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TWO SAMPLE RANK ESTIMATORS OF OPTIMAL
NONPARAMETRIC SCORE-FUNCTIONS AND CORRESPONDING
ADAPTIVE RANK STATISTICS

BY KONRAD BEHNEN, GEORG NEUHAUS, AND FRITS RUYMGAART,
University of Hamburg and University of Nijmegen

In the general two-sample testing problem, X, - - -, X,, i.i.d. with contin-
uous c.d.f. F, Yy, ---, Y, iid. with continuous c.d.f. G, and null hypothesis
Hy:F = G versus alternative H,:F = G, F # G, we construct uniformly
consistent and tractable rank estimators of the underlying optimal nonpara-
metric score-function for a large subclass of (fixed) alternatives. Moreover,
we prove asymptotic normality of the corresponding adaptive rank statistics
under any fixed alternative (F, G) from the same subclass, and compare the
results with the corresponding results for the (local) asymptotically optimum
linear rank statistic for H, versus (F, G). In addition*we prove some results
on the estimation of a density and its derivative in the i.i.d. case if the support
is [0, 1], which are needed for a comparison argument in the case of rank
estimators, but which may be of interest in other situations, too.

1. Introduction. In a recent paper Behnen and Neuhaus (1983) propose the adap-
tion of two sample rank tests to general “stochastically larger” alternatives by estimating
an adequate nonparametric score-function on the basis of ranks:

Let Xi, - -+, Xim, Y1, - -+, Y, be independent real valued random variables and suppose
that the distribution of X;[Y;] is given by a continuous (cumulative) distribution function
FlGl,i=1,---,m,j=1, ..., n. Let N =m + n be the size of the pooled sample and

consider the testing problem
Hy:F=G versus H.:F=G, F #G.

If we assume (for a moment) a simple alternative (F, G) € H, then it is clear from
Hajek (1974) that the (upper) test based on the rank statistic

ol (572) )]

has the best exact Bahadur slope for testing Hy, vs. (F, G), where fx:[0, 1] — [0, N/m],
8n:[0, 1] — [0, N/n] are Lebesgue-densities on [0, 1] (u-densities) defined by

_dF HY) _d(G e HR)

fN d[.l. ’ N dﬂ ’

m N N

(1.2) HN=—A—,F+%G, byi=fu=gwm —_Sbvs_,
m m

fN=1+%bN, gN=1_—1\7bN1 NfN‘f"]%gN:l,

where p always denotes the Lebesgue measure on [0, 1], and where R;;[R»;] always denote
the ranks of X;[Y;] in the pooled sample X;, ---, X, Y1, - -+, Y,..
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On the other hand Behnen and Neuhaus (1983) show that in local situations the
statistic (1.1) may be substituted by

=Y
(1.3) ™ bN<‘—N——2) ,

which defines (in local situations) an asymptotically optimum test for H, vs. (F, G), cf.
Behnen (1972). Therefore, in the usual case of unknown (F, G) € H, it seems natural to
adapt the statistics (1.1) and (1.3) to the underlying (F, G) by estimating by from the data.
As is discussed in Behnen and Neuhaus (1983) on the basis of invariance arguments such
estimators by of by should be based on the ranks only. Moreover, that paper discusses in
detail only the case of an easy estimator of by which only estimates some tendency of the
function by and which surprisingly leads to the Galton rank test.

In this paper we construct an estimator by of by, which depends only on the ranks and
which has the properties (in probability) .

1
(1.4) SUPo<i<1 | bi(t) — bu(t) | — 0, f | B4(t) — bi(t) | dt — 0.

Moreover, we prove asymptotic normality of the corresponding adaptive rank statistic

(1.5) ™ b~<——l;—é>

under very general alternatives (F, G) from H,.

REMARK. Throughout this paper we use the notation

=1 =1

8 Q=B it is1m Q=BT
We use @, i =1, ---, N, instead of the usual R;//(N + 1),i=1, ---, N, in order to get
complete symmetry [cf. remark following formula (2.7)]. In a separate paper, cf. Behnen
and Huskova (1983), the applicability of such adaptive procedures is demonstrated by
presenting a simple algorithm for the adaption of scores, by proving the asymptotic
normality of the adaptive statistic (1.5) under the null hypothesis Hy,, and by revealing
the adaptive behavior of (1.5) for sample sizes as low as m = 10, n = 10 in a Monte Carlo
power simulation.

Moreover, similar adaption procedures have been constructed for other models in
Behnen and Neuhaus (1982).

ifj=1-.,n

2. Estimators of by based on ranks. Throughout this section we assume the two-
sample situation of Section 1 with fixed underlying continuous distribution functions F
and G, and

(2.1) Awi=m/N>), 0<A<1l, N=m+n— oo,
Moreover, we use the following notations and properties [cf. (1.2)]

_d(F° HT) =G H™)

f= a o H=MN+0-NG
dF dG
(2-2) d—ﬁ_ °H9 E_goH, b_f_g, A/‘-'-(1_A)g_l’

f=1+@0-=Nb, g=1—-X, 0=<f=<\!, 0<sg=<(1-MN"L
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Finally, let K:IR — R be a kernel such that

K is a probability density on R symmetric about zero with absolutely
(2.3) continuous derivative K’ and essentially bounded second derivative K”,
and K is zero outside the interval (-1, 1),

and let {ax} be a sequence of real numbers such that
(2.4) 0<ay<%, ay—0, Na& >, as N x,

Now we define a (modified) kernel estimator By: [0, 1] — R on the basis of ranks according
to

(2.5) by = fv — én,
where [cf. (1.6)]

fult) = 1 X2 Kn(t, @) = f dF,.Kn(t, Hy),
(2.6) m

R 1 A - ~ " 1
En(t) = a YN i1 Knlt, @) = f dG.Kn(t, Hy), Hv=Hy— -

2N’
R R

and F,,, G, Hy = AF, + (1 — Av)G, denote the empirical distribution functions of the
first sample, the second sample, and the pooled sample, respectively.

REMARK. fy and gy are usual kernel estimators with kernel K applied to the modified
rank data

_Qm’ _Qm-ly "'9_Ql, Ql’ ) me2_ Qm’ "',2_ Ql
and
_QN, —QN—ly tt _Qm+l’ Qm+l; M) QN: 2- QN, "'92 - Qm+lr

respectively. This artificial enlargement of the original rank data by their reflections at
the points zero and one takes care of the estimation problems near the boundary of the
compact support [0, 1] of fy and gx. As is shown in the following Lemma, the symmetry
of K guarantees that fy and gy are probability densities on the interval [0, 1].

LEMMA 2.1. Assume (2.3) and 0 < ay < 1. Then, for fx, &v, and by according to (2.5)
to (2.7), we ha;_ze

(2.8) ffzvd#=f§’~du=1, fl;Ndﬂ=0-

PROOF.

) . (1+Hy)/ay (1-Hy)/ay (-1+Hp)/ay
ffN duy = f dF,,.{f K(x) dx + f K(x) dx + f X K(x) dx}
Hy/a, —Hp/ (—2+Hy)/ay

N/ON N/ON

. (1+Hy)/ay
= f dF, J; K(x) dx (because of K(x) = K(—x))

—2+Hy)/ay

+1
=fdﬁmf K(x) dx =1,
-1
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because of 0 <ay<1,0 < Hy < 1, and (2.3). Similarly we have
f gnvdu =1, and therefore f bydu=0. O

THEOREM 2.2. Assume (2.1), (2.3), and (2.4). For the given (F, G) let by and b be
defined according to (1.2) and (2.2), respectively. Assume b [and therefore by Lemma 2.5
also by] to be absolutely continuous on the compact interval [0, 1], such that

(2.9) flbh—b’ldp—»O as N — oo,

Then, for by defined in (2.5) to (2.7), we have in (F, G)-probability

(2.10) I6x = bl = 0, fllf,’v—b'ldu—>0\as N - x,
where || - | always denotes the sup-norm.

PROOF. Obviously, by is absolutely continuous on [0, 1] for each N and given rank
data. For the rest of the proof we define auxiliary “estimators” fy, v, and by = fy — &
by substituting Q; and Q,.+; in (2.6) by Hx(X;) and Hx(Y;), respectively.

Now, because of symmetry in the arguments, the proof of (2.10) is complete, if we prove
in (F, G)-probability

(2.11) I /9 — fl 5N 0, i=0, 1.

(2.12) I fv = Fll 5>New O, f”fz’v‘f’" dp —>n_e: 0

PROOF OF (2.11). Fori=0,1and0 < ¢ < 1 we have by definition and the assumptions

of the theorem:
{t+l~?~(x))/a~
f dF,.(x) f dyK"'“’(y)l

(t+Hp(x))/an

. {t—HN{x))/aN
f dF..(x) dyK“*V () ’

| F0() = fﬁ)(t)l— e

i+1
an

(t—Hp(x))/an
(t—2+Hp(x))/ap
pre f dF () dyK () l
an (t—2+Hp(x))/ay

< 3 ess SUDyey, IK(:+1)(y) ' a—2—zN—1/2N1/2|HN - HN ” = Op(l),

because of

1/2

NY|Hy — Hy| = Z;IN +0()m"2 | F,, = F|| + 0()n"?| G, — G| = Op(1).

PROOF OF (2.12). Hn(Xy), - -+, Hy(X) are iid. random variables with p-density In.
Because of (1.2), (2.2), and (2.9) on one hand we have

f and fy are absolutely continuous on [0, 1],

(2.13)
flfz’v—f’ldu—>0 as N — o,
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on the other hand [cf. Lemma 2.5]
(2.14) Ifn=—fll >0 as N— .
Therefore the subsequent Theorem 2.3 proves (2.12).0

THEOREM 2.3. Foreach N € N let Zyy, - -+, Zym be i.i.d. random variables with values
in the compact interval [0, 1] and density hy on [0, 1] such that

(2.15) hxn s absolutely continuous on [0, 1],

() > b1, [ 1k = b1 du 0,
210 as N — oo, for some absolutely continuous function h on [0, 1],
217 m=mN)—>wo, 0<ay<¥% ay—0, ma?q—‘>°°, as N — o,
For Ky according to (2.7) define
(2.18) hw(t) = (1/m) 32 Kn(t, Zn)), 0<t=<1.

Then, under the assumption (2.3), we have in probability
(2.19) | Ay — R — 0, f|ﬁ;v—h'|d,t—>0 as N — o,

PROOF. Obviously, Ay is absolutely continuous on [0, 1] for each N and given Zy,,
«++, Znm. Therefore it suffices to prove (as N — )

(2.20) | A — ER)| — 0 in probability, i=0, 1,
(2.21) | Ehy — hy | — 0,
(2.22) |hn = R] — O,
(2.23) f | ERy — h'| du — 0.
PROOF OF (2.20). Let Hy.» denote the empirical distribution function of Zny, - - -, Znm

and Hy the distribution function of hy. With the notation
K@Q(t, s) = Kn(t, 5), KR'(t, s) = (8/0t)Kn(t, s)
wegetforO<t=<1landi=0,1

| hf(t) — ERS(2) |

= ’J; dHnm(s)K$(¢, s)—J; dHN()KR(t, s)

1

1
- 1 .
= ‘ AI(: (dHNm(S) - dHN(S)) E)\F J—'l dyK“*”(y)(llyaNs,+5, + ]-OyaNst—si + l;yang.'.s_z;)

N X
= ?f dy| K“P(y)| - 31| Hvm — Hy |l
an -1

= 0(1)m™"2a5*"'m"?|| Hym — Hn| = 0,(1), if i=0, 1.
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PROOF OF (2.21). From (2.7) and (2.3) we get

1 (t+1)/ay 1
(2.24) f dxKn(t, x) = f dyK(y) = f dyK(y) =1 V0o<t=<1
() (t-2)/ay -1

and therefore VO <t <1
| Ehn(t) — ha(t) |

= ’ f dxhy(x)Kn(t, x) — hn(t) -[ dxKn(t, x)
0

l t+a,l

dxKn(t, x)(hn(x) — hn(t)) l = SUD|—t|=ay | hn(x) — hn(2) |

t-ayn
< 2|l hy — h| + Supj.—=ay | h(x) — R(¢) | = 0(1), because of (2.22).

PROOF OF (2.22). Obviously, we get from (2.15) and (2.16) for 0 < ¢ < 1

[hn(t) — h(@t) | < J(: dx|h'(x) = h(x) | + | hn(1) — h(1)| = o(1).

PROOF OF (2.23). In a first step for 0 < ¢ < 1 we get the representation

ERi(t) = f dehn(x) KN(t %) = f dx(hN(O) + f dyh;v(y))%KNu, %)
- A1) - (52))
an an an
[ S () - 5+ ) - (2]
0 an an an an an
)

Yy
f dyhy(y) — I(( ) - f dth(y)1|t+y<aNI t;

I t+y—2
- f dyhl'v(y)1|t+y>2—aN;K(——y—) .
ay vJo

an

In a second step we note

t+
0 <f dt — f dy | hj(y) | Litty<ap y)

1 o N
5—f dy | hi(y)] f dt| K|l = o(1)
an o 0

L t+y—2
0= —f dtf dylhh(y)|1|r+y>2—a~|K( - )
an Yo o an

1 1 1
= —f dy | hn(y) | f dt| K|l = o(1).
an Yi-ay 1-an
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Therefore we get from (2.16) and Lemma 2.4

f|EhN—h|du—fdt|fdth(y) <aN> h(t)|+0(/1)
| dtlfo dyh’(y)iK<t—(—l—N—y>—h'(t)

LEMMA 2.4. Let g:[0, 1] — R be a measurable function such that [ |g| du < o. Let K
be given by (2.3) and (a,, n € N) a sequence in R such that 0 < ay — 0 as n — ». Then

[a|[ dyg(y)lK(t_y)—gm
0 0 a, an

PrOOF. Let g* and g~ denote the positive part and the negative part of g, i.e., g = g*
—8,8v=20,67=0.For0=<t=<1put

git) = f dyg*(y)lx(t_y),
0 Qn Qan

1
1 [t- .
gn(t) == fo dyg(y) o K( a y> =gn(t) —gnt), g- =0, g =0.

n

+o0(1) =0(1). O

-0 as n— oo,

ie.,

Now, on one hand we get from Dunford and Schwartz (1958), Vol. I, Theorem III1.12.11,
forn —

(2.25) 0=<gr—g*ul, 0=gr—g[ul
on the other hand because of (2.3) and 0 < a, — 0
1 1 1 1
(2.26) f digh(t) — f dtg*(t), f dtg,(t) — f dtg=(t).
0 0 0 0

The properties (2.25) and (2.26) imply
1

1 1
OSJ(: dt|g.(t) — g(t)]| = | dtlg:(t)—g+(t)|+£ dt|g-(t) —g~(t)| - 0. O

LEMMA 2.5. Assume (2.1) and let the u-densities fy and f and the distribution functions
Hpy and H be defined as in (1.2) and (2.2), repsectively. Then we have:

a) Hy—Hl=|A—=Al - [F=-G| =|A—-X—>0 as N,
"———1” < |Av — A max{Ad, (1 —A)7} >0 as N — o,

dHy
|H ° H§' = Idpyll = |H— Hnl|l =0 as N — o

b) If f is continuous on [0, 1], then fy is continuous on [0, 1] for each N, and || fx — f | — 0
as N — oo,

¢) If f is absolutely continuous on [0, 1], then fn is absolutely continuous on [0, 1] for
each N.

PROOF. a) The assertions are immediate consequences of the definitions of Hy and
H, the properties (1.2) and (2.2), and the identities

FoHytt e Hy=F, Go Hy o Hy=G.
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b) Define Ky := H o Hy}, then Ky is absolutely continuous on [0, 1] with derivative
kn = XfN‘i' 1- )\)gN= 14+ (A= An)by>0.
On the other hand we get from (1.2) and (2.2)

foo Hy = 9E ﬂE/d_H_N_ foH
NN dH MfeH+(1—-M)g° H

dHy dH

and therefore

f _ fo KN _ fo KN

NUOMfoKn+ (1 =M)gc Ky 1+ (Aw—MNbo Ky’
Since 1 + (Axy — A)b = min{An/A, (1 — Ax)/(1 — N)} > 0, we have continuity of fy on [0, 1]
for each N, and

Ifn=fl=lfn—FfcKnl+f°Kn—fl
(Av — A)b

1+ (Av—=MNb
because of || Ky — Idj, 1; | =n- 0 (part a) and the uniform continuity of f on [0, 1].

¢) From the representation of fy and ky in the proof of part b) we get (under the
present assumptions) '

fa
_ 1= Ow=Nb - Knllf’ ° Knlll + (A = Av)bn] = [f ° Kn]l(An — Nb” © Kn][1 + (A — An)ba]
[1+ (Av = M)b o KyJ? ’

Moreover, Ky(0) = K3x'(0) = 0, Ky(1) = Kx'(1) = 1, and K§* = Hy © H™! is absolutely
continuous on [0, 1] with derivative [cf. proof of part b)] 1 + (Ax — A)b. Thus

+feKn—f I >nvae O,

=Ifl- ,

[ iistau=asom [ 17 o Kt aws =1 0w = [ 1714w+ 0. 0

COROLLARY 2.6. If, under the assumptions of Lemma 2.5, f is absolutely continuous on
[0, 1] and f’ is continuous in the open interval (0, 1), then

(2.27) flfz'v—f'|d#—>0, J‘Igz’v—g’ldﬂ—ﬂ) as N
PROOF. On one hand we obtain from the proof of part ¢ of Lemma 2.5
Jin-riaws [ 15 - omans [ 15 ku il au

-k o,

on the other hand || Ky — Idj, || = o(1), the u-integrability of f’, and the uniform
continuity of f’ on each compact interval [¢, 1 — ¢], 0 < ¢ < %, imply [first N — oo, then
0<e—0]

] 1
flf'—f’°KNIdu52£ If’ldu+2f "] du+ 0(1) >0 0. O

1—

3. Asymptotic normality of rank statistics with estimated scores. According
to Section 1 and Section 2 we want to consider the adaptive rank statistic (1.5), where the
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rank estimator by of by is given by (2.3) to (2.7). In a first step we consider more general
statistics of the form [cf. (1.1), (1.3), (1.5) and (1.6)]

(3.1) Sn(¥n) = T2 Yn(Q).

T:HEOREM 3.1. Assume (2.1), let Y be an absolutely continuous score furiction on [0, 1],
let Y be an estimator of Y (based on X,, - -+, X, Y1, - -+, Y,) such that Yy is absolutely
continuous on [0, 1] for each N and given data, and

(3.2) flni;v—w'ldﬁopm as N — o,
Then, under (F, G) and N — », we obtain
(3.3) Sn(n) — m f dFyn o Hy = Sn(¥) — m f dFy o Hy + 0p(N'?).

If, in addition, f and g are continuous on [0, 1], then we obtain

(3.4) .!{ \/% (st/) —m [ arye HN)} = A0, W £, £)),

where

Z

Z
(3-5) Uz(‘h f’ g) = (1 - )\)Varl[j ‘Vg d#:l + A Vargl;j(: ‘p’f dﬂ]9

and Hy and f, g are given by (1.2) and (2.2), respectively.

PROOF. For the proof of (3.3) we utilize the following representation [cf. (2.6)],
Sn(fn) = m f dFjy © Hy = Sy(¥) + m f dFy ° Hy
=mfdﬁm<¢~—¢>oHN—mfdwN—onN
=m f (dFw — dF)Yn —¢) c Hy+ m f dF{(fn — ¥) © Hy — (fn — ¢) © Hy}.
Now, in (F, G)-probability, we obtain from (3.2)

f (dFy — dF)n = ¥) © Hy

mY2

J; dx(i(x) = ¢/ (x) f (dF, = dF) Lyigera/em,=

= m2

< mY2 " Fm _ F" f dl-l-lll;l’v -y’ | = Op(1)op(1) = op(1),
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and, because of

m m n
Nde]...|sf(NdF+-A—,dG>|...|_deNl...L

f dF{(yn = ¥) © Hv = (fy = ¥) © Hy)

ml2

= m'? f dFj(: dx(rﬁz’v(x) - lﬁ'(x))ll[o,ﬁ,,,](x) - 1[0,1-1,,,](35)}

=m'? J; dx(§i(x) — ¢’ (x)) f dF {Liaa+/2me — Lo, ) ‘
N 1/2 ' i ’

= —m A de|yn(x) = ¢'(x)| | dHNLjaym.Bym)

where Ax(x) = H¥'(x + %N) A Hx'x), Bn(x) = H3'(x + ¥%N) V Ha'(x). Therefore the
proof of (3.3) is concluded by (2.1), (3.2), and

NY2|Hy o By — Hy © An |l

HN°ﬂ&1°<Id+"1~>—HN°H1_Vl

— N2
N 2N,

o . 1
o =1 o —_—) -
Hy o Hy (Id + 2N) Id “

< N“2|Hy — Hy| + N~

1
- /2 =
Op(1) + N 5N Op(1).

Since ¢ is absolutely continuous on [0, 1], we get the first step of the proof of (3.4) from
Theorem 6.1 of Govindarajulu et al. (1967), namely for N — oo,

(3.6) ” %m,{ JN( f u/(NIZ - HN) dF,, ~ f ¥(Hy) dF)} — (0, o})

where

— 0,
BL

2 (1 = aw)? [ (7 ’ ’ !
gN=-TVar,N A 1[/gNd,.¢ +(1—)\N)VargN A Il/deﬂ .

Because of (2.1) and the continuity of f and g on one hand Lemma 2.5.b implies

[ [z z
% 0% —>now (1 — M) Vary j(: v'g du] + A Varg[J(: v'f dy] = o2y, f, 8),

on the other hand we have [cf. proof of (3.3)]

mN N R
‘ \/;{f¢<N+ 1H"’>dF’""f"’(H”) dF}
N
- \/m:n {smp) —m [ vt dF}» }
mN A N . - 1
- | /2 ab il ) - o - 25} |
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» mN A !
I \/—T‘ f dF,,.J(: dxy” (%) {1 io,vsv s (X) — Lo ap-csznn ()}
mNN [} .
\/_— - f dx |y’ (x) | f dHy | Lapavsn/mm.e — ligieraenne |
n n
=< \/r_nENf dx |y’ (x)l-——o(l) as N — .

Therefore (3.6) implies (3.4).0

IA

Now we are in the position to prove the asymptotic normality of the adaptive rank
statistic Sny(bw).

THEOREM 3.2. Assume (2.1), (2.3), and (2.4). For given (F, G) let by and b be defined
according to (1.2) and (2.2), respectively. Assume b [and therefore by Lemma 2.5 also by] to
be absolutely continuous on [0, 1], and assume (2.9). Then, for by defined in (2.5) to (2.7),
we have under (F, G) and N — o«

(3.7) 3”{ \/—i (SN(I;N) L f I;NbN dl-t)}’ — #(0, 402(b, f, g)),
mn N

where
1
(3.8) ba(t) = f dxbn(x)Kn(t, x), 0<t=<1,
0

and

A Z
3.9) a2b, f,8) = (1 — A)Var,[f b'g dy] + A Varg[f b'f dy].

0 0

Moreover,
(3.10) a(b, f,g) >0, iff F+#G.

PrROOF. Because of Theorem 2.2 we get on one hand from Theorem 3.1

(3.11)  Sn(by) = Sn(b) — m f boeHyvdF+m f by © Hy dF + op(N'?),

on the other hand dF/dHy = fn © =1+ (n/N)by °© Hy, Lemma 2.1, and the definition
of by imply

mf5N°HNdF
=mf61v(1+‘1%b~>dﬂ='r;‘v—nf61vb~du

(3.12) -'?—V— {— 1 f dxby(x)Kn(x, Q) — = SEm1 f dxby(x)Kn(x, Q)}‘

m

N {% ~ v Q) — = Zt-mﬂ bN(Q")} = Sw(b) - % i BN(l ;Vl/z) )

S
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Because of (2.13) and (2.14) we get completely analogous to the proof of (2.23)
(3.13) f|511,—b’|du—>0 as N — o,

Therefore Theorem 3.1 and (2.24) imply

Sn(bn) = Sn(b) — m f beHydF+m f by ° Hy dF + op(N'2)
(3.14)

= Sn(b) — m f be HydF + % f byby du + 0p(NV2).

By combination of (3.11) to (3.14) we obtain

Sw(by) — r_nN_n f bnbw du

= 2{SN(b) -m f b o HN dF} - Z%Zﬁl 5N<l —1\,1/2) + OP(NI/Z).

Finally, because of [} by(x) dx = 0, we get

(3.15)

i - Y 1 ~ [ =Y ! ~
le N(l NZ) =N ‘ﬁ filb l_lv"'z)"‘J; bN(x) dx
i/N 1 c N
=N|¥¥, J; o (bN<‘ N/z) - bN(x)) dx

1N 1
=N Zﬁl f dx f dylb{v(y)l - | Ley(y) — L—1/2ymu(y) |
(i-1)/N o

1 N i/N i—
=N dy|ba(y) | T, . dx | Ljoy(x) — Lo
o (i—1)/N N

Sf 179 du=flb'ldﬂ+0(1) [¢f. (3.13)].

Therefore (3.15) and Theorem 3.1 prove (3.7).
For the proof of (3.10) we notice that F = G, ie., f=g, b = 0, obviously implies

a’(b, f,8) = 0.
Now assume F # G. Because of (2.2) the absolute continuity of b on [0, 1] implies the
absolute continuity of f, g, f2 and g% on [0, 1]. Therefore VO <z < 1

J(: 2ff" du = f*(2) — f%(0), J(: 288’ du = g*(2) — g%(0),
and
A Z
Var,[ f 2gg’ d[.t] = Varyg%(Z)] < oo, Varg[ J(: 2ff’ dy] = Var,[fAZ)] < c.
0
Moreover, f’ = (1 — A\)b’, g’ = —\b’, and thus

1 1
= — 4 ’ =——2 I,
b’f 2(1_)\)2ff, b’g o 288
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and

VA 1 2
Varf[‘[ b'g d#] = (ﬁ) Var/[g%(Z)] < s,

Z 2
Var[J(: b'f dy] = <2(1 1_ >\)> Var,[f3(Z)] < c.

In order to prove ¢2(b, f, g) > 0, let us assume o*(b, f, g) = 0. Because of (3.9), (3.16), and
the continuity of the u-densities f and g, this implies

0= [g"’ - J(: dyf(y)gz(y)] f= [ 2 - J(: dyg(y)fz(y)] &

/2

1 1/2 1
gf = [ j; dyf(y)g2(y)] f, fge= [ J(: dyg(nfi(y)| &

(3.16)

Especially

f fg du = [ f &f dﬂ]m - [ f g dﬂ]m, fo= [ f e dﬂ:f= [ f e d#]g.

Since f = g is a contradiction to F # G, this implies
fg=0.
But from A\f + (1 — A\)g =1 and fg = 0 we get
MP=f, (1-Ng*=g
flysoy = (1/M1Li>01,  8ligoy = (A/(1 = M) Ly},

#ff>0,g=0}=M{f>0’=)\fd#flu>ol=)\>0,

y{g>0,f=0]=#{g>0:=(1—A)fdpg1,g>0.=1—>\>0,

b=f—8=(f—&Llpogo + (f = &)lip=o>00 = (1/N)1is0,4=01 — (1/(1 = M) Lit=0,6>01
which contradicts the continuity of b, because

ulf>0,g=0=x>0, ul{f=0,g>0=1—-1>0. O
COROLLARY 3.3. Given (F, G) € H, such that fg =0, then b = f — g is not continuous.
The proof is immediate from the proof of (3.10).

COROLLARY 3.4. The assumptions of Theorem 3.2 imply, under (F, G) and N — o,

(3.17) y{ \/% (sN(bN) -5 f b% dﬂ)} — #(0, b, £, 8))-

PRrROOF. Immediate from Theorem 3.1.0

So the smoothness assumption on b = f — g automatically assures that F and G are not
disjoint measures, and this implies that the limiting laws (3.7) and (3.17) are nondegenerate
for underlying (F, G) € H,.
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If we consider the statistic Sy(by), which is (locally) optimum for H, versus the simple
alternative (F, G) € H,, under the null hypothesis H, then Theorem 3.1 implies the
nondegenerate limiting law (N — )

(3.18) y,,o{ ﬁ SN(bN)} —>/(o, f b? d,;).
mn

The situation is different if we consider the adaptive statistic Sn(by) under the null
hypotheses Hy: Now Theorem 2.2 implies for N — o

(3.19) byl — O, f | 64| du — 0 in H,-probability.

Therefore Theorem 3.2 implies for N — o

(3.20) \/;En Sn(By) — 0 in Ho-probability.

Behnen and Huskova (1983) prove nondegenerate asymptotic normality of Sn(by)
under H, for suitable centering and standardization.

We conclude this paper by a comparison of the centering and the scale of Sy(by) and
Sn(bn), respectively, which lead to standard normal law _# (0, 1) as limiting distribution
under the given simple alternative (F, G) € H, corresponding to by and b. On one hand
this may be utilized in order to obtain approximations of the type II error probabilities at
(F, G) € H, of the level « tests for H, based on Sn(by) and Sn(bn), respectively; on the
other hand we may use these values in order to define a measure of performance.

Let « € (0, 1) be given, and let ky, and Ly, denote the critical values of the upper level
« tests for H, based on the statistics VN/mn Sy(by) and VN/mn Sn(by), respectively.
Then (3.20) and (3.18) imply

1/2
(3.21) Rne = 0, Iy, — uO,(f b? d/.c) ,

where u, is the upper a-fractile of _#(0, 1). And from (3.7) and (3.17) we obtain the
following “approximations” of the type II error probabilities at the given (F, G) € H,

N Rne — _r_nﬁr_l f bnby du
(3.22) PF,GJI \/% Sw(by) = kN,,}» =9 + o(1),

26(b, f’ g)

N I = \/% f b dy
(3.23) PF,GJ, \/% Sw(bw) = lﬁa} = +o(1),

a(d, f, &)

where ® denotes the distribution function of _#(0, 1). Obviously, these “approximations”
are not very good, because both sides of (3.22) and (3.23) are of the order o(1). But
nevertheless they seem to give some orientation for small and medium sample sizes.

In order to have a well defined asymptotic measure of performance we may consider
the standardized shifts divides by «/I_Vy of VN/mn Sy(by) and vN/mn Sy(b), respectively,
which lead to _#(0, 1) under the given alternative (F, G) € H,, i.e.,

\/’;—7'2‘ f by du T =N f b? dy

20, ,8) " 20 f8)

(3.24)
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\/—% f by du NYTEESY) f b2 dy
o f,8) " b fa)

Obviously, the standardized asymptotic shift in the VN-scale of the adaptive Sx(by)-test
is half of the corresponding asymptotic shift of the (locally) optimum Sy(by)-test for any
alternative (F, G) € H, such that b is absolutely continuous on [0, 1] and (2.9) is fulfilled.

Finally, let us remark that (3.24) and (3.25) are closely connected with the definition
of approximate Hodges-Lehmann asymptotic relative efficiency because of

2
mn ~ 2
- UL bab, d A1 - )\)(f b dy>
2 e \/;f NOn O .

and

(3.25)

“yle? 20(b, £, 8) TN T 4%, £ 8)
f 2
mn 2
_ mn | oo AL - n( f b dﬂ)
2. o I \/; Nk
. N0 .
N % o(b, f, 8) N a*(b, f, )

Nothing is known about the exact Hodges-Lehmann asymptotic relative efficiency of the
adaptive Sy(by)-test.
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