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This paper on estimating linear statistical relationships includes three
lectures on linear functional and structural relationships, factor analysis, and
simultaneous equations models. The emphasis is on relating the several
models by a general approach and on the similarity of maximum likelihood
estimators (under normality) in the different models. In the first two lectures
the observable vector is decomposed into a “systematic part” and a random
error; the systematic part satisfies the linear relationships. Estimators are
derived for several cases and some of their properties given. Estimation of the
coefficients of a single equation in a simultaneous equations model is shown
to be equivalent to estimation of linear functional relationships.

. Introduction

Part 1. Linear functional and structural relationships

. A linear functional relationship: One relationship between two variables
. A linear structural relationship: One relationship between two variables

. Linear functional relationships: Independent errors with equal variances
. Linear structural relationships: Independent errors with equal variances
. Linear functional relationships: Arbitrary error covariance matrix

. Linear structural relationships: Arbitrary error covariance matrix

Part II. Factor analysis

. The factor analysis model
. Identification and “rotation”
. Estimation of the factor structure in the case of fixed factors: Nonexistence of maximum likelihood

estimators
Estimation of the factor structure in the case of random factors
Estimation of the factor structure in the case of fixed factors
Change of units of measurement
Relation to principal component analysis
Identification by specified zeros
Orthogonal vs. oblique factors
Part III. Simultaneous equations models
Simultaneous equations models in econometrics
Identification by specified zeros
Estimation of the reduced form
Estimation of the structural coefficients
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21. Relation to the linear functional relationship

22. Shocks vs. errors

23. Asymptotic theory as T'—

24. Two stage least squares

25. Distributions of estimators

26. Some asymptotic theory for linear functional and structural relationships
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1. Introduction. There are many ways to consider the relations between
statistical variables. Several of them are based on assumed probabilistic models
and have arisen in different fields of application, such as psychology and econom-
ics. The terminology, notation, and emphasis vary from area to area. (The list of
key words shows some of the diversity.) The purpose of this set of lectures is to
bring together various models and appropriate statistical techniques, show the
connections among them, and unify the treatment in terms of a general approach.

The titles of the three lectures are I. Linear functional and structural relation-
ships (Section 2-7), II. Factor analysis (Sections 8-16), and III. Simultaneous
equations models (Sections 17-26). The first lecture includes several “errors-in-
variables” models. The second lecture treats a version of the linear functional
and structural relationship that has been used by psychologists to analyze test
scores. The third lecture shows that a certain approach to simultaneous equations
models of econometrics leads to the linear functional relationship model and
hence that the properties of the methods used in one field apply to the other.

This paper is concerned with a vector variable of p( p = 2) components. These
components may be physical measurements, psychological test scores, or obser-
vations on macro-economic quantities. (We shall use lower case light face letters
to denote scalar variables, lower case bold face letters to denote vector variables,
and capital bold face letters to denote matrix variables; we shall not distinguish
in notation among random, running and observed variables.) The observable
vector X, is considered as decomposed according to

(11) Xy = Zo + u,, a=1’...,n’

where the unobservable z, can be considered as the “systematic” or “true” part
and the unobservable u, can be considered as the random “error”. It is the
systematic part that is of real interest; the investigator would like to know it free
of error. In mathematical terms what distinguishes the systematic part is that it
varies in a lower-dimensional linear space, of dimension m, say (m < p). The u,
are random with the properties

(1.2) Fu, =0, Fuu, =V

Furthermore, u,, ---, u, are mutually independent and are independent of z,,
ce, Zy,.
Having defined the model, we specify the cases that are examined in this
paper. First, there are alternative ways of treating the systematic parts.

I. The unobservable vectors z,, - - -, z, can be treated as parameters, that is,
fixed or nonstochastic. They are the expected values of x4, - - - , X,.
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II. Alternatively z,, - - -, z, can be treated as random or stochastic.

Kendall and Stuart (1979), Chapter 29, have termed I as “functional” and II
as “structural.” This distinction corresponds to the distinction made in the
analysis of variance between Model I, fixed effects, and Model II, components of
variance.

In the functional case z;, - - -, z, are incidental parameters pertaining to the
observed units; inference concerns those units. In the structural case z,, .- -, z,
constitutes a sample from a population; inference pertains to the population. The
distinction affects the mathematical treatment. For example, asymptotic theory
in the second case is straightforward because one fixed distribution is involved,
but in the first case asymptotic theory depends on the properties of the incidental
parameters as n — oo,

In the simplest case of p = 2 and m = 1 (treated in detail in Section 2) the
systematic parts lie on a line, that is, satisfy one linear equation, say b;z;, +
ba2s, = bo. An observable pair of variables (x;_, x,, ) is a point in the plane that
differs from a point (21, 22,) on the line by a pair of random variables
(%145 Us24). The line on which the systematic points lie can optionally be written
in parametric form: z;, = Aify + p1, 22 = Aof. + 2. We shall consider statistical
problems of estimating b,, by, and b, or A, Az, 1, and u,.

In general, the m-dimensional space in which the z,’s vary can be defined in
terms of ¢ (=p — m) linear equations

(1.3) Bz, = b,

where B is a ¢ X p matrix of parameters of rank g < p and b is a column vector
of parameters of ¢ components. Each row of (1.3) defines a hyperplane; the m-
space is the intersection of these ¢ hyperplanes. An alternative description is the
“parametric” form

(1.4) z, = Af, + p,

where A is a p X m matrix of rank m < p, f,is a column vector of m components,
and p is a column vector of p components. The p-component vector z, varies
over the m-space as the m components of f,(coordinates in the m-space) vary.
We center f, by requiring > %_; f,= 0 in the functional case and ¥f,= 0 in the
structural case. Expression (1.4) indicates that z, is a linear combination of
columns of A plus the location vector u.

What is the connection between these two representations? Substitution of
(1.4) into (1.3) yields '

(1.5) Bz, = BAf, + Bu=b.
For (1.5) to be an identity in f, we want
(1.6) BA =0, Bu=h.

In each representation there is an indeterminancy. In the first case the vector
equation (1.3) can be multiplied on the left by an arbitrary nonsingular matrix
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A, which corresponds to the transformation
(1.7) B — AB, b — Ab.

In the second case the matrix A in (1.4) can be multiplied on the right by an
arbitrary nonsingular matrix C; if f, is multiplied on the left by C™*

(1.8) A — AC, .- C'f,,

the product Af, is unchanged. In order to determine uniquely (B, b) or (A, £,),
further restrictions are needed. For example, suppose we partition B as (B, B,),
where B, is square and nonsingular; since B is of rank ¢ we can number the
columns of B (that is, number the coordinates of z,) so that the first square
submatrix is of rank g, which is its order. If we multiply B on the left by B;*, we
obtain

(1.9 B* = (I, Bi'B,) = (I, B).

The matrix of linear restrictions is uniquely determined if the first square
submatrix is required to be the identity.

In the case of the “parametric” form in (1.4) A can be partitioned into p — m
= g rows and m rows, A = (A] A3)’, so that the square matrix A, is nonsingular
(renumbering rows if necessary). If we multiply A on the right by A5, we obtain

« _ [MAZY) _ (AT
o = () (%)

The matrix A is uniquely determined if the last square submatrix is required to
be I,,. When B and A meet these requirements, (1.6) is

*
(1.11) 0 = B*A* = (I, B;)(‘I“) = A7 + By
that is,
(1.12) B} = A}

Letz, = (zV’z?"), where z"’ and z{? consist of ¢ and m components, respectively,
and let b* = B7'b. Then (1.3) can be written

(1.13) z\V = b* — B¥z?.
When this is inserted in (1.1), the reslult is

_(~B%| @, (b*
(1.14) X, = ( I, >za + 0 + u,.

The “parametric” form based on (1.4) is translated to

At #“’)
1.15 a = f: + + ay
( ) X (Im> (”(2) u
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where p’ = (uV'u?’). Substitution of (1.12) into (1.14) yields

* * *(2)
(1.16) x, = <II“>(zg2> — 2% + <b A > +u,
where z® = (1/n) ¥"_, z{? when the z?"s are nonstochastic and
* * * (2)
(1.17) X, = <I;;>(ZLQ) - jfz(z)) + <b +5§1Z(2%”Z > + u,

when the z”s are random. Thus the form using the linear equations (1.3) is

equivalent to the form using (1.4). The model (1.1) and (1.3) is often called the
“errors in variables” model.

The indeterminacy indicated by (1.7) and (1.8) can be removed by imposition
of other restrictions on B or A or f,; we shall consider alternatives later. The
model, including such restrictions and properties of the errors, describes the joint
distribution of x,, - - -, x,. If this distribution uniquely determines the value of
a parameter, that parameter is said to be identified; if all the parameters are
identified, the model is identified.

Error structure. 'We shall treat three cases of the error covariance matrix ¥
defined in (1.2).

1. ¥ = ¢’I,, where o® is not specified. Here the component errors are
uncorrelated and have equal variances; that implies that all measurements are in
the same units (for example, centimeters). (The specification ¥ = o7, states
that the components of u, are uncorrelated and that the variances or standard
deviations of the components of u, are equal. The standard deviation of a
continuous variable is expressed in the units of measurement of that variable;
the equality of standard deviations must be expressed in the relevant units. For
example, the variability of measurements of head lengths and breadth is the
same if the two standard deviation are three centimeters; they are not the same
if the standard deviation of one is three centimeters and the other is three inches
(3 cm # 3 inches).) This form of the covariance matrix may be appropriate when
measurements are made independently with the same instrument (such as a
micrometer). If ¥ is specified to be ¢*¥,, where ¥, is known, the covariance
matrix can be transformed into ¢°I,. Let ¥, = TT’ and u* = T 'u; then ¥ u*u*’
= o’L,. We shall see that the estimators of the parameters in the functional case
are the same for ¥ = I, as for ¥ = ¢, (except for the estimation of ¢2).

2. ¥ diagonal. Here the component errors are uncorrelated, but not necessarily
with the same variance; the measurement$ do not need to be in the same units.

3. ¥ unrestricted. In this case replicated observations are needed in order to
estimate ¥. Otherwise the parameters are not identified.

In the standard multiple regression model the m variables constituting x?,
called independent, are measured exactly; that is, the systematic part z2, is
observed directly. (Those components of u, are 0). The other g variables consti-
tuting x{", called dependent, differ from their systematic parts, z" which are

2
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modeled as a linear transformation of z. This linear transformatjon is usually
considered to describe how the independent variables generate the dependent
variables. The random terms added to these linear combinations (the first g
components of u,) can be interpreted as representing disturbances in the relations
(due to ignored independent variables), errors of measurement in the dependent
variables, or both. The assumption that the random terms are independent of
the independent variables leads the latter to be considered as explanatory. In the
multiple linear functional relationships the random terms are independent of all
systematic parts and may be correlated with any or all observed variables. The
model itself does not distinguish any subset of variables as “dependent” or as
“independent” (or “explanatory”); the variables are treated symmetrically. In
this sense setting some coefficients equal to 1 and O effects identification but
does not necessarily affect interpretation.

To obtain maximum likelihood estimators we shall assume that the errors are
normally distributed and also that any random systematic parts are normally
distributed. We concentrate then on the first and second order moments. The
estimators obtained by maximum likelihood and by generalized least squares can
also be used when the random variables are not normally distributed. (There are
procedures based on the systematic parts not being normal. See Chapter 29 of
Kendall and Stuart (1979).)

Part I. Linear functional and structural relationships.

2. A linear functional relationship: One relationship between two
variables. In this case of p = 2 and m = ¢ = 1 and normal errors, the model
(1.1) yields the 2-vector (x1., x2.)’ distributed as

(2.1) N[<§I“>, 0212], a=1,---,n,
2a

where the systematic parts satisfy the linear equation
(2-2) 22 = Y + 621017 a = 19 e, N,

where v and (8 are to be determined. The model is illustrated in Figure 1. The
points on the line are the means (2,4, 22,), @ =1, - - -, n, and the circles indicate
the circular normal distributions centered at these points. The parameters can
be taken as 211, - -+, zi,, v, B, and ¢”. An alternative for the slope £ is the angle
6 that the line makes with the u- or x-axis, as defined by

(2.3) tan 0 = B.

The likelihood function based on the observations (x1., %2.), a =1, -+, n, is
1 1o,
(2.4) @n)o eXp{— 2 Yot (%10 = 210)® + (%20 — v — ﬁzla)zl}-

Maximization of the likelihood with respect to zy1, - - - , 21,, v, and 8 is equivalent
to minimizing the sum of squares in the exponent with respect to these quantities.
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22a: x1a
2,7y +Bz|
®/®
@/
/
/ﬁ‘
210 X1a

Fi1G. 1. Linear functional model for p = 2.
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Fi1G. 2. Estimation of the linear functional relationship.

Hence, the maximum likelihood estimates of these parameters are also least
squares estimates. (The maximum likelihood estimates for o® known are the
same as those for ¢2 unknown.) These estimates minimize the sum of squared
distances of the observed points from the fitted line; they minimize

Yot (%20 — ¥ = Bx1a)”
1+ 6?2 ’

(2.5)

In this sense the estimates are generalized least squares estimates.

Figure 2 illustrates the estimation. The X’s denote the observed points. The
short line segments are orthogonal to the fitted line; it is the sum of squares of
their lengths that is minimized. The estimates of the expected values (Z,., 22.)
are the projections of the observed points on the line. This estimation procedure
is sometimes known as “orthogonal regression.” Another way of describing the
method is that the direction of the line is the direction of the first principal
component; that is, the direction maximizes the scatter; the projections on the
line have the maximum variance along the line. ,

This problem has a long history. In fact, we are just past the hundredth
anniversary of the solution. Some of the contributors are Adcock (1878), Kummel
(1879), Pearson (1901), Gini (1921), Van Uven (1930), Dent (1935) and Koop-
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mans (1937). The method of orthogonal regression was discovered and re-
discovered many times, often independently.

In multivariate analysis it is enlightening to interpret the problem geometri-
cally in a space of dimensionality equal to the number of observations, here n.
The sets of means (2,5, - - -, 21,) and (21, - - - , 22,) are represented by two points
in n-space

(2.6) zf = (211 — 21, ++ 0, 210 — 21), 25 = (201 — 25, -+, Zon — 22).

The points are points in (n — 1)-dimensional planes [Yh-; (21 — 2;) = 0 =
Y2_1 (22« — 22)] perpendicular to the equiangular line. As indicated in Figure 3
and implied by (2.2), the two points are collinear

2.7) zi = pBz}.
The random vectors
(2.8) Xf= (11— %1, -+, X1n— X1), X5 = (%1 — X1, +++, Xon — X2)

have independent spherical normal distributions with centers at zf and z,
respectively. (The points x¥ and x% are in the (n — 1)-dimensional space
orthogonal to the equiangular line and can be expressed in terms of n — 1
coordinates.)

The maximum likelihood estimation procedure can be described as follows.
The observed x¥ and x# are projected orthogonally into points &, and &; on a line;
see Figure 4. The line is chosen to minimize the sum of squared distances of x¥
and x¥ to the line. The ratio of lengths of the two projections is the estimate of
8. In formal terms one minimizes | xf — &2 + || x¥ — & 2 subject to & = B¢
(Anderson and Sawa, 1982).

It seems appropriate in a Wald lecture to include a decision-theoretic result.
In the two-dimensional space (Figures 1 and 2) the error structure (¥uu’ =
¢?I,) is invariant with respect to orthogonal transformations. The difference
between the maximum likelihood estimate of the angle and the angle itself is
also invariant. In the n-dimensional space (Figures 3 and 4) the error structure

5

FiG. 3.
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FiG. 4.

is invariant with respect to orthogonal transformations that leave the equiangular
line invariant. As loss function we use

(2.9) L(0, 6) = sin2(d — 0),

which is invariant with respect to the two groups of orthogonal transformations.
The loss function takes account of the fact that 6 is defined only to within a
multiple of w. Then the maximum likelihood estimator of § is the best invariant
estimator. Consequently, it is admissible among all estimators. In fact, for fixed
lzf|? + || z¥]|? and ¢? the maximum likelihood estimator is admissible (Ander-
son, Stein and Zaman, 1982). These results are true for the means on a line (m
= 1) for any dimensionality of observation (p).

3. A linear structural relationship: One relationship between two
variables. In this case the systematic parts are random. We write the model
as

3.1) X1=pm + 0+ U, xXo=us+ Bv+ us,
where u; and u, are constants and

(3.2) Kuy = Fuy= Lv=0,

(3.3) Fu? = Pui =% Lv’=g2.

If we assume u,, u; and v are independently normally distributed, the model is
determined by these five parameters u;, o, o2, ¢2 and 8. Then x; and x, have a
bivariate normal distribution described by the five observable parameters ¥ x;,
¥ x5, Var x;, Var x, and cov(x;, x;). These can be expressed in terms of the five
model parameters. When the usual estimates of the observable parameters are
inserted into these equations, we obtain maximum likelihood estimates of the
model parameters. The resulting estimate of 8 is the same as in the linear
functional relationship.
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4. Linear functional relationships: Independent errors with equal
variances. We now turn from the special case of p = 2 and m = g = 1 to the
model defined by (1.1), (1.2), and (1.3), where p, m(< p), and q(< p) are arbitrary
and subject to m + g = p and the z,’s are nonstochastic. With z = (1/n) Y., z,
we define v, = z,— Z and u = z. Then the model is written as

(4.1) Xy =V, +pu+u, a=1,-.---,n,
where v, satisfies (1.2),

(4.2) Ya=1 Vo = 0,

and n > p. The relationship (1.3) is equivalent to

(4.3) By,=0, a=1,.---,n,

where B is a ¢ X p matrix. The model can now be described in the terminology
of the multivariate analysis of variance with a one-way classification; v, is the
effect vector in the ath class.

When the errors are uncorrelated and have equal variances,

(4.4) ¥ = o,
To remove some of the indeterminacy in B we may require
(4.5) BB’ =1,

since the rank of B was assumed to be q. There remains the indeterminacy of
multiplication of B on the left by an orthogonal matrix. We assume ¢ = 1. (If ¢
= (), the model is unidentified; there are np + 1 parameters and only np observable
data.)

Under the assumption of normality the logarithm of the likelihood function is

1 1
10gL=—Enplog%——gnploga2

(4.6)

1
iy Yot (KXo = = 1) (Xg — 1 — vo).

The maximum likelihood estimators are the values of u, vy, - - -, v,, 02, B that
maximize (4.7) and satisfy (4.2), (4.3), and (4.5). It is evident from the form of
(4.7) that the values of u, v, - - -, v,, B maximizing the likelihood are the values
minimizing the sum of squares in (4.7). Thus, maximum likelihood estimation is
equivalent to (orthogonal) least squares estimation as in the case of p = 2. It
should also be noticed that the values maximizing the likelihood are the same if
o’ is known.
Let x = (1/n) Y-, X,and

(4.7) C=(@1/n) Zo-1 (x. — X)(x, — X)".
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Let the characteristic roots of C, that is, the roots of

(4.8) |C = tI,| =0,

be t; > ... > t, (the roots being distinct with probability 1), and let the
corresponding characteristic vectors be w;, ---, w, normalized by w'w = 1,
that is,

(4.9) Cw;,=tw;, i=1,..-,p.

Let

Wl = (wla MY wm)a W2 = (Wm+1y ct wp)’ w = (wl WZ))

t, 0 ... 0 ther O oo 0
(4.10) 0 t, --- O 0 tpeo -+ O
T1= . . . N T2 = . . . N
0 0 --- tn 0 0 -t
_ [Ty O
= (T 2).

Then WW =1, C= WTW’' = W, T,W| + W,T,W;, and I, = WW’' = W, W;
+ W,W3;.
Maximum likelihood estimators of B, vy, - - - , v,, 02, and u are

(4.11) B =W,
(4.12) v, = WW/(x,—X), a=1,.--,n,
|
(4.13) oF =~ Zf=m+1 ti,
p

and i = X. (When the maximum likelihood estimators of a parameter are different
in the functional and structural models, they will be distinguished by subscripts
F and S, respectively.) When W is multiplied on the left by an orthogonal
matrix, another maximum likelihood estimator of B is obtained.

The directions indicated by the columns of W, are the directions of minimum
scatter; that is, w; minimizes

(4.14) "y [wW(Xe — X)]2 = nw'Cw

subject to w’w; = 0 (or equivalently w'Cw; =0),j=i+ 1, - - - , p. See Anderson
(1958), Chapter 11. Similarly the directions defined by the columns of W;
maximize the scatter. The estimator of », is the projection of (x, — X) on the m-
space defined by Bz = 0. It should be noted that in order to estimate o® the
dimension m must be less than p; there must be at least one linear relation on
the expected values of the x,’s. In effect the variability described by ¢, - - -, tn
is assigned to the variation in the means and the remainder Y2 ..., t; is assigned
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to o2. The estimator of ¢ is too small; for example, plim,_.%= (g/p)o? when
(1/n) XYin-1 vl converges to a matrix of rank m. The mean sum of squares and
cross products of estimated factors is

1 P
(4.15) o Yo=1 Voo = WiT,Wi.

The maximum likelihood estimator of the mean sum of squares and cross products
of the observations is

1 . R R
(4 16) ) r_l Z,’:=1 Val/,: + U%Ip = W1T1W{ + U%‘Ip

=W, (T, + 67L,)W{ + 6iW,W3.

Tintner (1945) obtained the maximum likelihood estimators of B and »;, - - -
v,, when ¥ = ¥, is known completely and gave examples of their use (Tintner,
1946, 1952). The estimators are the same as when ¥ = ¢2¥, and ¢ is unknown.
(For ¢® known Tintner proposed a test of the hypothesis m = m, against the
alternative m > mo based on Y2 ,,+1 . When o is unknown, a test is not possible
because the estimate of ¢ is vacuous for m = p.) Geary (1948) discussed them
further. Malinvaud (1964) derived the same estimators. Sprent (1966) obtained
the estimators by generalizd least squares in a more general setting. Gleser and
Watson (1973) found the maximum likelihood estimators in the special case m
= q; Bhargava (1979) noted that their argument holds for m =< q. (In fact it holds
for any m and q.) Theobald (1975) used a purely algebraic method. Gleser (1981)
showed that the estimators minimize any orthogonally invariant norm of
(BB')/’B(x,— p), a=1, - - -, n. See also Eckart and Young (1936), Rao (1973),
Section 8¢.6, Hoschel and Chan (1980).

5. Linear structural relationships: Independent errors with equal
variances. In the structural case with a random effect it will be convenient to
formulate (1.1) in a manner similar to (4.1). If ¥z, =pand v,=2z,— pu, (1.1) is

(56.1) X, = Vo + p+u,,

where u, satisfies (1.2) and ¥ v, = 0 (analogous to (4.2)). The random (unob-
servable) v, is assumed to satisfy the linear relationship

(5.2) Bv,=0

with probability 1 (analogous to (4.3)). Then the covariance matrix of
v, ¥v.v, = O satisfies this linear relationship, that is, BO = 0. Sometimes it
is convenient to write the covariance matrix © as AA’, where A is a p X m matrix
of rank m. (In terms of the “parametric” form (1.4) we have taken f to have
moments ¥ f =0 and ¥ ff’ =1,..) The covariance matrix of x, is

(5.3) T=Vv+0O =¥+ AA".

We again treat the case ¥ = ¢°I, and require BB’ = 1.
As in the case of linear functional relationships, a maximum likelihood

N

estimator of B is again B = W3; other maximum likelihood estimators are
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obtained by multiplying W3 on the left by orthogonal matrices. (The maximum
likelihood estimators of B, ©, and = are not the same for ¢2 known as for o2
unknown in this model.) The maximum likelihood estimator of ¢2 is

R 1
(5.4) 7% = p 2iem+1 tiy

the average of the ¢ smallest characteristic roots of C. The maximum likelihood
estimator of O is

(5.5) 0 = W,T\W/ — 63W,W{ = W,(T, — 63L)W{,
and the estimator of the covariance matrix of x, is
(5.6) $s = oL, + © = W, T,W| + 62W,W}.

Note that here more of the total variability in terms of ¢,, - - - , t, is assigned to
the directions represented by the columns of W, than in the case of the linear
functional relationship. The estimator of the mean is i = X. These estimators
were obtained by Lawley (1953) and by Theobald (1975); their asymptotic
distributions were treated by Anderson (1963).

If the rank of ¥ v,v/.=0 is m, then = =0 + ¢°’I, has g = p — m characteristic
roots equal to ¢% The null hypothesis that the rank of the covariance matrix of
the (unobservable) random systematic part is m, (that is, that there are p — my
linear constraints) is the hypothesis that the m, smallest characteristic roots of
2 are equal. The alternative that the rank of © is greater than m, is equivalent
to Z being an arbritrary positive definite matrix. The likelihood ratio criterion A
for testing the hypothesis m = m, against the alternative m > my is defined by

2/n _ |2:39| _ | | (17
1201 [(1/go) Xrmgsr t:]%’

where g = p — m,. The criterion is the Yengoth power of the ratio of the geometric
mean of the g, smallest roots to the arithmetic mean. As n — oo, the limiting
distribution of —2 log X is x* with Y%qo(go + 1) — 1 degrees of freedom when the
hypothesis is true.

What is the connection between the analysis of linear functional and structural
relationships and principal component analysis introduced by Hotelling (1933)?
The sample principal components of a vector x are the components of W’x.
They can be considered as forming a new coordinate system with intrinsic
statistical meaning. The sample variance of w/x is t; and the principal compo-
nents are uncorrelated in the sample. A primary use of principal components is
to reduce the number of variables considered by discarding the principal com-
ponents with small variances. This amounts to approximating a random vector
x by its first few principal components; more precisely W’x is approximated by
Wix. It is anticipated that statistical analysis of W{x will give nearly all the
useful information about x. In the case of the linear functional or structural
analysis Wix is considered as the estimate of the systematic part of x and x —
W, Wix = W,W;x can be considered as the estimate of the error in the g-space
orthogonal to the systematic part. (In the m-space of W{x the systematic part

(5.7)
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and error cannot be distinguished.) The error of approximation of x by Wi{x is
not necessarily small, but should have the attributes of u, namely, mean 0 and
covariance matrix corresponding to equal roots.

In principal component analysis W{x may be a good approximation to W’x if
tm+1, -+, b are small. In the linear structural analysis W{x is a good estimate
of the systematic part if ¢,,+1, - - - , t, are nearly equal (not necessarily small!).

6. Linear functional relationships: Arbitrary error covariance ma-
trix. When the error covariance matrix is completely unspecified, replicated
observations are needed in order to estimate it. We shall suppose that there are
k = 2 observations made on the vector with expected value v, + u. For ease in
exposition we have taken the number of observations on all the vectors to be the
same, though that is not necessary. We write

(61) Xaj=lla+p,+uaj, a=1,---,n, j=1,-'-,k,

where u,;and v,satisfy (1.2), (4.2), and (4.3). This is equivalent to the multivariate
analysis of variance model with fixed factors for the one-way classification.

Let x,= (1/k) Y%, x,;and X = (1/n) Y"_; X... The usual analysis of variance
table is

Source Sum of Squares d.f.
Effect H=kY", (X,— X)(X.— X)’ n—-1
Error G=3r, Th (X — %o) (X0 — Xa)’ nk-1)
Total Yror Dk (Xej— X) (X, — X)’ nk—1
Let

~ 1 ~ 1

6.2 H=-H G=——G.

6.2) n n(k—1)

Then G is an unbiased estimator of ¥, and

(6.3) ¥H = n-1 ¥ + k I vapl.
n n

If there were no linear relationship, B would be O and the maximum likelihood
estimators of ¥ and », would be [n(k — 1)/(nk)]G and %, — X, respectively; if
there were p linear relationships, the estimator of B could be any nonsingular
matrix, v, would be 0 and the maximum likelihood estimator of ¥ would be a
weighted average of H and G, namely [1/k][(k — 1)G + H]. When there are q (0
< q <p) linear relationships, the estimators are compromises between the above
extremes.
Let the roots of

(6.4) |H-dG| =0
be d, > - .- > d, (the roots being distinct with probability 1), and let y,, --- , y,
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be the vectors satisfying

(6-5) ﬁyl = diGyiy l = 1: ey Dy
and y/Gy; = 1. These are the characteristic roots and vectors of G 'H. Let
Yl = (yI’ ) Ym), Y2 = (ym+17 D) yp)y Y = (Yl Y2)y
d,0 ---0 dper 0 ... 0
0dy---0 0 dpiz--0
D1 = P . s Dz = . . . )

(6.6) Do : R .

00 .--dn 0 0 ceed,

(D, O
D= (0 DQ).

Then Y'GY = I, and Y’'HY = D. It will be convenient to define (Y')™' = Z =
(Z, Z,); then G = ZZ’ and H = ZDZ’' = Z,D\Z; + Z;D,Z;. (Y and Z are
uniquely defined except that any column can be multiplied by —1). Maximum

likelihood estimators of u, B, and »;, --- , v, are g = X,
(6.7) B =Y},
(6.8) v = GY, Y{(X, — X)=Z,Y{(X, — X), a=1,---,n.

Thus Bs, = 0; the rows of B (columns of Y,) are orthogonal to 5., a =1, -- -,
n. Note that

k PN
(6.9) - a=1 VaVo = LiDiZ1;

this is the part of H = ZDZ’ accounted for by the fixed effects. The maximum
likelihood estimator of the error covariance matrix is

A 1 ~
(6.10) Ve = % [(k = 1)G + Z,D.Z;];

this is a weighted average of G, the unbiased estimator of ¥, and Z,D,Z3, which
is the part of H not assigned to the fixed effects. Note that regardless of the
assumed rank

N 1 ~ ~
(6.11) ¥ + % Yol Vaba = % [(R - 1)G + H].

The vector y; satisfying (6.5) minimizes
kYoo [y (% = %) _ y'Hy
Yro1 T [y (% — X)) ¥'Gy
among vectors satisfying y'Gyj =0,j=m+1, -..,p. The g rows of B (that is,

the g columns of Y,) are in the directions of minimum scatter.
These results were obtained by Anderson (1951a). (In their surveys Madansky

(6.12)
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(1959) and Moran (1971) overlooked this paper as well as Anderson and Rubin
(1956).) The results were rediscovered and extended by Villegas (1961), Hannan
(1967), Dolby (1976), Nussbaum (1976), and Healy (1980).

Fisher (1938) had considered a related problem in discriminant analysis: how
to discriminate among n populations when the means (u + »,,) are linearly related.
See also Bartlett (1947), (1948).

The likelihood ratio criterion A for testing the hypothesis that m = m, against
the alternative m > my is defined by

A/m = (k = 1)¥Pm0| (k = DI, + Dy~

(6.13) ) B HP k _ 1 k
et \p—1+4d;)°

When the null hypothesis is true, —2 log A has a limiting x >-distribution with (p
— my)(n — 1 — my) degrees of freedom as k — o and n is fixed. See Anderson
(1951b).

7. Linear structural relationships: Arbitrary error covariance ma-
trix. We write the model as

(7.1) X, = Vo + p + u,, a=1,-.-..,n, j=1,...,k’

where u,, satisfies (1.2), ¥v,= 0, and ¥v,v,= O = AA’, as in Section 5.
(Dolby (1976) has combined the linear functional and structural relationships
into a more general model, called the ultrastructural relationship, where z, in
(1.1) has the distribution N(v,, ©).) The covariance matrix of x,, is (5.3). We
have

(7.2) “H = ”T_l (¥ + k0), ¥G=1v.

If there were no linear relationship, then B would be 0 and the maximum
likelihood estimators of ¥ and © would be G and (1/k)(H — G) provided the
latter is positive semidefinite; if there were p linear relationships, B could be any
nonsingular matrix, © would be 0, and the maximum likelihood estimator of ¥
would be the same weighted average of G and H as in the case of p linear
functional relationships. It should be noted that

1

y H-G) =

(1.3) Z(D - 1,)Z’

| =

is almost an unbiased estimator of ©, but if it is not positive semidefinite it
cannot be the maximum likelihood estimator. In that case the maximum likeli-
hood estimator has the form of (7.3), but tpe diagonal elements of D that are
less than 1 are replaced by 1. The rank of O then is the number of d,, --- , d,
that exceed 1. (The probability of any root being 1 is 0.)
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Let p* be the number of roots greater than 1, and let m* = min(m, p*). Let

d10 e 0 dm‘+10 ... 0

0 dy -+ 0 0  dyss -+ 0
(7.4) Di=|. - ) T2 .

00 --- dn 0 0 A

* consi8t of the first m* columns of Y and Y3 consist of the remaining columns,
Z* the first m* columns of Z and Z% the remaining columns. Our model now is
that there are at least p — m = q linear relationships; that is, B has at least ¢
rows. Then a maximum likelihood estimator of B is Y%’. The maximum likeli-
hood estimator of O is

A 1
(7.5) 0 = 2t (Dt - L)ZY";

this estimator is positive semidefinite of rank m*. If all the roots are less than 1,

(7.5) is vacuous and © = 0. Note here that BO =0 as required. The estimator
of O is based on the part of H that is associated with the m* columns of Z with
a correction based on G because H estimates k0 + ¥. The maximum likelihood
estimator of the covariance matrix ¥ is

N 1 ~
(7.6) Vs = % [((k — DG + (ZFD3Z} + ZYZY')];

this is a weighted average of G, the unbiased estimator of ¥, and the sum of
Z3D3Z3', which is the part of H not assigned to the class effects, and Z}Z}’,
which was not included in ©. If more than g roots are less than 1, D5 has fewer
elements than D, and Z.D,Z; — Z¥D}Z%’ is positive semidefinite. Regardless of
the assumed rank

(7.7) ¥+ 0= % [k — 1)G + H].

The likelihood ratio criterion X for testing the hypothesis that m < m, against
the alternative m > my is defined by

* k*d;
2/n = TIR. PR el S
(7-8) A Hl—m0+1 (k -1+ di)k’

if p* < my, the criterion is 1. The hypothesis is rejected if the criterion is too
small. The usual asymptotic theory as n — o does not hold here; the limiting
distribution of —2 log X is not a x 2-distribution.

Anderson (1946b) found maximum likelihood estimators and likelihood ratio
criteria in terms of the components of variance model as did Morris and Olkin
(1964) independently. Tukey (1951) discussed an example of the statistical
analysis. Klotz and Putter (1969) published the maximum likelihood estimators
for the case of no linear relationships assumed (m = p). Amemiya and Fuller
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(1984) obtained maximum likelihood estimators when the rank of © is taken to
be exactly m; if p* < m, the maximum likelihood estimators in this model do not
exist. They also found the likelihood ratio criterion to test the null hypothesis
that m = m, against the alternative that ¥ + kO is an arbitrary positive definite
matrix.

Part I1. Factor analysis.

8. The factor analysis model. We write our model in the “parametric”
form

(8.1) X, = Af, + p + u,,

where #¥u, = 0 and ¥u,u, = V. The p X m matrix A consists of “factor
loadings,” the vector f, consists of m “common” factor scores, and u, represents
the errors. In psychological terms a component of u, may include a random factor
unique to that test as well as an error. An essential assumption is that the error
covariance matrix ¥ is diagonal. As indicated in the introduction, (8.1) is one
way of representing the linear functional or structural relationship.

I. In the case of fixed factors we assume
1
(802) Z=1 fn = 0; ; 2=1 faf; = Q’

where ® is unknown. The f,, a =1, - - - , n, are unknown “incidental” parameters.

II. In the case of random factors we have

(8.3) ¥f. =0, Lff,=0.
Furthermore, f,, - - -, f, are independent of u,, - - -, u,. Then ¥x, = u and
(8.4) cov(X,) = F(Xe — )Xo —pn) ==V + ASA’.
We can distinguish two cases. In the case of “orthogonal” factors
(8.5) ®=1,.
This implies with random factors that
(8.6) 2=V + AA’.

The observed covariance matrix is considered to be the sum of a positive definite
diagonal matrix and a positive semidefinite matrix of rank m. In the case of
“oblique” factors the covariance matrix of the factors is arbitrary. We shall
discuss the interpretation and use of oblique factors later.

One can take two views of this model. One view is that the model represents
some reality. In particular, the components of x, can be scores on psychological
tests and the components of f, can be values of intelligence factors or primary
abilities. The latter are more fundamental or intrinsic. Spearman (1904) proposed
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a general intelligence factor to explain the positive correlations observed between
scores on intelligence tests—the single-factor model. This idea was generalized
into the multiple-factor model as presented here (Garnett, 1919); the foremost
developer was Thurstone (1935), (1947).

Another point of view is that this model is a way of describing mutual
dependence. As we shall see later, the location and scale descriptions (depending
on means and variances) can be distinguished from interdependence descriptions
(depending on the correlations).

As noted before, (8.1) is another way of writing the linear functional and
structural relationships. We have BA = 0, where B is a ¢ X p matrix and ¢ =
p—m.

9. Identification and “rotation”. As observed earlier, in (8.1) A can be
replaced by AC and f, by C™'f, without changing Af,. There are several ways of
resolving this indeterminacy.

1. One way is to require & = I, the case of orthogonal factors. There remains
the indeterminacy of multiplication by an orthogonal C, a “rotation.” A conve-
nient way to eliminating this indeterminacy is to require

9.1) A’¥ A =T = Diagonal.
The diagonal elements of T are the nonzero roots of
9.2) |Z—-¥ —~¥|=0.

Condition (9.1) determines A uniquely when the roots are different and the
diagonal elements of T' are ordered.

2. Another method of obtaining uniqueness is to require

I,
(9.3) A= <A2>'

This leads to a relatively simple covariance matrix of the asymptotic distribution
of the maximum likelihood estimators.

3. A more general way, which includes the above, is to require 0’s in specified
positions and a normalization of each column of A. For example, we might specify

1 0 v
A21 0 v )\210
(9.4) =u+ )\31 )\32 < ) +u = u + )\310 + )\32(1 + u.
a
0 g 20
0 1 a

The components of x may be the scores on 5 tests, and v and a measures
of verbal and arithmetic abilities. The first two tests depend only on verbal
ability and the last two tests depend only on arithmetic ability. There are two
specified 0’s in each column. In addition, the scales of v and a are determined by
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the first element of the first column and the last element of the second column.
In general, there must be at least m — 1 specified 0’s in each column. The scales
of the factors may alternatively be specified by requiring their variances to be 1
(¢ =1).

The number of observable variances and covariances is “2p(p + 1). The
number of parameters in ¥ and A is p + pm. To eliminate the indeterminacy of
a rotation (when ® = I,,) there are Yam(m — 1) restrictions, such as (9.1). If

(9.5) Yp(p + 1) + Yam(m — 1) — (p + pm) = %[(p — m)* — (p + m)]

is positive, £ and the restrictions will usually uniquely determine ¥ and A; if
(9.5) is negative, ¥ and A are not uniquely determined; and if (9.5) is 0, there are
usually a finite number of solutions to (8.4). Anderson and Rubin (1956) give
more precise statements.

Rotation. A requirement such as (9.1) is a convenient method of insuring
uniqueness, but the resulting A does not have intrinsic meaning. The factor
analyst may apply a transformation (orthogonal in the case of ® = I or nonsin-
gular in any case) to obtain a matrix of factor loadings A that can be interpreted
in terms of the subject matter. The attempt is to make many factor loadings
close to 0. Then the interpretation is that certain factors are absent on certain
tests; that helps identify the factors. A matrix with many 0’s is said to have
simple structure. Thurstone (1935), (1947) gave some rules about the pattern of
0’s. See also Reiersgl (1950).

10. Estimation of the factor structure in the case of fixed factors:

Nonexistence of maximum likelihood estimators. Let x, = (%0, « - -, Xpa)’
be an observation on the variable defined by (8.1) with f, being a nonstochastic
vector (an incidental parameter), « = 1, - - -, n, satisfying (8.2) for ® = I,,,. The
likelihood function is

1

(0. L= ((2m)P TR, Yu)™?

Xio — i — DT M‘fja)z}
Vi ’

The likelihood function does not have a maximum. To show this fact, let u; = 0,
)\11= 1, )\11=07.’;'é 1yf1a=x1a’a= 1’ "'7n'Then

(10.2) >\11f1ﬂ + M1 = Xlay O = ]-y sy, N

1
eXp{_ 5 Da=1 21

The numerator in the exponent for i = 1 is 0 and Yy, appears only in the constant.
As Y11 — 0, L — . Consequently, the likelihood function does not have a
maximum and the maximum likelihood estimators do not exist (Anderson and
Rubin, 1956). Lawley (1941) set the partial derivatives of the likelihood equal to
0, but Solari (1969) showed that the solution yields only a stationary value, but
not a maximum. Lawley’s experience with numerical examples was that estimates
of Y;’s converged toward 0. Unaware of the nonexistence of maximum likelihood
estimators, Lindley and El-Sayyad (1968) recommended a Bayesian approach for
p = 2; see also Lindley (1947). Copas (1972) studied the likelihood function when
rounding errors were included.
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11. Estimation of the factor structure in the case of random fac-
tors. Let x, be an observation on the random variable given by (8.1) satisfying
(8.3) for ® = I,. If f, and u,, are independently normally distributed, then x, is
an observation from N(u, ¥ + AA’). The sufficient statistics are X and

(11.1) C = (1/n) Yo (X, — X)(x, — X)".

We require

(11.2) A’WIA =T = Diagonal.

Then the likelihood equations reduce to this constraint and the pair of equations
(11.3) Diagonal ¥ = Diagonal (C — AA’),

(11.4) CVY'A=AI,+T).

Equation (11.4) can be written as

(11.5) (C— W)V 'A=AT

or as

(11.6) (C— W¥)(¥'A) = V(¥ 'A)T.

The columns of A are characteristic vectors of C¥~! or of (C — ¥)¥~'. They
correspond to the m largest characteristic roots.

It is of interest to compare this solution with those of Sections 5 (¥ = o¢7I,)
and 7 (¥ unknown). In the case of oI, we used the characteristic vectors and
roots of C. The matrix W, satisfied

(11.7) CW, =W,T,, WW,=1,.

The first equation of (11.7) can be written

(11.8) C(o’L,) (e W I*2) = (eW, I™*%)(I,, + ),
where the diagonal matrix I'* is

(11.9) * = (1/¢*)T; — L,.

The equation (11.8) is analogous to (11.4) with ¥ replaced by ¢°I,, T by T'*, and
A by

(11.10) * =g W I'k.
Then (11.2) is equivalent to ,

(11.11) A*(%I,)'A* = T*,
The analog of (11.3) is

(11.12) tr ¥ = tr(C — A*A*)
or

(11.13) pa?= 32, t; — tr Wie’T*W; = 32, t; — Y2, t; + mo?,
which yields g% = Y2 .41 .
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In the case of ¥ unknown studied in Section 7 the derivative equations can
be manipulated to obtain

(11.14) HY A = A*(I, + T),
(11.15) ¥ = [1/(nk)](H + G) — A*A*Y,
(11.16) I't = kA WA,

where © = A*A*’. These are analogous to (11.2), (11.3), and (11.4) with H as the
analog of C in (11.4) and [1/(nk)](H + G) as the analog of C in (11.15). Then

(11.17).  A* = [1/(nVR)(G + H)Y(D; — L,)"2[D, + (k — 1)L,]™

if D; — I, is positive semidefinite. ¥ is then obtained from (11.15), which is
equivalent to (7.7).

The solution of the likelihood equations (11.2), (11.3), and (11.14) is not
straightforward because (11.3) and (11.4) have to be solved simultaneously.
Lawley (1940) suggested using an initial estimate of ¥ and then solving (11.5)
and (11.2) for A and I. In turn (11.3) can be solved for a new value of V.
Unfortunately, this method does not necessarily converge. Other computational
methods must be used, such as the Fletcher-Powell algorithm. See Lawley and
Maxwell (1971) for example. The methods maximize the likelihood function
numerically.

A possible computational device is the EM (expectation-maximization) algo-
rithm (Dempster, Laird, and Rubin (1977) and Rubin and Thayer (1982)). The
idea is to treat the unobservable f,’s as missing data. Under the assumption that
the f.’s and u.’s have a joint normal distribution the sufficient statistics are the
means and covariances of the x,’s and f,’s. The E step of the algorithm is to
obtain the expectation of the covariances on the basis of trial values of the
parameters. The M step is to maximize the likelihood function on the basis of
these covariances; this step provides updated values of the parameters. The steps
alternate, and the procedure may converge to the maximum likelihood estimators.
Wu (1983) has discussed some questions of convergence of the EM algorithm.

The modern computer has revolutionized the estimation in factor anaysis. At
the time of the summary by Anderson and Rubin (1956) the centroid method was
the only method in use, but it has now disappeared. This crude procedure, based
on addition and subtraction operations, can be considered as a rough approxi-
mation to the modification of principal component analysis (described below).

There are at least two serious problems with obtaining numerically the
maximum likelihood estimators. One is that there might be several relative
maxima. In that case a convergent computational method may lead to different
solutions depending on the starting values. A protection against converging to a
relative maximum that is not an absolute maximum is to use a grid of starting
values to explore the likelihood function. However, if p is not small, the calcula-
tion at a grid of values may be prohibitively expensive.

Another problem is that a maximum may occur at a point at which one or
more of the diagonal elements of ¥ are negative, the so-called Heywood case. To
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avoid such a solution the program may require that each diagonal element be
greater than some small constant or greater than some small multiple of the
corresponding diagonal element of C. If a computational solution yields a negative
value for ¥;; or a value equal to the prescribed minimum, the investigator may
conclude that ¥, is 0. That implies that the ith test score is exactly a linear
combination of factor scores. Then the factor scores can be transformed so that
this linear combination is a new factor coordinate; thus, a test score is exactly a
factor score. The interpretation is uncomfortable; a factor (a primary ability) is
measured exactly by one test. A way to avoid negative estimates of the error
variance ¥;; is to write the likelihood in terms of the error standard deviations;
estimates of 0 may still result.

Another approach to estimation is generalized least squares. If Z, were the
true covariance matrix of the normally distributed x,.’s, then generalized least
squares estimators would be the values of ¥ and A that minimize

(11.18) 1o tr{Z5'[C— (¥ + AA))]A
This expression can be represented as the quadratic form
(11.19) [c — a(¥, A)]) [cov e]'[e — a(¥F, A)],

where ¢ represents the elements of C arranged in a vector, o(¥, A) is ¥ + AA’
arranged in a corresponding vector, and cov c is the covariance matrix of ¢ under
normality (Anderson, 1973). Jéreskog and Goldberger (1972) have proposed
substituting C for Z, in (11.18). The estimators minimize

(11.20) 1% tr{C'[C — (¥ + AA)]}%
An alternative is to minimize
(11.21) Yo tr{(¥ + AA")7'[C — (¥ + AA")]P

In either case the minimizing value of A for given ¥ is given by (11.4), the
likelihood equation. Browne (1974) has shown that the GLS estimator of ¥ has
the same asymptotic distribution as the maximum likelihood estimator. Dahm
and Fuller (1981) have shown that if cov ¢ in (11.17) is replaced by a matrix
converging to cov ¢, and ¥, A and ® depend on some parameters, then the
asymptotic distributions of the resulting estimators are the same as for maximum
likelihood estimation.
Let

(11.22) O=V¥— AN TA)TA,

which is of rank p — m. A necessary and sufficient condition that the transfor-
mation from X defined by (8.6) to ¥ and A (satisfying (9.1) with vy; > --- >
vmm) be single-valued and continuous in a neighborhood of ¥ and A is that the
matrix with elements of 67 be nonsingular. Then if Vn(C — 2) has a limiting
normal distribution (for example, if the x.’s are identically distributed and have
second-order moments), the maximum likelihood estimators have an asymptotic
normal distribution (Anderson and Rubin, 1956). Lawley (1953) found formulas
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for the asymptotic covariances of the estimators of A when ¥ is known; he
modified them (Lawley, 1967) for ¥ unknown (and (8.5) and (9.1) are satisfied),
and these formulas were corrected by Jennrich and Thayer (1973). The results
are too complicated to give here. The asymptotic covariances are simpler when
A is identified by requiring a submatrix to be I,, (Fuller, Pantula and Amemiya,
1982).

The likelihood ratio criterion for testing the null hypothesis that m = m,
against the alternative that m > my is

(11.23) A= T2, (14 59027,
where Y41, - - -, ¥, are the g smallest roots of
(11.24) |C_\i,_7\i,| =0.

Under the null hypothesis and the condition that (67) is nonsingular, —2 log A
has a limiting x >-distribution with Yo[(p — m)2 —(p+ m)] degrees of freedom.
(Since (11.3) implies 0 = tr(C W =tr AA P =tr T =37, 4, —2log \ is
approximately (n/2) Y21 7).

12. Estimation of the factor structure in the case of fixed fac-
tors. Since maximum likelihood estimators do not exist in the case of fixed
factors, what estimation methods can be used? One possibility is to use the
maximum likelihood method appropriate for random factors. The theorem of
Anderson and Rubin (1956) on asymptotic normality of the estimators holds
here. Fuller, Pantula and Amemiya (1982) verified this theorem and found the
asymptotic covariances when A is identified by a specified submatrix I,.

The sample covariance matrix under normality has the noncentral Wishart
distribution (Anderson, 1946a) depending on ¥, A®A’, and n — 1. Anderson and
Rubin (1956) proposed maximizing this likelihood function. However, one of the
equations is difficult to solve. Again, the estimators are asymptotically equivalent
to the maximum likelihood estimators for the random factor case. (Whittle, 1952,
has discussed some special cases.)

13. Change of units of measurement. The factor analysis model can be
set up for arbitrary units of measurement of the observable components. If units
are changed, the model changes accordingly. For a diagonal matrix D with
positive diagonal elements let

(131)  x*=Dx, A*=DA, p*=Dg, u*=Du, ¥*=DVD.
Then the basic model becomes
(13.2) x* = A*f + u* + u?,

where cov(u*) = ¥*. The sample second-order moment matrix is transformed to
C* = DCD. The logarithm of the likelihood function is a constant plus a constant
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times
—log | ¥* + A*A* | — tr C*(¥* + A*A*")7!
=—log| ¥+ AA"| —tr C(¥ + AA’) — 2 ]og|D].
The maximum likelihood estimators of A* and ¥* are
(13.4) A* =DA, ¥*=DV¥D.

That is, the estimated factor loadings and error variances are merely changed by
the units of measurement.

The fact that the factors do not depend on the location and scale factors is
one reason for considering factor analysis as an analysis of interdependence.
Another point of view (Howe, 1955) is that the partial correlations among the
test scores are 0 given the factor scores; the estimation procedure based on
minimizing the determinant of the sample partial correlations is equivalent to
maximum likelihood for random factors. Rao (1955) has interpreted the relation
between the test scores and factor scores in terms of canonical correlations.
Anderson (1959) has set factor analysis in a more general model of conditional
independence.

If d; = 1/\/5,;, i =1, -.-, p, then C* is the sample correlation matrix.
Computations can be done in these terms.

(13.3)

14. Relation to principal component analysis. What is the relation to
principal component analysis proposed by Hotelling (1933)? As explained in
Section 5, the vector of sample principal components is the vector W’x, where
the columns of W are the characteristic vectors of C normalized by W'W = I,..
Then

(14.1) C=WTW' =32, wit;w/.
If tp41, - - -, t, are small, C can be approximated by
(14.2) W, T, Wi = Y2, wit;w/,
and x is approximated by

(14.3) WiWix = ¥, (Wix)w,.

Then the sample covariance of the difference between x and the approximation
(14.3) is the sample covariance of

(14.4) x — W, Wix = W,Wix,

which is W, T, W5 = Y2, wit;w/, and the sum of the variances of the compo-
nents is Y2 41 .

This analysis is in terms of some common unit of measurement. The first m
components “explain” a large proportion of the “variance” of C. When the units
of measurement are not the same (for example, when the units are arbitrary), it
is customary to standardize each measurement to (sample) variance 1. However,
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then the principal components do not have the above interpretation in terms of
variance.

Another difference between principal component analysis and factor analysis
is that the former does not separate the error from the systematic part. This
fault is easily remedied, however. Thomson (1934) proposed the following esti-
mation procedure for the factor analysis model. A diagonal matrix ¥ is subtracted
from C and the principal component analysis is carried out on C — ¥. However,
V¥ is determined so that C — ¥ is close to rank m. The equations are

(14.5) (C—-—v¥)A =AL,
(14.6) - Diagonal(¥ + AA’) = Diagonal C,
(14.7) A’A = L = Diagonal.

The last equation is a normalization and takes out the indeterminacy in A. This
method allows for the error terms, but still depends on the units of measurement.
The estimators are consistent but not (asymptotically) efficient in the usual
factor analysis model.

15. Identification by specified zeros. Simple structure as recommended
by Thurstone is obtained by a linear transformation of a factor loading matrix,
selected to make many loadings close to 0 (and satisfying several other condi-
tions). We now consider the specification of 0 loadings in advance of the statistical
analysis. The objectives are the identification of the parameters and the inter-
pretation of the factors.

First we suppose that the covariance matrix of the factors, & f.f, = ® is
unrestricted. We shall now derive sufficient conditions for identification by pre-
assigned 0’s. Suppose at least m — 1 0’s are specified in the first column. The
tests can be numbered so that the factor loading matrix has the form

(0 A*
(15-1) A - <A A++) ’

where O in the first column has at least m — 1 elements. Furthermore, the matrix
A" must be of rank m — 1. Then multiplication of (15.1) on the right by a
nonsingular matrix A yields

0 A'\fan ap A*ay —
wo a8 e ) (0 )
Since AA must satisfy the same zero restrictions as A, A*a,, = 0; if the rank of
At is m — 1, then ay;; = 0 and the rest of the first column is Aa;;, which is
proportional to the original A. Thus, a sufficient condition for identification by
0’s is that each column has at least m — 1 specified 0’s and the matrix composed
of the rows of A corresponding to the 0’s in a certain column has rank m — 1.
Koopmans and Reiersgl (1950), Reiersgl (1950), and Anderson and Rubin (1956)
adapted these conditions from similar identification conditions for simultaneous
equation models in econometrics (Section 18). Howe (1955) and Lawley (1958)
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treated analysis based on models with specified 0 restrictions; Joreskog (1969)
termed such analysis “confirmatory factor analysis.”

Each component factor score needs to have its unit or scale determined. That
can be done by requiring an element in each column of A to be 1. (Requiring the
submatrix of A consisting of the first m rows to be I, is one way of imposing the
conditions.) An alternative scaling is to require ¢; = 1,i =1, - - -, m; this makes
& a correlation matrix.

The derivatives of the likelihood function set equal to 0 are

(15.3) Diagonal Z7![C — (¥ + A®A’)] 27! = Diagonal 0,
(15.4) A'Z7C — (¥ + APA)]Z'A=0

for positions in & that are not specified and

(15.5) ZUC — (¥ + A®A)]Z'A® =0

for positions in A not specified, where

(15.6) S=V¥+ ABA’.

These equations cannot be simplified as in Section 11 because (15.5) holds only
for the unspecified positions in A, and hence one cannot multiply by = on the
left. These equations are not useful for computation, but the likelihood function
can be maximized numerically. Howe (1955) and Anderson and Rubin (1956)
found alternative expressions for the likelihood equations. The latter gave very
general conditions for the asymptotic normality of the estimators.

Now we turn to the case of orthogonal factors. If £ ff’ = ® = I,,, we need at

least j — 1 0’s specified in the jth column of A, j = 2, ..., m (after suitably
renumbering the factors). For example, if m = 3, we could have the pattern

AMi 00

>\21 )\22 0
(15.7) PO B

)\pl )\Pz )‘p?»

Multiplication of (15.1) on the right by any nontrivial orthogonal matrix will
change the pattern. Anderson and Rubin (1956) also proposed similar restrictions
on AA for some preassigned A.

16. Orthogonal vs. oblique factors. If & is specified to be diagonal, the
factors are said to be orthogonal. The components are uncorrelated in the
population or sample according to whether the factors are considered as random
or as fixed. If ® is not necessarily diagonal, the factors are said to be oblique. The
idea of uncorrelated factor scores has appeal.

Some psychologists claim that the orthogonality of the factor scores is essential
if one is to consider the factor scores as more basic than the test scores.
Considerable debate has gone on among psychologists concerning this point. On
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the other side, Thurstone (1947), page vii, has said “it seems just as unnecessary
to require that mental traits shall be uncorrelated in the general population as
to require that height and weight be uncorrelated in the general population.”

As we have seen, given a pair of matrices A, ®, equivalent pairs are given by
AC, C7'&(C™Y)’ for nonsingular C’s. The pair selected (based on C given A, ®)
should be the one with the most meaningful interpretation in terms of the subject
matter of the tests. The idea of simple structure is that with 0 factor loadings in
certain patterns the component factor scores can be given meaning regardless of
&. Permitting ® to be an arbitrary positive definite matrix allows more 0’s in A.

Another consideration in relating transformations or identification conditions
is autonomy or permanence or invariance with regard to certain changes. For
example, what happens if a selection of the constituents of a population is made?
In case of intelligence tests suppose a selection is made, such as college admittees
out of high school students, that can be assumed to involve the primary abilities.
One can envisage that the relation between unobserved factor scores f and
observed test scores x is unaffected by the selection, that is, that the matrix of
factor loadings A is unchanged. The variances of the errors (and specific factors),
the diagonal elements of ¥, may also be considered as unchanged by the selection
because the errors are uncorrelated with the factors (primary abilities).

Suppose there is a “true” model, A, &, ¥, and the investigator applies identi-
fication conditions that permit him to discover it. Next, suppose there is a
selection that results in a new population of factor scores so that their covariance
matrix is ®*. When does the investigator analyze the new observed covariance
matrix ¥ + A®*A’ to obtain the original A again? If part of the identification
conditions are that the factor moment matrix is I, then he will obtain a different
factor loading matrix. On the other hand, if the identification conditions are
entirely on the factor loadings (specified 0’s and 1’s) the factor loadings matrix
from the analysis is the same as before.

The same consideration is relevant in comparing two populations. It may be
reasonable to consider that ¥, = ¥,, A; = A, but &, # ®,. To test the hypothesis
that ®, = ®, one wants to use identification conditions that agree with A; = A,
(rather than A; = A,C). The conditions should be on the factor loadings.

What happens if more tests are added (or deleted)? In addition to observing
X = Af + p + U, suppose one observes X* = A*f + u* + U*, where U* is
uncorrelated with U. Since the common factors f are unchanged, ® is unchanged.
However, the (arbitrary) condition A’ ¥ A being diagonal is changed; use of this
type of condition would lead to a rotation of A.

Part III. Simultaneous equationé models.

17. Simultaneous equations models in econometrics. Simultaneous
equations models (or structural equation models) are used to describe the behav-
iors of sets of economic agents. A familiar example is the pair of demand and
supply schedules (as displayed in Figure 5):

(17.1) Demand: « quantity + 8 price + v consumer income + § = random,



ESTIMATING LINEAR STATISTICAL RELATIONSHIPS 29

o SUPPLY
=
[
4
<
2
o
DEMAND
PRICE

F1G. 5. Supply and demand schedules.

(17.2) Supply: A quantity + » price + u cost of raw materials + ¢ = random.

This model indicates that the quantity of goods desired by consumers is a
linear function of its price, consumer income and a random term, and the quantity
of goods offered by producers is a linear function of the price, cost of raw
materials and a random term. Given consumers’ income, cost of raw material,
and the realizations of the random terms the price and quantity in the market
are the intersection of the two lines (solution of the two equations).

Now let us turn to the general model. (In Part III the notation for simultaneous
equations is a standard notation of econometrics; unfortunately, it conflicts with
the notation of Parts I and I1.) The equations are

(17'3) Byt + th = u, t= 1, ey, T,

where B is G X G, T'is G X K, y, is composed of G jointly dependent variables
(endogenous), z; is composed of K predetermined variables (exogenous and lagged
dependent) which are treated as “independent” variables, and u, consists of G
unobservable random variables with

(17.4) Fuau, =0, Fuu/ =2.

We require B to be nonsingular. This model was initiated by Haavelmo (1944)
and was developed by Koopmans, Marschak, Hurwicz, Anderson, Rubin, and
Leipnik, 1944-1954, at the Cowles Commission for Research in Economics. Each
component equation represents the behavior of some group (such as consumers
or producers) and has economic meaning.

The set of simultaneous equations (17.3) can be solved for y, (because B is
nonsingular):

(17.5) vo= T, + vi
where

(17.6) I=-B'I, v,=B'u,

with

(17.7) #Ev=0, Lvvi=B'ZB')'=4Q,

say. The equation (17.5) is called the reduced form of the model. It is a multivar-
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iate regression model. In principle it can be determined from the observable y;,
Z;.

18. Identification by specified zeros. The set of simultaneous equations
(17.3) can be multiplied on the left by an arbitrarily nonsingular matrix. To
determine component equations that are economically meaningful, restrictions
must be imposed. In the case of the example of demand and supply the equation
describing demand is distinguished by the fact that it includes consumer income
and excludes cost of raw materials. The exclusion of the latter amounts to
specifying that its coefficient in the demand equation is 0.

We consider identification of an equation by specifying certain coefficients to
be 0. It is convenient to treat the first equation. Suppose the variables are
numbered so that the first G, jointly dependent variables are included in the first
equation and the remaining G, = G — G, are not and the first K; predetermined
variables are included and K, = K — K; are excluded. Then we can partition the
coefficient matrices as
(18.1) BT) = (_ o 2) :
where 8, 0, v¥’, and O are row vectors with G,, G;, K;, and K, components,
respectively. The coefficient matrix of the reduced form is partitioned conform-
ably into G; and G, rows and K; and K, columns:

(18.2) I = (IEI IE?)

The relation between B, T', and II can be expressed

189 (7 ©)=r=-pm= (¥ O)T M) (§T FT)
The upper row of (18.3) yields

(18.4) B'Ili,=0,—p'I;, =%

To determine 8 (G, X 1) uniquely except for a constant of proportionality we
need

(18.5) rank(Il;;) = G, — 1.

This implies ’

(18.6) K,=G,— 1.
Addition of G, to (18.6) gives the order condition

(18.7) G+ Ko=Gi+G—1=G—1.

The number of specified 0’s in an identified equation must equal or exceed the
number of equations (or jointly dependent variables) less 1.
It can be shown that when B is nonsingular (18.5) holds if and only if the
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number of specified 0’s in the first row is at least G — 1 and the rank of the
matrix consisting of the columns of (B T') with specified 0’s in the first row is G
— 1. The condition for a row of (B T') to be identified (except for a constant of
proportionality) corresponds to the condition for a column of A to be identified.

19. Estimation of the reduced form. The model (17.5) is a typical
multivariate regression model. The observations are

(19.1) (Zi) (;’:)

The usual estimators of II and Q are
(19.2) P =Y., yz/ (XL zz!)7,
(19.3) Q= (1/T) Z;r=1 (y: — Pz,)(y. — Pz,)’.

These are maximum likelihood estimators if the v, in (17.5) are normally
distributed and II is unrestricted.
If the z, are exogenous (regardless of normality), then

(19.4) ¥ vecP=vecIl, covivecP)=A"1® Q,

where

(19.5) A =YL 2z,

and vec(dy, ---, d,) = (df, .-+, d/,)’, and ® denotes the Kronecker product.

Futhermore, 1f the v, are normal, then P is normal and TQ has the Wishart
distribution with covariance matrix  and T — K degrees of freedom.

20. Estimation of the structural coefficients. First, consider the esti-
mation of the vector of coefficients 8 when K, = G; — 1. Let P be partitioned
according to II:

P, Py
20.1 P = .
( ) <P21 P22>
Then the probability is 1 that rank of P;; is G; — 1 and the equation
(20.2) B8P =0

has a nontrivial solution that is unique except for a constant of proportionality.
Any solution is a maximum likelihood estimator when the disturbance terms are
normally distributed.

If K, = G, then the probability is 1 that the rank of Py, is G; and the equation
(20.2) has only the trivial solutlon g = 0, which is unsatisfactory. To obtain a
suitable estimator we find ﬂ to minimize B P, in a sense to be described later.

Let

z(1)
(20.3) z, = (zg2)>,



32 T. W. ANDERSON

, A, A
(20.4) 2;1;1 zz; = A = <Az AZ) s
(20.5) A1 = Ag — AnATTAy,
(1)
(20.6) v = <§£2))
Q1 Q0
20.7 Q= ,
(20.7) <921 922>

where z{" and z{? have K; and K, components, respectively, and y' and y?
have G, and G; components, respectively. Now set up the multivariate analysis
of variance table for y{". The first term in Table 1 is the (vector) sum of squares
of y¥ due to the effect of z{". The second term is due to the effect of z{* beyond
the effect of z{". The two add to (PAP’),;, which is the total effect of z,, the
predetermined variables.

We propose to find the vector 4 such that the effect of z on 8’y{" beyond
the effect of z{” is minimized relative to the error sum of squares of 8’y{". We
minimize

B (PisAn P1)f _ (B'Pis)Ass,(6P)’
ﬂ lﬂllﬂ ﬂ ,Qllﬁ '
This estimator has been called the least variance ratio estimator. Under normality
and based only on the zero restrictions on the coefficients of this single equation,
the estimator is maximum likelihood and is known as the Limited Information
Maximum Likelihood (LIML) estimator (Anderson and Rubin, 1949).
The algebra of minimizing (20.8) is to find the smallest root, say », of

(20.8)

(20.9) | PioAgo 1Py — )\Qu | =0
and the corresponding vector satisfying
(20.10) P1oAs PlB = v 6.

The vector is normalized according to some rule. A frequently used rule is to set
one (nonzero) coefficient equal to 1, for example, 8, = 1. If we write

[ 1 s L

TABLE 1
Multivariate Analysis of Variance

Source Sum of Squares
1 T (gl
z" STy AR T 20yl
z? 1 zV P12As P2
T 1 1 2 - TO
Error Y1 (v = Puz? — Puz®)(y — Puz’ — Pz{?)’ = TQy,

Total YL yy’
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(2012) II12 = (1”*2) ’ P12 = <p1*2> ’
12 12
A _ oy oF
(2013) Q11 - <‘3;1’¢1 Q:lkl ) ’

then (20.10) can be replaced by the linear equation
(20.14) (PHAs,PYy — Vﬁfl)ﬁ* = (PT2A22.1DI2 - V‘:’Tl).

The first component equation in (20.10) has been dropped because it is linearly
dependent on the other equations (because » is a root of (20.9)).

21. Relation to the linear functional relationship. We now show that
the model for the single linear functional relationship (¢ = 1) is identical to the
model of simultaneous equations in the special case that G, = 0 (that is, y{!’ =
y,) and z{ = 1 (K; = 1). Write the two models as

(21.1) Xej =R+ ve+uy, a=1,---,n, j=1,. ...k,
where

(21.2) v, =0,

and

(21.3) yve=1z" + Iz +v,, t=1, -.-, T,

where II = (II, II,). The correspondence between the models is p <> G = G,,

(21.4) Xy € Y, uaj > Vi,
(21.5) (a,j) > t, nkeo T,
(21.6) ¥ o

We can rewrite the model (21.1) for the linear functional relationship using
dummy variables (Anderson, 1958, Section 8.9). Define

0
(21.7) S =| 1| « ath position, a=1, ---, n — 1,
|0
-1
(21.8) sy=| -
-1
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Then

(21.9) wtve=(u v, -, v,,_l)<sij> , a=1, ..., n,
where j is suppressed on the left. Note that

(21.10) vp=—+ - ).

The correspondence between the models is

(21.11) 1oz, sy oz,

(21.12) podl, (-, ) o I,

(21.13) loK, n—-1oK,,

(21.14) B, - -, v,1) =0 8'II,=0.

Let P = (P, P;). In terms of the observable statistics in the two models, we
have the correspondence

(21.15) L=Xeoy,
(21.16) X, — X o P,.
Effect Matrix
(21.17) H=Fk Y (X, — X)(X, — X)' & PyA,,,P;

Error Matrix
(21.18) G = Yot Tt (Ko = Ko (Xyj = Ko)’
o TQ = Y (y: — Pz)(y. — Pz,)’.

Then the estimator B of the linear functional relationship for ¢ = 1 is identical
to the LIML estimator (Anderson, 1951a, 1976).

The correspondence was extended to general g by Anderson (1951a). Suppose
assigned 0’s form a pattern (after possibly renumbering equations and variables)
so that the matrix of coefficients of the simultaneous equations can be partitioned
as
(21.19) (BT) = (E‘ on 2) ,
where B, is ¢ X G, and T'; is ¢ X K and the reduced form is partitioned as (18.2).
The matrix II;; should be of rank G, — q. Then from the generalization from
(18.3) we obtain

(2120) B1H12 = O, B1H11 = —Pl.

The first equation in (21.20) corresponds to B(v;, - - -, v,_1) = 0. To eliminate
the indeterminacy of the multiplication of (21.20) on the left by an arbitrary
nonsingular matrix, ¢ — 1 0’s need to be specified in each row of (B; I';). Hannan
(1967) and Chow and Ray-Chaudhuri (1967) repeated some of Anderson’s analy-
sis.
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It is seen from the preceding discussion that the regression matrix II is
estimated so that a submatrix has a specified rank. This procedure has been
called “reduced rank regression.” (See Izenman, 1975.) As a matter of fact,
Anderson (1951a) obtained the maximum likelihood estimators of a regression
submatrix and a matrix of restrictions; the estimators of the linear functional
relations in Section 6 were obtained by use of dummy variables as above.

22. Shocks vs. errors. The unobserved random term u; in (17.3) is known
as a disturbance in equations or a shock. The shock is a stochastic input to the
economic system. An alternative probabilistic model is in terms of errors of
measurement. Linear relationships among the true values might be written

(22.1) By, +T¢. = 0.

The observed variables are

(22.2) y: =+ uf, 2z, = ¢ + v,

where uf and v are random vectors. Substitution into (22.1) yields
(22.3) By, + I'z, = Buf + I'v}.

If v¥ = 0 with probability 1, the model defined by (22.3) cannot be distinguished
from (17.3), but otherwise the model is different. In (22.3) the random term on
the right hand side is then correlated with the z, term on the left hand side, and
the “reduced form” obtained from (22.3) does not have the properties of multiple
regression.

The interpretation of the random terms uf and v is that they represent errors
of measurement, sometimes called errors in variables. The properties of these
models and their use in economics was studied by econometricians, such as Frisch
(1934), Reiersgl (1945), Tintner (1945), (1946), (1952), and Geary (1942), (1948).
Haavelmo’s pathbreaking papers (1943), (1944) introduced the simultaneous
equations with disturbances. This approach quickly dominated econometrics;
see, for example, Koopmans (1950).

It is possible to construct models with both shocks and errors, but special
conditions are needed to effect identification. See, for example, Anderson and
Hurwicz (1947), Goldberger (1974), Geraci (1976), and Hsiao (1976).

23. Asymptotic theory as T'— . The LIML estimator has an asymptotic
normal distribution as the length of the observation series increases. We assume
that (1/T) A approaches a positive definite limit. (If some predetermined variables
are lagged endogenous variables, this limit must hold with probability 1). We
partition 8 and I, as in (20.11) and (20.12). Let

(23.1) a2 = B'Q:8 = Var uy,.
Then
(23.2) (1/0) (Il A5, 15 ) /2(8* — B*) —. N(O, Ig,_,).
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We consider §* as approximately distributed according to

(23.3) N[B*, o*(IT Az I13) ]
(Anderson and Rubin, 1950). The covariance matrix in (23.3) can be estimated
consistently.

Because of the correspondence between the LIML estimator and the MLE for
the linear functional relationship as outlined in Section 21, this asymptotic
theory can be translated for the latter. Suppose the single linear functional
relationship is written as

(234) - 0= ﬂlya = (1 - ﬂ*’)(l;l:> = Vig — ﬁ*’y:’ a=1, .. -, n,

a

where
(23.5) v, = (‘1’,1:), a=1, -, n

Let n («<K) be fixed and let the number of replications k — o (corresponding to
T/K —  for fixed K). Let ¢ = 8/ V8.

Since II;5A,;,IT%; corresponds to k Y7 v’ G* here has the approximate
distribution

(23.6) NIB*, o*(k Tiomr vird) .

24. Two stage least squares. The two stage least squares (TSLS) esti-
mator can be considered as a simplification of the LIML estimator. In (20.13)
fln is a consistent estimator of Q,,, v is of probAability order O,(1), and P1,A4 P/,
is of probability order O,(T'). Thus, the term »Q;, can be omitted without affecting
the limiting distribution of VT(8* — 8*). The TSLS estimator is then obtained
from (20.14) as

(24.1) lé'T‘SLS = (PHA%1PY) '"PHhAn P

This estimator was suggested by Basmann (1957) and Theil (1961). It corresponds
in the linear functional relationship setup to ordinary least squares on the first
coordinate. If some other coefficient of 8 were set equal to one, the minimization
would be in the direction of that coordinate.

25. Distributions of estimators. Econometricians have studied inten-
sively the distributions of TSLS and LIML estimators, particularly in the case
of two endogenous variables. Exact distributions have been given by Basmann
(1961), (1963), Richardson (1968), Sawa (1969), Mariano and Sawa (1972),
Phillips (1980) and Anderson and Sawa (1982). (See also Anderson, 1980.) These
have not been very informative because they are usually given in terms of infinite
series, the properties of which are unknown or irrelevant.

A more useful approach is by approximating the distributions. Asymptotic
expansions of distributions have been made by Sargan and Mikhail (1971),
Anderson and Sawa (1973), Anderson (1974), Kunitomo (1980) and others;.
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Phillips (1982) has studied the Padé (1892) approach. See also Anderson (1977),
(1982).

Tables of the distributions of the TSLS and LIML estimators in the case of
two endogenous variables have been given by Anderson and Sawa (1977), (1979),
Anderson, Kunitomo, and Sawa, (1982).

Anderson, Kunitomo and Sawa (1983) have graphed densities of the Maximum
Likelihood (ML) estimator and the Least Squares (LS) estimator (minimizing in
one direction) for the linear functional relationship (Section 2) for the case p =
2, m =q =1, ¥ = ¢°I, and for various values of 3, n, and

(25.1) 8% = (1/a%) Tomr (ma — @)™

Some of these figures are given here (Figures 6 to 12). Each curve is the
density of (8 — 8)/ASD, where ASD is the asymptotic standard deviation. That
is, each density is approximated by the standard normal density. The approxi-
mation is very good for the maximum likelihood estimator except when 62 is
about the same size as n. For given 8 and n, the accuracy of the approximation
increases with the noncentrality parameter 6. When 8 = 0 (the line in Figure 1
is horizontal), the least squares estimator (minimizing deviations in the vertical
direction) has more accuracy than that described by the standard normal density
because the least squares estimated line tends to be horizontal. When g # 0, the
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least squares estimator is biased towards 0; the bias increases with n (for fixed
6%) and decreases with 62 (for fixed n). An extreme case is indicated in the last

figure.

26. Some asymptotic theory for linear functional and structural re-
lationships. We now return to the estimators given in Part I. It should be
noted that if B = (B; B5) is a maximum likelihood estimator of the coefﬁments
of the restrictions (regardless of identification conditions) then (I, B! Bz) =
I, B#) is the maximum likelihood estimator of the coefﬁ01ents when the first
submatrix is required to be I,. The asymptotic distribution of B} can be obtained
from the asymptotic dlstrlbutlon of B (by the usual Taylor series expansion).
The asymptotic distributions of B and ¥ are obtained from the asymptotic
distributions of C or of H and G; the asymptotic distribution for the structural
relationship holds for the functional relationship.

In the case of the linear functional relatlonshlp when ¥ = ¢%I, Gleser (1981)
found the asymptotic normal distribution of B} when n — o, (1/n) NPl Vol
approaches a limit of rank m, and the fourth order moments of (the identically
distributed) u, are finite.
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Anderson (1963) obtained the asymptotic distribution of the characteristic
roots and vectors of the covariance matrix of a sample from a normal distribution
when = has roots of arbitrary multiplicities. The estimator B = W/, for the linear
structural relationship is included as a special case. Lawley (1953) gave the
asymptotic covariances.

When ¥ is unrestricted and is estimated by replicated observations, as in
Sections 6 and 7, the asymptotic theory can depend on k — %, n — , or both.
Anderson (1951b) gave the asymptotic distribution of the roots of (6.4) and the
vectors satlsfymg (6.5) as k — o for n fixed under general conditions; the
estimator B = Y of the linear functional relationship is included. One aspect of
this asymptotic distribution is that VE d; —, 0,i=m + 1, ---, p. Hence, the
maximum likelihood estimator of B has the same asymptotic distribution as the
least squares estimator '

(261) BLS = n - (x(l) — x(l))(x(2) - —(2)) [Zn (}—(22) _ }—((2))(}—(22) _ )—((2))/]—1’
where x’, = (xV’x?”). Here B#s —, B and

(262) ‘/E VeC(BiS - B;k) >, N[ (Zn—l V(Z) (2)') ® (I BZ)\I,<]3I*/):| ’

where vV’ = (»V'»?7). (See Anderson, 1983b.)
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When n — », Amemiya and Fuller (1984) have given the asymptotic normal
distribution of B for both the functional and structural case. In the functional
model ¥ is not a consistent estimator of ¥, but in the structural model ¥y is
strongly consistent and asymptotically normal (Amemiya and Fuller, 1984).
Fuller (1980) gave other results for ¢ = 1. Anderson (1983a) has treated the roots
of (6.4) and the vectors satisfying (6.5) in the structural case; B = Y4 is included.
Kunitomo (1980) and Patefield (1976) have given asymptotic expansions for g =
landp=2.
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