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JACKKNIFE APPROXIMATIONS TO BOOTSTRAP ESTIMATES!

BY RupoLF BERAN

University of California, Berkeley

Let T’ be an estimate of the form T', = T(F,), where F, is the sample cdf
of n iid observations and T is a locally quadratic functional defined on cdf’s.
Then, the normalized jackknife estimates for bias, skewness, and variance of
T, approximate closely their bootstrap counterparts. Each of these estimates
is consistent. Moreover, the jackknife and bootstrap estimates of variance are
asymptotically normal and asymptotically minimax. The main results: the
first-order Edgeworth expansion estimate for the distribution of nl/ 2(7“,, -
T(F)), with F being the actual cdf of each observation and the expansion
coefficients being estimated by jackknifing, is asymptotically equivalent to
the corresponding bootstrap distribution estimate, up to and including terms
of order n~'/2. Both distribution estimates are asymptotically minimax. The
jackknife Edgeworth expansion estimate suggests useful corrections for skew-
ness and bias to upper and lower confidence bounds for 7T(F).

1. Introduction. Suppose X;, X, - X, are independent identically
distributed random variables with unknown cdf F. Let F', be the empirical cdf of
the sample. If V is a sufficiently smooth real-valued functional defined on the
set of cdf’s, then V(F,) is an asymptotically optimal estimate of V(F), in the
local asymptotic minimax sense. Bootstrap methods, introduced by Efron (1979),
apply this familiar functional estimation idea to certain statistically interesting
functionals, such as sampling distributions, which may not have closed form
expressions.

Suppose that T, = T(X,, Xs, ---, X,) is an estimate of T(F), where T is a
specified real-valued functional. Let H,(x, F) be the cdf of nY 2[T — T(F)].
Define the standardized bias, variance, and skewness of T', by

(1.1) bu(F) = n[Ex(T,) — T(F)], si(F) = nEg[T, — Ex(T,)P
Esn(F) = n%;%(F)Ef[T, — Ep(T,)]?

respectively. Then H,(x, F‘,,), b,,(F’,,), s?,(F’,,) and kg,,,(I:‘n) are the respective non-
parametric bootstrap estimates of the four functionals just defined. Evaluation
of such bootstrap estimates is often indirect, for lack of usable closed form
expressions. Possible methods of evaluation include: enumeration of all possible
samples of size n from the discrete empmcal distribution F.; Monte Carlo
approximations based on pseudorandom samples of size n drawn from F,; and
hybrid methods in which analytical simplification of the bootstrap estimate
precedes evaluation by one of the first two methods. Examples and further details
appear in Efron (1979).
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Under some assumptions on T, and T, the bootstrap distribution estimate
H,(x, F,) is locally asymptotically minimax among all possible estimates of
H,(x, F) (Beran, 1982). If F* is a smoothed version of F, such that | F¥ — F., |
= 0,(n""/?), where | - || denotes supremum norm, then H,(x, F}) retains the local
asymptotic minimax property. The further advantages and drawbacks to smooth-
ing F, before bootstrapping are not well understood at present.

The jackknife is an older, more specialized resampling procedure which was
originally introduced by Quenouille (1956) to remove the bias of 7', and was
extended by Tukey (1958) to the estimation of variance. Several subsequent
authors, including Miller (1964, 1974), Brillinger (1964, 1977), and Reeds (1978)
have found conditions under which the jackknife variance estimate is consistent
and the bias adjusted version of n'/[T,, — T(F)] is asymptotically normal. Efron
(1979) observed that the jackknife estimates of b,(F) and s2(F') can be viewed as
analytical approximations to the bootstrap estimates b,,(F‘,,) and s?,(F’,,), at least
when the sample space is finite.

The principal aim of this paper is to show that the bootstrap distribution
estimate H,(x, F,) itself may have a jackknife approximation H, x(x) which is
close enough to retain the local asymptotic minimax property of H,(x, F,). The
basic idea is as follows. Under certain assumptions on 7', the cdf H,(x, F) has a
first-order bias-corrected Edgeworth expansion:

x — n"Y?p,(F)

_ x = n"%,(F)
(1.2)  H,g(x) = 4’[ 5. (F) ————]

] - n_1/2k3,n(F)‘pli s (F)

where Y(x) = 671(x% — 1)¥(x) and ®, ¥ are, respectively, the standard normal cdf
and density. Substituting jackknife estimates for the functionals'b,(F), s2(F),
ks ,(F) which appear on the right side of (1.2) yields a jackknife Edgeworth
expansion estimate }AI,,‘JE(x) for H,(x, F).

More precisely, let

(13) Tn,i = An+l(X'17 X2, Tty Xny Xi): T’n,i,j = An+2(X17 X2v tt Xn: Xi: X})
and let

Dyi=(n+10[T; = T.], Duij=(n+2)%T,;; — Tul = Dui — Dy
(1.4)
D-n,i = Dn,i - Dn,i,i/2y D_n,ij = Dn,i,j - (D_n,i + D_n,j)/n

for 1 < i, j < n. Define the positive jackknife estimates for b.(F), s2(F), and
k3 n(F) to be

PN

-1 22 — -2 -1 2
boj=n"' Y1 Dy, Sno=n"*n-—1)"" Y, Dy,

(1.5) _ "o _
n™ ¥y Dhi+3n7%(n — 1) 33 DpijDniDn;

i#)
[n™® 3k D

k3,n,J =
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Correspondingly, the jackknife Edgeworth expansion estimate for H,(x, F) is

A —n 2 _ 12
(1.6) H, je(x) = q)[x_'.}..ﬂ] _1/2k3 J\,b[x n bn J] ,

Sn,J Sn,J

where ¢ and ® are as in (1.2)

Some positive jackknife estlmates can exhibit severe downward bias (Hinkley,
1978). The esimates an and $%; in (1 5) are designed to handle asymptotically
quadratic statistics T'.. As a result, §2 s tends to be less biased than the usual
positive Jackknlfg estimate of variance. The asymptotic results in this paper
remain valid if b,, and § §2 ; are replaced by more familiar negative jackknife
estimates and if k3 no 18 modified s1mllarly

It is shown in Sections 2 and 3 that H,, Je(x) is asymptotically equivalent, in a
certain norm which metrizes weak convergence, to the bootstrap estimate
H,(x, dF,), up to and including terms of order n~/>. Consequently, H,z(x)
shares the local asymptotic mimimax property of the bootstrap estimate
H,(x, E,). In particular, H, z(x) dominates the normal approximation ®[x/$,.]
and the bias-adjusted normal approximation

(1.7) ﬂn,JB(x) = ®[(x — n—1/26n,J)/'§n,J]‘

These theoretical results have heuristic implications for confidence regions
concerning T(F). Let ¢, = ®'(1 — «). The form of H, jz(x) suggests

(1.8) T = n oy + Snskans(cd — 1)/6] + n7%, scq

as an upper confidence bound for T'(F) of approximate level 1 — a. The analogous
lower confidence bound is

(1.9) T = n Y bpy + Snsksns(c? — 1)/6] — n7Y%, sc,.

On the other hand, there are no apparent implications for confidence intervals
based on n'?| T, — T(F) |, because the skewness and bias corrections of order

=12 yanish in the implied asymptotic expansion for the cdf of n=/2| T\, — T(F) |.
(I am indebted to a referee for this point.)

The speculative upper and lower confidence bounds (1.8) and (1.9) receive
empirical support from a Monte Carlo study which is described in Section 4. Also
examined in this study are the performance of the positive jackknife estimates
6n_J, §2, Eg,n_J and the behavior of the associated jackknife Edgeworth expansion
estimate ﬂn,JE(x).

2. Asymptotics for bootstrap and jackknife estimates.

2.1 Assumptions on T',. Let Z be the set of all cdf’s on the real line whose
support lies within a fixed compact interval I. We will suppose that the obser-
vations {X;; 1 < i < n} are iid and that the actual distribution of X; has cdf
belonging to % Let | - | denote supremum norm.
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ASSUMPTION A. The estimates {T',; n = 1} are of the form T\, = T(F,,) where
F', is the sample cdf and T is a real-valued functional defined on 7. The functional
T is locally quadratic at every F in %, in the following sense: for every F and G in
Z, there exists a function t(x, y, F') such that

(2.1) T(G) = T(F) + f t(x, y, F) dG(x) dG(y) + r(G, F).

The ratio |G — F|~2r(G, F) converges to zero as |G — F| tends to zero and
sup{|| G — F|| (G, F); G € ¥} < o for every F in . The function t(x, y, F) is
continuous in (x, y) on I?; [ t(x, y, F) dF(x) dF(y) = 0; and [ [[ t(x, y, F) dF(y)}?
dF(x) > 0. Without loss of generality, we will assume that t(x, vy, F) is symmetrical
in x and y.

Some examples of estimates which satisfy Assumption A:

(a) The rth sample moment n™' Y%, X’. Evidently, T(F) = [ x" dF(x) and
t(x, y, F) =27Yx" + y") — T(F).

(b) The sample variance n™* Y&, (X; — X,)%, where X, = n™! 3%, X.. In this
case, T(F) = 27! [ (x — y)* dF(x) dF(y) and t(x, y, F) = 27'(x — y)* —
T(F).

(c) L-estimates of location. Here T(F) = [§ F~'(t)J(t) dt. If J is continuously
differentiable, then Assumption A holds with

tx, y, F) = =271 f Ix=2) + I(y <2 — 2F(2)}J - F(2) dz
(2.2)
—271 f [I(x =2) — FRII(y < 2) — F(2)}J' - F(z) dz
(Serfling, 1980, page 289).
(d) M-estimates of location. Let Ap(t) = [ Y(x — t) dF(x), where  is strictly
monotone with ¥(—x) < 0 and () > 0. The functional T(F') solves the

equation A\s[T(F)] = 0. If ¢ is twice continuously differentiable, then
Assumption A holds with

(2.3) tlx, y; F) = Br(x, y) + Br(y, x) — 2NR[TE)Y N T(@)]ar(x)ar(y),
where
ar(x) = —{Ae[T(F)]}Y[x — T(F)]
Br(x, ¥) = ar(x)[1 + {2X[T(F)}7Y'[y — T(F)]]
(Serfling, 1980, page 256).

(2.4)

2.2 Main results. The central concern of this paper is the asymptotic
performance of jackknife and bootstrap estimates for the cdf H.(x, F) of
n"2[T, — T(F)] and for bias, variance, and skewness of T',. The principal results,
obtained under Assumption A, are stated in this section; proofs are given in
Section 3.
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For notational convenience in what follows, let

b, F) = f tx, y, F) dF(y)

t2(xy Y, F) = t(x’ Y, F) - tl(x’ F) - tl(y: F)-

By Assumption A, [ t,(x, F) dF(x) = 0; ts(x, y, F) is symmetrical in the arguments
x, y; and [ t(x, ¥, F) dF(x) = 0. These properties imply the orthogonality
relationship [ t(x, F)tz(x, y, F) dF(x) dF(y) = 0. Evidently, t:(x, F) + t:(y, F)
is the best linear approximation to t(x, y, F) in the Ly(F X F') norm.

For every F in % define the ball B,(F, c) as the set of distribution functions
G in ¥ such that |G — F|| = n™"2c. Let the notation sup, r. designate the
supremum over all distribution functions in B,(F, c) The ﬁrst theorem descrlbes
asymptotic behavior of the bootstrap estimates b W(F), ks, o(F, ), and s2(F).

(2.6)

THEOREM 1. Suppose Assumption A is satisfied. Then
lim,eSUP £ Pl | Bu(E) — ba(G) | > ¢] = 0
2.7 1im,:8UP, e Pal | ksn(En) — ksn(G) | > ] = 0
lim,,.8Up, 7, Pol | s2(Fy) — s3(G) | > el = 0

for every F in # and every positive ¢ and e. Moreover under every sequence of
distributions {G, € B.(F, c)}, the asymptotic distribution of n'2[s%(F,) —
s2(G)1} is 4 (0, 6*(F)), where

o*(F)
(2.8) 2
=16 f [tf(x, F)+2 f to(x, v, F)t:(y, F) dF(y) — 82(F)} dF(x)
and
(2.9) s3(F) =4 f t3(x, F) dF(x).

The second part of Theorem 1 implies that the Lévy distance between the
distribution of n?[s2(F,) — s2(F)] and its bootstrap estimate converges in
probability to zero. As a result, bootstrapping the bootstrap variance estimate
yields asymptotically valid confidence intervals for s%(F). (Use Theorem 1 in
Beran (1983) and equation (3.22)).

Theorem 1 gives asymptotic normality only for s2(F,). A similar argument,
under the stronger assumption that the functional T is locally cubic with
remamder term of order o(|| G — F|?), would prove asymptotic normality for
b.(F,) and kgn(F ).

How well does the bootstrap estimate s2(F,) estimate s2(F), the normalized
variance of 7,2 With the help of Theorem 1, it is not difficult to show that
s2(F) is asymptotically minimax among all possible estimates of s2(F).

Let f, g denote the densities of the cdf’s F, G in ¥ with respect to a dominating
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measure u. The Hellinger distance between F and G is defined by

1/2

(2.10) 1G - Fllu=] f [ = 1 duf

the choice of dominating measure u does not affect this distance. Let S,.(F, d)
denote the set of distributions in &% whose Hellinger distance from F is no
greater than n™/%d. If ¢ = 2d, then S,(F, d) lies within the ball B,(F, c) defined
earlier.

It will be shown in Section 3.2 that

limn—»wsquGS,,(F,d) n'/?

(2.11)

I

sa(G) — si(F) — 2 f E(x, F)f'2(x)[g"*(x) — f*(x)] du

where

(212) &x, F) = 4[t?(x, F) +2 f to(x, y, F)ti(y, F) dF(y) — s2(F)].

Note that the asymptotic variance ¢*(F) in Theorem 1 is precisely [ £*(x, F)
dF(x).

Suppose u is a non-regular monotone increasing function defined on R*. Let
V., be any estimate of s2(F). Equation (2.11) and an application of the Hajek-Le
Cam asymptotic minimax theorem (cf. Koshevnik and Levit, 1976) yields the
following lower bound on minimax risk: for every F in %,

(213)  lim._.lim inf, ..infy sup, s Ecu[n?| V, — s3%(G) |1 = Eu[o(F) | Z|],

where Z is a standard normal random variable and ¢*(F) is defined by (2.8).
On the other hand, if u is also bounded, it follows from the second part of
Theorem 1 that

(2.14) limyeSUP, . Eguln/? | s3(F,) — s2(G) |1 = Eu[o(F)| Z|]

for every positive ¢ and every F in % Thus, the bootstrap variance estimate
sZ(F,) cannot be surpassed by any other estimate of s2(G) in the sense that its
maximum risk over B,(F, c¢) is as small as possible, asymptotically in n. This
result improves substantially upon an earlier version obtained by a different
approach in Beran (1982).

Similarly, s,(F,), the bootstrap estimate of normalized standard deviation,
is asymptotically minimax among all estimates of s,(F). Under every sequence
{G, € B.(F, c)}, the limiting distribution of {n'?[s.(F.) — s.(G.)} is _# (0,
[4s*(F)]'e*(F)).

The close relationship between jackknife and bootstrap estimates of bias,
variance, and skewness is described in the next theorem.

THEOREM 2. Suppose Assumption A is satisfied and
(2.15) SUP|G-FI=aSUPxy | H(x, ¥, G) | < o0



JACKKNIFE APPROXIMATIONS 107

for every F in & and some positive d. Then
limn—awsupn,F,cPG“ 6n,J - bn(pn) | > 3] =0

(2.16) limy,_xSUpP, £ Pol | kapg — kan(E,) | > €] = 0
limy,SUPy, £ Poln Y2 | §2.5 — s2(F) | > ¢l = 0

for every F in & and every positive ¢ and e. Hence the conclusions of Theorem 1
apply also to the jackknife estimates b, s, ks n,s, and §2 ;.

Because of Theorem 2, the jackknife estimate of variance is asymptotically
minimax and may be bootstrapped, just as s2(F,). Investigating higher order
differences between 52 ; and s2(F,) would require higher order local expansions
for the functional T.

The final theorem, the main result of this paper, establishes a close relationship
between the jackknifed Edgewort}} expansion estimate I-?,,,JE(x) defined in (1.6)
and the bootstrap estimate H,(x, F,). Because of the remainder term in (2.1) and
because the ball B,(F, c) contains lattice distributions, convergence of the
Edgeworth expansion for {H,(x, G); G € B,(F, c)} becomes an issue. Here we will
deal with this technical problem by slightly smoothing H,, (x, G).

Let v be a symmetric probability density on the real line which approximates
the delta function. The relationship || d |, = || d * v |, where * denotes convolution,
defines a semi-norm for real-valued functions d on R. If the characteristic function

of v is strictly positive, then || - ||, is a norm which metrizes weak convergence.
For the particular probability density
(2.17) v(x) =P(x/a), a>0

whose characteristic function is exp[—a®t?/2], the first-order Edgeworth expan-
sion of H,(x, G) converges locally uniformly in the norm || - ||, over all cdf’s G in
B.(F, ¢) (see Section 3 and Beran, 1982). Other choices of v are possible, the key
requirement being that the characteristic function of v decay with sufficient
rapidity as its argument tends to oo,

THEOREM 3. Suppose Assumption A is satisfied, (2.15) holds, and v is given
by (2.17). Then

(2.18) limn-»oosupn,F,cPG[n 12 ” Hn(xs F‘n) - Hn,JE(x) ” v c] =0

for every F in & and every positive ¢ and e. Under every sequence {G, € B,(F,
c)}, the processes {n**[H, je(x) — H,(x, G,)]} converges weakly in | - ||, norm to
the Gaussian process

(2.19) Yr(x) = [25°(F)] ' o(F)Zx¢[x/s(F)],

where Z is a standard normal random variable.

It is immediate from this theorem that I-AI,,,JE(x), like H,(x, Fn), is an asymp-
totically minimax estimate of H,(x, F'); see Section 2 in Beran (1982).
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3. Derivations.

3.1. Approximating moments of T.. Assumption A has strong implications
for the moments of T',, properties which will be used in proving the results stated
in Section 2. A key fact is the following property of the empirical cdf: for every
Fin 4 ¢>0,andp=1
(3.1) sup,sup, s E[n®? | E, — F|*] < K, <

where K, depends only on p.
To check (3.1), suppose G, € B,(F, ¢). Forevery t >cand n = 1,
32  Palr”lF.—Flz0sP[n'|F -Gl =t~
< A exp[—(t — ¢)F

the constant A not depending on G, or t (Dvoretzky, Kiefer, and Wolfowitz,
1956). Since

(3.3) Eg[n? | F, — F|*] = f Pg,[n? || F, = F|* = u] du,
0
the bound (3.1) is immediate.

LEMMA 1. Suppose Assumption A is satisfied. Then, for every F in & and
everyc>0,p=1

(3.4) lim, sup,r.n”Eq | T, — T(G) — f h(zx, y, G) dF,(x) dF,(y) T 0,
where

(3.5) h(x, y, G) = t(x, y, F) — f t(x, y, F) dG(x) dG(y).

Also

(3.6) lim, wSup,r.n”Ec| T, — T(G) — f t(x, y, G) dF,(x) dF,(y) T 0.

ProoOF. Equation (2.1) of Assumption A implies that

(3.7) T. = T(F) + f tx, 3, F) dFo(x) dBo(y) + r(Ea, F).

Suppose G, € B,(F, c). By (3.2), {| F,—F I} converges in probability to zero
under {G,}. Consequently, in view of Assumption A, the expectation under G, of
any positive power of || F,, — F | ~2r(F,, F) converges to zero. Combining this fact
with (3.1) yields

(3.8) lim,_.n?Eg | r(F,, F)|? =0
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which, with (3.7), implies

p

(3.9)  lim, osup,p.nPEq | T, — T(F) — f t(x, y, F) dF.(x) dF.(y)| =0.

On the other hand, it is immediate from (2.1) and the definition of the ball
B, (F, c) that

p

=0

TG) - T(F) - f t(x, y, F) dG(x) dG(y)

(3.10) lim,_,.sup,r.n”
for every p = 1. Equation (3.4) follows from (3.9) and (3.10) by Minkowski’s
inequality.

The derivation of (3.6) is analogous to that of (3.9), with G, replacing F in

(3.7) and (3.8). This completes the proof of the lemma.
Decompose h(x, y, G) into orthogonal components

(3.11) h(x, G) = f h(x, y, G) dG(y)
h2(x’ Y, G) = h(xy Y, G) - hl(xy G) - hl(y, G)

by analogy with (2.6). The next lemma describes useful asymptotic approxima-
tions to the normalized bias, variance, and skewness of T),.

LEMMA 2. Suppose Assumption A is satisfied. Let

b(G) = f h(x, x, G) dG(x), s*G) = 4 f hi(x, G) dG(x)
(3.12) ks(G) = s‘3(G)[8 f hi(x, G) dG(x)

+ 24 f hi(x, G)hi(y, G)ha(x, y, G) dG(x) dG(y)] .
Then
lim,,,w8Up, rc | b2(G) — b(G) | = 0
(3.13) lim,_wsup, r. | k3 o(G) — k3(G)| = 0

lim,,_<sup, s.n"?| 2(G) — s*G) | = 0.
PROOF. Setting p =1 in (3.4) yields

(3.14)  limwSUpnrent | ma(G)—T(G)—Eg f h(x,y,G)dE . (x)dF.(y) | =0,

which implies the first equation in (3.13).
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Minkowski’s inequality and the identity m,(G) = T(G) + n™'b,(G) give

p

nEYP

7ﬁn - mn(G) - n_2 z:z h(Xiy AXj’ G)
i#f

(3.15)

P

< nEYr

T. - T(G) - f h(x, ¥, G) dF(x) dF.(y)

+ E|n7 T2 k(X X;, G) — ba(G) | 7.

Since h(x, y, G) is bounded under Assumption A, the Marcinkiewicz-Zygmund
inequality implies that

(3.16) SUP,SUP, £, NP2 Eg | n™! S8, h(X;, X;, G) — ba(G) |P < co.
Applying (3.4) and (3.16) to (3.15) establishes

P

(3.17)  limywsupnrenE¥? | T, — ma(G) — n2 £ h(X;, X;, G) | =0
i#]

forp=1.
Let
(3.18) A,(G) =n? T MX;, X;, G), Ba(G) = T, — m,(G)

i#

and set D,(G) = B,(G) — A,(G). The boundedness of t(x, y, F) and the orthogonal
decomposition of h(x, y, G) into the sum h,(x, G) + hi(y, G) + ho(x, ¥, G) yield

lim,_8up, r.n | NEGAZ(G) — s*(G) | < o
(3.19) limy—eSUP, e | IEGAYG) — ks(G)s*(G) | < o
limn_msupn,p,cn2EGA,41(G) < o0

after some calculation. Since B,(G) = A,(G) + D,(G), we may conclude from
(3.19), (3.17), and application of the Cauchy-Schwarz inequality to the cross-
product terms in the expansion of [A,(G) + D,(G)]”, that

lim,x8up,,r.n'? | REGBA(G) — s*(G) | = 0
(3.20)

lim,,_Sup,, 5 | R?EcB3(G) — ks(G)s*(G) | = 0.

The limits (3.20) imply the second and third lines in (3.13) because s2(G) =
nEB7(G) and ks .(G) = n’Eg[B3(G)s;*(G)).

A variant of Lemma 2 will be needed in studying the jackknife estimates 5,1,,,,
SAZ,J, and kg'n,J.

LEMMA 3. Suppose Assumption A is satisfied and (2.15) holds for every F in
& and some positive d. Then the functionals b(G), s*(G), ks(G) in (3.13) may be
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replaced by

@) = f t(x, x, G) dG(x), $*(G) =4 f tix, G) dG(x)
(3.21) ks(G) = "3(G)[8 f ti(x, G) dG(x)

+ 24 f ti(x, Gti(y, Gita(x, ¥, G) dG(x) dG(y)]

The proof of this lemma strictly parallels that for Lemma 2, using (3.6) instead
of (3.4). Note that the requirement (2.15) on t(x, y, G) is satisfied automatically
by h(x, y, G) under Assumption A.

3.2. Theorem proofs.

PROOF OF THEOREM 1. Inequality (3.2) on the empirical cdf implies
(3.22) 1My SUP,SUP,, . PGl E, & Ba(F, t)] = 0.
Combining (3.22) with Lemma 2 yields
lim,SUDy 7 Pol | ba(Fy) — b(Fn) | > ¢] =0
(3.23) limy,SUPn e Pol | Rsn(Fn) — ka(Fn) | > €] = 0
limy—eSUPy re Po[n /2 | s2(E,) — s2(F) | > €] = 0
for every positive ¢ and c. Indeed, if C,,, = {| b.(F,) — b(F,) | > ¢}, the inequality
(324)  PolCy.] < Po[Ch. N {Fy € Bo(F, £)}] + PolF, & Bu(F, 1)]
and the inclusion
(3.25) Cue N {F, € Bu(F, )} C {supn,r. | ba(G) — b(G) | > ¢}

imply the first line in (3.23). The other two limits in (3.23) are argued s1m11arly
Under {G, € B,.(F, c)}, the empirical product measure determined by F.(x)F.(y)
converges weakly, with probability one, to that determined by F(x)F(y). Hence

(3.26) sup,, | h(x, y, F,) — h(x, y, F)| >0 w.p.1
because t(x, y, F) is a continuous, bounded function; and therefore

Supx | hl(xy Fn) - hl(x, F) | b d 0
(3.27) A
Supy,y I hQ(x’ Y, Fn) - h2(xy Y, F)l — 0 Wp].

It follows from this and (3.12) that b(F,), s%(F',), ks(F,) converge with probability
one to b(F), s2(F), ks(F) respectively, under every sequence {G, € B.(F, c)}.
Similarly, b(G,), s*G.,), ks(G,) also converge to b(F), s%(F), ks(F) respectively.
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Consequently,
lim,,_wSup, s Po[ | b(F,) — b(G)| > ¢] = 0
(3.28) 1im, ..U 7. Pal | ks(F,) — ks(G) | > ¢] = 0

lim,,_.sup,, £ Pq[ | s%(F,) — s%G) | > ¢] = 0.

The desired locally uniform consistency result (2.7) is implied by (3.28), (3.23),
and (3.13). .

To prove the locally uniform asymptotic normality of s2(F},), it suffices to
show, in view of (3.13) and (3.23), that the limiting distribution of {n"2[s%(F,) —
s%(G,)]} under {G, € B.(F, ¢)} is 7 (0, ¢%(F)).

Clearly
s%(F,)
2

629 _y [ [ [ty atn - [ [ e 5, ) diuo dﬁn<y)} dF, ()

= An,l - An,2
where

2
A=t [ | e, 3, 60 dF‘n<y>] dF,(x)

(3.30)

2
Ay = 4[ f f h(x, 3, Gn) dFo(a) dﬁn<y)}.

A straightforward calculation shows that Eg, | A,2| = O(n™") under Assumption
A.
On the other hand,

(3.31) Any = 4070 3 (3 WX, X5, Go))P
=4n? I¥¥ (X, X;, G)WX;, X, G,) + 0,(n7™),

i#j#Ek

where the triple sum is over all triplets (i, j, k) in which no two components are
equal. Replacing h(x, y, G,) by its orthogonal decomposition h,(x, G.) + hi(%,
G,) + hy(x, y, G,) yields, after some calculation,

Apy = Ll{n_1 Y hi(Xi, G) + 2n72 33 ho(X,, X, Go)(X;, Gn)]
(3.32) L i

+ 0,(n™).

The main term on the right side of (3.32) is a second order U-statistic, in
asymmetrical form. Applying Hoeffding’s well-known projection argument, we
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obtain

(3.33) I,‘n,l = 4n_1 1r‘l=1 [hi(xu Gn) + 2 f h2(Xi7 Y, Gn)hl(yy Gn) dGn(y)]

+ 0,(n7Y)

under {G, € B,(F, c)}. Thus, the limiting distribution of {n'/*[A,1 — s*(G.)]} is
(0, 6%(F)), with ¢(F) defined by (2.8); note that h(x, y, F') coincides with t(x,
y, F') under Assumption A. .

In view of the previous paragraphs, the asymptotic normality of si.(F,) is now
apparent. We note that the full strength of Assumption A is not needed to prove
this theorem.

PROOF OF (2.11). A straightforward calculation using the definition (3.12) of
s%(@) and Assumption A yields
s*(G) = s*(F)
(3.34)
+ 2 f £(x, F)f2(x)[g"%(x) — f*(x)] du + O([| G — F| %),

for £(x, F) as in (2.12). The limit (2.11) follows from (3.34) and (3.13).

PROOF OF THEOREM 2. Lemma 3 and (3.22) imply
1imy,.SUp, £ Pol| ba(F,) — B(F,) | > ¢] =0
(3.35) 1M, xSUP, £ Pl | Ry n(F,) — Ea(E) | > €] = 0
limy,_wSUpP, £ Poln? | s2(F,) — §%(F,) | > €] = 0

for every positive ¢ and e. To complete the proof of the theorem, it suffices to
show that

limn—»oosupn,F,cPG“ En,J - 5(F‘n) I > 8] =0
(3.36) lim,,_SUp, £ Pol | Ea,n,J — ka(F,) | >¢]=0
limySUpP, £ Poln2 | §2,5 — §%(F,) | > ¢] = 0

for every positive ¢ and e.
Suppose G, € B,(F, c¢) and let

(3.37) Fo.x)=(n+1)'[nFx)+IX,<x)], 1<is<n.
From (1.4) and Assumption A,
(3.38) D,;i=(n+ I)Z[T(F‘n,i) - T(F,)] = 2nt:(X;, F) + t(X;, X, F,) + Tni

where max{| r.;|; 1 =i < n} = o(1) because | F‘n,,- — F,| = 2(n+ 1)™". Thus,

(3.39) bny = f t(x, x, F,) dF.(x) + 0,(1)
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under {G,}. Let
(3.40) F,;,(x) = (n + 2)[nFy(x) + [ X;<x) + [ X;<x)], 1=<i, j=<n.
From (1.4) and Assumption A,
D,;;j=(n+ 2)2[T(Fn,i,j) - T(F‘n)] - D,;—D,;
= 2(X;, Xj, F,) + ruij

where max{|r,;,|; 1 <1, j < n} = 0,(1) under {G,}. Combining (3.38) with (3.41)
while recalling (2.6) yields

(3.41)

(3.42) D,.;=2nt;(X;, F,) + e,;
and
(3.43) D,.; = 2ts(X;, Xj, Fn) + enij

where max{|e,;|; 1 =i =< n} = 0,(1) and max{|e,;;|; 1 < i, j < n} = 0,(1). It
follows from (1.5), (2.15), and (3.42) that
(3.44) §2,=4 f tix, F,) dE,(x) + o,(n7").

Equations (3.39) and (3.44) imply the first and third lines in (3.36). The middle
line (3.36) follows from (3.42), (3.43), and the definition (1.5) of ks, .

PROOF OF THEOREM 3. By the argument in Sections 4 and 2 of Beran (1982),

Assumption A implies
1/2 Y B
n [Hn(x, Q) ‘p<s(G)>]

L EN ERWES
+ s (G)b(G)d)(s(G)) + k3(G)t<s(G))¢<S(G)>

where t(x) = 67'(x*> — 1) and ®, ¢ are the standard normal cdf and density.
Consequently,

lim,_.sup, p.n'? || H,(x, G) — H,(x, F)
+ s7AF)[s(G) — s(F)lxep(x/s(F)) ||, = 0;

see the remarks preceding (3.28). Therefore, in view of (3.22),

lim,,_.sup, r.

(3.45)
=0

v

(3.46)

lim,,_...supy, . Peln'? | Hy(x, F,) — Hu(x, F)
+ sTHF)[s(F,) — s(F)xp(x/s(F)) ||, > ¢] = 0
for every positive ¢ and ¢. Combining (3.46) with (3.47) yields
lim,,.8Up, r.c Poln'? || Hu(x, F,) — Ha(x, G)
+ sTHF)[s(F,) — s(@)xg(x/s(F)) |, > ¢] = 0

- (3.47)

(3.48)
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for every positive ¢ and c¢. By Theorem 1, Lemma 2, and (3.23), the limiting
distribution of {n?[s(F.,) — s(G. )]}, where G, € B,(F, ¢), is # (0, [4s*(F)]'¢*(F)).
Hence, the processes {n'/?[H,(x, F,) — H,(x, G,)]} converge weakly in || - ||, norm
to the gaussian process Yr(x) defined in (2.19).

On the other hand, in view of Theorems 1 and 2, Lemma 2, and (1.6),

1/ [Hn JE(x) - ‘I)( >:| + §r_t,bl;n,J¢<£>
Sn,J n,

+ Ez,n,Jt<Ai>¢<A—x‘> > e] =90
Sn,J, Sn,J v

1/2| 17 _ -
n 2[H,.,.uz(x) < 7. )>] + s7\(F, )b(Fn)cb( (Fn)>

X
+ k(P ”( 7, )) <s<Fn>>

for every positive ¢ and c. The last equation draws on (2.16) and (3.23). Equations
(3.45) and (3.22) entail

limn—mosupn,F,c PG[
(3.49)

and therefore

lim,, SUp, r. PG[
(3.50)

>e]=0

1/2 AN -1
n [Hn(x, F,) <(F )>J + s7YF,)b(E, )¢< 7. )>

X
+ kolF “( 7, )) <<F>> >”]‘°

for every positive ¢ and c. Combining (3.50) with (3.51) yields (2.18) and completes
the proof of the theorem.

limn—-wosupn,F,c PG[
(3.51)

4. Numerical trial. Let T be the variance functional, so that 7', = T(F,)
=n"' I, (X; — X,)% Suppose that F is the standard normal cdf. By classical
theory,

(41)  bu(F) = -1, si(F) =2(n—1)n"", ksa(F) = [8n(n — 1)7']"/2

and the exact distribution of nT', is Chi squared with n — 1 degrees of freedom.

The mean and standard deviation of each jackknife estimate defined in Section
1 and the levels of the associated confidence bounds for T(F') were estimated by
Monte Carlo methods, for sample sizes n between 10 and 80. In each case, one
thousand pseudo-random N(0, 1) samples of size n were used. Some of the results
are summarized in the following tables.

Table 1 compares the Monte Carlo expectations of 5,,,J, $2, k},w with the
population values of b,(F), si(F), ks .(F) respectively. The positive jackknife
estimates of bias and variance are nearly unbiased for n greater than or equal to
20. However, the jackknife skewness estimate has a more persistent downward
bias which diminishes slowly as n increases.
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Table 2 compares the actual cdf H,(x, F) with its first-order Edgeworth
expansion H, g(x) [equation (1.2)] and with the Monte Carlo expectations of the
jackknife estimates Hn Je(x) [equation (1.6)], Hn Js(x) [equation (1.7)], and
®[x/$,]. For n greater than or equal to 20, the Edgeworth expansion approxi-
mates H,(x, F) well over plus or minus two standard deviations. The expectation
of H, sr(x) is not as close to H,(x, F'), even for n equal to 40 or 80. (The downward
bias in k3 s undoubtedly contributes to this effect.) However, Hn se(x) is notice-
ably less biased in the center and tails than H,, Ja(x) and is almost uniformly less
biased than the normal approximation ®(x/s, ).

Table 3 compares the observed levels in 1,000 trials of

(a) the bias-and-skewness-corrected upper and lower confidence bounds de-

fined in (1.8) and (1.9);

(b) the bias-corrected upper and lower confidence bounds

(c) the normal approximation upper and lower confidence bounds

T, + n'1/2§n,Jca.

T, — n7'b,, + n7V%, jca;

TABLE 1

Monte Carlo expectations of positive jackknife estimates for bias, variance, and skewness compared

with the actual values

n ba(F) E(b,s) s2(F) E($2,) ks,n(F) E(ks,ng)
10 —1.00 —-.90 1.80 1.68 2.98 1.75
20 —1.00 —-.95 1.90 1.84 2.90 2.06
40 —1.00 —-.98 1.95 1.94 2.86 2.32
80 —1.00 -.99 1.98 1.98 2.85 ° 2.52

TABLE 2

Monte Carlo expectations of three jackknife cdf estimates compared with the actual cdf H,(x, F) and

with the actual Edgeworth expansion H, g(x)

x H,(x, F) H,g(x) E(H,5(x)] E[H.s5(x)] E[®(x/5,,)]
-3.0 .0083 .0090 .017 .025 .020
-1.5 1675 .1697 149 149 125
-.75 .3587 .3584 331 314 274
n =40 0 5744 .5746 571 547 .500
.75 71567 7563 173 .763 7126
1.5 .8788 8764 .892 .896 875
3.0 9790 .9785 978 985 981
-3.0 .0113 .0117 .016 .022 .019
-1.5 .1607 .1619 162 152 135
—.75 .3400 .3400 .328 315 .287
n =80 0 5526 5527 551 .532 .500
.75 7413 7411 749 740 713
1.5 8721 .8708 .879 .882 .865
3.0 9798 9795 979 984 981
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TABLE 3
Estimated levels of three jackknife upper and lower confidence bounds for T(F)

Estimated Level

Nominal Bias-and-skewness . . Normal approximation
Level adjusted bounds Bias-adjusted bound bound
Upper Lower Upper Lower Upper Lower
975 .988 983 995 975 995 983
95 973 .964 .980 954 976 .968
.90 921 921 932 910 914 929
n=40 .85 .876 872 877 872 857 .894
.80 824 815 815 817 .793 .853
.70 711 7114 .693 732 .660 .764
.60 .613 .622 .593 .636 .540 675
975 974 976 .986 .969 981 975
.95 951 948 958 942 955 951
.90 903 901 906 .899 .897 908
n =80 .85 .852 .859 .853 .859 .835 871
.80 .805 .809 .801 814 7182 .835
.70 .701 .718 .687 727 .670 751
.60 607 614 591 632 567 .666

For n equal to 40 and 80, the bias-and-skewness-corrected confidence bounds are
the most reliable, particularly when the nominal level is close to 1 or to .5. For
smaller n, the discrepancies between nominal levels and observed levels are
unsatisfactory, no matter which confidence bounds are used.

- REFERENCES

BERAN, R. J. (1982). Estimated sampling distributions: the bootstrap and competitors. Ann. Statist.
10 212-225.

BERAN, R. J. (1983). Bootstrap methods in statistics. Jber. d. Dt. Math.- Verein. 85, to appear.

BICKEL, P. J. and FREEDMAN, D. (1980). On Edgeworth expansions for the bootstrap. Unpublished
manuscript.

BRILLINGER, D. R. (1964). The asymptotic behavior of Tukey’s general method of setting approximate
confidence limits (the jackknife) when applied to maximum likelihood estimates. Rev.
Inst. Internat. Statist. 32 202-206.

BRILLINGER, D. R. (1977). Approximate estimation of the standard errors of complex statistics based
on sample surveys. New Zealand Statistician 11 35-41.

DVORETZKY, A. KIEFER, J. and WOLFOWITZ, J. ( 1956). Asymptotic minimax character of the sample
distribution function and of the classical multinomial estimator. Ann. Math. Statist. 27
642-669.

EFRON, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7 1-26.

HINKLEY, D. V. (1978). Improving the jackknife with special reference to correlation estimation.
Biometrika 65 13-21.

KOSHEVNIK, YU. A. and LEVIT, B. YA. (1976). On a nonparametric analog of the information matrix.
Theory Probab. Appl. 21 738-753.

MILLER, R. G. (1964). A trustworthy jackknife. Ann. Math. Statist. 35 1594-1605.

MILLER, R. G. (1974). The jackknife: a review. Biometrika 61 1-15.

QUENOUILLE, M. H. (1956). Notes on bias in estimation. Biometrika 43 353-360.

REEDS, J. A. (1978). Jackknifing maximum likelihood estimates. Ann. Statist. 6 727-739.



118 RUDOLF BERAN

SERFLING, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
SINGH, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9 1187-1195.
TUKEY, J. W. (1958). Bias and confidence in not-quite large samples. Ann. Math. Statist. 29 614.

DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720



