [ tg(t) d&(t) < [ tg*(t) d&(t). This,
together with the fact that if g is an extreme point of G° then #{k| | g(k/2N) | #
0, k> 0} =< 1, proves the desired result. [

PrROOF OoF LEMMA 3.2. We need only to consider the class of ¢ such that
£(-/2N) takes at most two distinct values. Let i = (i1, - - -, iy) be the permutation
of (1,2, - - -, N) such that £(;;/2N) < £(i,/2N) for any j < k and if £(;;/2N)= £(ix/
2N) and j < k, then i; < i,. Suppose £ is not nondecreasing. Let j be the largest
number such that i; # j. It is clear that £(;;/2N) > £(j/2N). Recall j* from (3.1).

(i) Suppose £(i+/2N) = £(i;/2N). Then hi(j/2N) = —6 < 0. Let k be the
smallest positive integer such that £(k/2N) = £(5;/2N). Then k < j and k
- hi(k/2N) = j - hi(j/2N). Now construct ¢’ from ¢ by removing a little
bit of masses from the points {£k/2N} to {£j/2N} so that £’ is still in &;.
It is clear that [ thi(t) d&’(t) < [ thi(t) d&(t) and [ t* d&’(t) > [ t* dE(t).
Thus by (3.3) we see that £’ improves &.

(ii) Suppose £(ij+/2N) = £(j/2N). In this case i; # N and h;(i;/2N) = 6 > 0.
First suppose i; = 1. Choose A > 0 small enough so that £’ = £ — \{; + Ay
is still a probability measure in Z;. Then, it is clear that [ ¢* dt’(t) >
[ t? d&(t) and [ hi(t)t dE’(t) < [ hi(t)t d&(t). Thus £’ improves £. Next,
suppose i, > 1. Let s be a nonnegative number such that s < 1 and
J el de (@)= [|t] d(sq + (1 — s){n)(¢). Choose \ small enough so that

"=\ + X (s§1 + (1 — s){n) is a probability measure and h; is still
least favorable for £’. It is then clear that £’ improves .

Proor orF LEMMA 3.3. ~Let fbe the j*in (3.1) wheni= (1, 2, ---, N). Some
computation leads to j® < j. Consider the following two cases.

(i) j =J. Take rr=(N+1-j)/2(N—-h(j/2N)(j—1)) ands;=1 —r;. By
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the fact that h(j/2N) < 1, it can be verified, after straightforward com-
putation, that (3.6) and (3.7) hold.

(i) j<j. Takerj= (N — j)N—%(j — 1)j)/(N+ j—1)(N —j) ands; =1 —
r;. Then 1 = r; = 0 and (3.6) holds. Now, some computations lead to

____P()
f t2 d'r’j(t) - f t2 d(rj{j—l + sj(N)(t) - 24N2(N - ]) °

Analyzing the cubic polynomial P(x) carefully, we obtain (3.7) and (3.8). O

PrROOF OF LEMMA 3.4. Since Q is continuous, it suffices to show that
lim, it Q' (x) = limy Vil Q’(x). This is equivalent to showing that

H;._ H;
(Gj_l - V;_I)FJZ_I -1 = (GJ - *‘7]:—1>Fj21{].

Since

H \ H_.\
FJZ(GJ- — V.11> = FJ?_1<GJ'—1 - Vj ;)
J= J=

(because of continuity of Q(x) at x = V), we need only to verify that F;H; =
F;_1H;_,. This can be done by expressing F;H; explicitly in terms of N and j. It
can also be shown that F..H. = FoHj. Thus the Proof is complete. 0
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