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SURVIVAL DATA!

BY BRIAN S.YANDELL
University of Wisconsin

This paper concerns nonparametric inference for hazard rates with cen-
sored serial data. The focus is upon “delta sequence” estimators of the form
ha(x) = [ Ky(x, y) dH.(y) with K, integrating to 1 and concentrating mass
near x as b — 0. H, is the Nelson-Aalen empirical cumulative hazard. Strong
approximation and simultaneous confidence bands are derived for Rosenblatt-
Parzen estimators, with K,(x, y) = w((x — ¥)/b)/b, b = o(n™?), and w(-) a
well-behaved density. This work generalizes global deviation and mean square
deviation results of Bickel and Rosenblatt and others. to censored survival
data. Simulations with exponential survival and censoring indicate the effect
of censoring on bias, variance, and maximal absolute deviation. Data from a
survival experiment with serial sacrifice are analysed.

1. Introduction. This paper concerns nonparametric inference for hazard rates
with censored survival data. A sample of n individuals is observed from birth to the time
of death or censoring, with the censoring process independent of the survival process. The
problem is to estimate the hazard rate and to infer certain properties of this rate. For
instance, one may wish to test whether the rate follows some paramétric form, or whether
it differs substantially from that of another population. One may want to graph the rate
function without making assumptions about the unknown survival process, and to visually
compare rate functions from different samples.

Inference about rates has been studied in survival analysis, demography, reliability,
and other fields. For recent reviews see David and Moeschberger (1978), Prentice et al.
(1978), and Hoem (1976). Rate estimation is closely tied to density estimation through
the relation f(x) = h(x)S(x). Recent reviews of density estimation include Bean and Tsokos
(1980) and Wertz (1978). Wertz and Schneider (1978) have other density and rate
references. Nonparametric techniques are charaéterized by choosing an estimate from a
broad class which cannot be represented by a finite-dimensional parameter. For example,
the maximum likelihood estimate of the death rate among all distributions with continuous
non-negative rates is a right-continuous step function with jumps at every death. This
rough estimator may be smoothed by reducing the class in various ways (see Barlow et al.
1972 and reviews).

The method adopted in this paper uses “delta sequences” (Susarla and Walter, 1981)
.and the kernel approach introduced by Rosenblatt (1956) and Parzen (1962). Foldes et al.
(1981) and Yandell (1981) generalized the density estimators to randomly right-censored
data. Watson and Leadbetter (1964a, b) proposed three rate estimators based on this
kernel. Yandell (1981) generalized these rate estimators to randomly right-censored
survival data. Section 2 contains definitions and properties of one estimator presented in
detail here.
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The following works use the Rosenblatt-Parzen kernel. McNichols and Padgett (1982)
examined the rate under a proportional hazards model. Ramlau-Hansen (1983) considered
the more general multiplicative intensity model (Aalen, 1978). Tanner and Wong (1982)
studied point-wise properties of the kernel estimator. Clevenson and Zidek (1977) studied
histogram and uniform kernel window Bayesian rate estimators for a Poisson process.
Bartoszynski et al. (1981) examined uniform kernel and other rate estimators in studying
cancer metastasis.

One can obtain a glokal measure of deviation for Rosenblatt-Parzen estimators which
leads to simultaneous confidence bands and graphical tests. Denote the maximal deviation
by M, = || (nb/Vi(x))"*(f.(x) — f(x)) ||, with (nb)™'V; the asymptotic variance process of
fr, and || - | the supremum over x in [0, T']. Bickel and Rosenblatt (1973) showed in the
noncensored case for suitable r,, and d,, and appropriate conditions, that for all u,

P{r.(M, — d.) < u} — exp(—2e™).

Rosenblatt (1976) extended this result to multivariate densities. Simultaneous confidence
bands for some kernel estimators of hazard rates in the absence of censoring were derived
by Rice and Rosenblatt (1976) and Sethuraman and Singpurwalla (1981). Burke and
Horvath (1982) derived simultaneous confidence bands for hazard rates in a competing
risks model. Bounds on the rate of convergence of the distribution of maximal deviation
to the limiting distribution and a second order correction term were obtained by Konakov
and Piterbarg (1979) for the univariate kernel density estimator.

The maximal deviation and simultaneous confidence band results are extended to
Rosenblatt-Parzen kernel estimators of rates and densities for censored survival data in
Section 4 of the present paper using strong approximation results derived in Section 3.
Section 5 shows how to use these bands for graphical testing. Monte Carlo simulations in
Section 6 indicate the effect of censoring and bandwidth, and the slow convergence to the
limiting distribution for maximal deviations. Section 7 examines data from a survival
experiment with serial sacrifice. Section 8 presents conclusion and remarks about fixed
censorship.

2. Definitions and properties. Let (X;, D), ---, (X,, D,) be independent and
identically distributed random pairs, with X; = 0 being the “lifetime” and D; the indicator
of death (D = 1) or censoring (D = 0) for the ith individual. Denote the number of deaths
in [0, x] by N(x) = #{X; < x| D; = 1}, and let R(x) = #{X; = x} denote the number at risk
of death or censoring at time x = 0. Let R; = R(X;). Let J(x) = I[R(x) > 0], and J; = J(X;).

The hazard rate, denoted by h(x), x = 0, is defined for small dx by

PriX;<x +dx,D;=1|X; = x} = h(x) dx + o(dx), x=0.

Let H denotg the cumulative hazard, that is H(x) = [§ h(¢) dt. The survival curve is
denoted by S(x) = 1 — F(x) = exp(—H(x)). In addition, denote the survival sub-distribution
function by F(x) = Pr{X; < x| D; = 1} and the sub-density by f = F’. If C, the censoring
curve, is differentiable, one can define the censoring rate g(x) such that for small dx,

PriX;<x+dx,D;=0|X; = x} = g(x) dx + o(dx), x=0,

with cumulative censoring hazard G = —log(C).
The kernel rate estimator is based on the empirical cumulative rate (Nelson 1972;
Aalen 1978)
*dJ D,J;
H.(x) = J; I—f dN = Z{X;sxl Ti,

with the convention that J/R = 0 if J = 0. The hazard rate estimator for x € (0, T'), with
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some T such that S(T)C(T') > 0, is

T D.J;
hn(x) = J; Ki(x, y) dHn(y) = Y I(X; < T)Ky(x, X;) 72—

This generalizes an estimator of Watson and Leadbetter (1964a, b). T is estimated
consistently in practice.
Several assumptions are needed. The distributional assumptions are as follows:

S1. S, C and L are continuous and non-increasing, and L = SC.

S2. Thereisa é> Osuchthat 1 — 6 = L(T) = 6.

S3. The density f is continuous, positive, and bounded on [0, T'].

S4. The second derivative f” of f exists and is bounded on [0, T1.

S5. f1/2 is absolutely continuous and has bounded derivative on [0, T'].

S6. The censoring cumulative rate G = —log C is absolutely continuous and has bounded
derivative g over [0, T'].

S1-S2 are needed to use strong uniform consistency results (Foldes and Rejto, 1981).
Further, the hazard rate must be reasonably behaved (S3). S4 helps insure that the bias
is asymptotically negligible. S5 is needed for the strong approxmations of Section 4 (Bickel
and Rosenblatt, 1973). S6 is used to modify strong approximation results for censored
data.

Kernel assumptions follow:

T
K1. f Ky(x, y)h(y) dy — h(x) as b— 0 for each bounded h(-), x € (0, T).
0

K2. K, =0 andforall x€ (0, T),
(i) f Ki(x, y) dy =1

(i) sup,so r j; | Ky(x, y) dy = O(b)
x=y|>r

(iii) | Ku(-, -) | = O®™)
(iv) forall r>0, sup{Ku(x,y);|x=y|>r}—=0 as b—0.

K3. Ki(x, y) = w((x — y)/b)/b. The weight function w is absolutely continuous with
derivative w’ on [—J, J] and w = 0 off [—J, J], some J < o,

K4. The bandwidth b — 0 and nb — © as n —

K5. w(-) is symmetric (about 0) and z%w(z) is integrable.

K6. The following integral over {| z| = 3} is bounded:

| f [z|**[log log |z [1"*{|w’(2) | + |w(2) |} dz

K7. nbflogn— o as n-— o,

K1-K2 define delta sequences of positive type (Susarla and Walter, 1981). K3-K4
restrict attention to the kernels of Rosenblatt (1956) and Parzen (1962). K5 helps insure
asymptotic unbiasedness, while K6 was introduced by Bickel and Rosenblatt (1973) for
the strong approximations. K7 allows us to conclude that a kernel density estimator is
uniformly bounded if f is, based on uniform convergence results (Collomb, 1978; Silverman,
1978). .

Properties of the estimator h, have been studied by various authors recently. The bias
and covariance arise as special cases of Ramlau-Hansen (1983). See Tanner and Wong
(1982) for an exact expression of the finite variance.
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THEOREM 2.1. Letx,t€ (0, T).
a) If K1-K2 and S1-S3 hold, then

T T
Bias(hn(x)) = J; Ky(x, y) dH(y) — h(y) + ~£ Ki(x, ¥)[1 — L(y)]" dH(y)

If K3-K5 and S4 also hold, then

Bias(h,(x)) = % h”(x)b? f w(y)y? dy + o(b?) + O((1 — &)™).

b) If K1-K2 and S1-S3 hold, then

T
Covthn), hatt) = [ Ko, ) K, 9E{A2Y by,

If K3-K4 hold, then
nb Cov(h,(x), ho(t)) > 0 if x # ¢

nb Var(h,(x)) — h(x)L™(x) f wi2) dz = Vi(x).

Ramlau-Hansen (1983) obtained mean square and uniform consistency. Yandell (1981)
and Burke and Horvath (1982) derived rates of strong uniform consistency.

Ramlau-Hansen (1983) proved pointwise asymptotic normality, as did Tanner and
Wong (1982) under different assumptions, for the Rosenblatt-Parzen estimator.

3. Strong approximation. Under suitable conditions on the censored survival
process and the Parzen (1962) kernel, the pivot process

Wa(x) = (nb/Vi(x))/(ha(x) — Eh,(x)), 0<x =T,

can be approximated by a Gaussian process

-1/2 [T _
SWalx) = (b f wz) L w(¥> dZ(y), 0<x=<T,

in which Z is a version of Brownian motion. Similar approximations for other kernel
density and rate estimators are possible (Yandell, 1981; Burke and Horvath, 1982). The
approximations parallel Bickel and Rosenblatt (1973). Throughout this section, for fixed
x and n let K(y) = w((x — y)/b)/b with assumptions K1-K3 and S1-S2 satisfied. Let | Y|
denote the sup | Y(x) | over [0, T].

The sub-distribution F agrees on the range [0, T + J) with the distribution of the
random variable X defined to be X if D = 1, and X + T + 2J if D = 0, in which 2J is
the window width of assumption K3. f, = [ K dF, is a kernel estimator for the density of
X on [0, T]. One may therefore use results for the non-censored estimator. Let Z%(t) =

nY*(F,(F-(t)) — t) and

. b -1/2 T

Y.(x) = (T’) f K dZ3(F).

f(x) 0
Define ,Y, and , Y,, by replacing Z%, by Z° and Z, respectively. Here Z° and Z are versions
of the Brownian bridge and Brownian motion, respectively. Let .Y, = (b/f(x))?
- [ Kf'? dZ, and ;Y, = b [ K dZ. The following theorem and lemma are central to the
next propositions.
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THEOREM 3.A. Kolmos, Major and Tusnady, 1975). Let S1-S3 hold. A sequence of
Brownian bridges can be constructed so that

SUPoss<1 | Z% — Z°| = Op(n™"?1og n).
LEMMA 3.1. (Bickel and Rosenblatt, 1973; Rosenblatt, 1976). Suppose the Y processes
are as above. Let S1 and K1-K3 hold.

(i) If K3 and S3 hold, then || Y, — oY, | = O,((nb)"2log n).
(ii) If S2-S3 hold, then || oY, — 1Y, || = O,(62).
(iii) If S2-S3, S5 and K6 hold, then | ;Y, — 5Y, || = Op(b"2).

If S1 holds, then h = f/L, and dH, = L;* dF,. Thus,
T T N
ha(x) = f K dH, = f KL dF,.
(1] 0

The strategy below involves replacing L;* by L™! and proceeding by a series of
approximations using Lemma 3.1. Let

T
ha(x) = J‘: K(y)L™(y) dF.(y).

PrROPOSITION 3.1. Let K1-K4, K7 and S1-S3 hold. Then
|| (nb/Vi)"2(h, — h¥) || = Op((b log n)"/?).

Proor. Clearly, S2 implies

T
| ha(x) = h2(x) | = f K|L7' = L7 dF, = fu) IL7 = L.
0

By Féldes and Rejto (1981), | L, — L | = O,((log n/n)*?). Therefore, since L(T) = 6 > 0,
the same rate holds for | L;' — L™'|. K1-K4, K7 and S3 imply that ||/, — f|| — 0 a.s.
(Collomb, 1978; Silverman, 1978). Hence || f*/2 — 7,/f*?| — 0 a.s. The proposition obtains
by combining terms and noting that f/2 is bounded.

The pivot process W,,, with L, replaced by L, may be written as

b\ fT .
Wn(x)=<m) A K(y)L (¥) dZ3(F(y)).

Define (W, and ; W, by replacing Z% by Z° and Z, respectively. Denote by

b 1/2 f’r . b 1/2 fT h 1/2
= 1/27 -1 = s
2 Wh(x) (V,.(x)) X Kf'*L™ dZ (V;,(x)) A K(L) dZ

ib 1/2 T
3Wn(x) = (I w2) »L’ K dZ

in which Z is a version of Brownian motion on [0, 1] for , W, and on (—o, ) for ;W, and
3W,. Consider the following:

PROPOSITION 3.2. Let the W processes be as above, and K1-K3, S1-S3 hold. Then
(i) If S6 holds, then | W} — (W, || = O,((nb)~*log n).

(i) II oW, — 1 W, " = Op(bl/z)-

(iii) If K6, S5 and S6 hold, then || W, — sW, || = O,(b"?).



1124 BRIAN YANDELL

ProoF. (i) By S1-S2, C = 6. Thus

-1/2
| Wh(x) — oWa(x) | < 67| Ya(x) — oYa(x) | ( f wz)

g(y)w( b )|dy

The first term is of proper order by Lemma 3.1 and K1-K3. S6 insures that g exists and
is bounded. The variance V,, is continuous and positive since L and h are, by S1 and S3.
Together with Theorem 3.A, this gives the order for part (i).
(ii) Note that | Wa(x) — 1Wn(x) | = (L(x)/] w?)?|oYn(x) — 1Ya(x) |. Thus (ii) follows
from Lemma 4.1, part (ii), and L < 1. )
(iii) In a fashion similar to (i),

T
+ 5122 - 22 6V [
0

_l/g
[2Wa(x) — sWa(x) | < 87" [2Yalx) — 5Ya(x) | (f w2>

b \V2 fT (h(yb +x))1/2
¥ <4Vh(x)) , 12000+ 2 |g(yb + O\ T ) W) ] dy.

S1-S2 and Lemma 3.1 make the first term of the proper order. S1-S3 and S6 bound
uniformly the term g(h/L)"? in the integral. K6 and the law of the itegrated logarithm for
Brownian motion ensure that the second term is O,(b'/?). '

The Gaussian processes , W, and ,W, have the same covariance structure and hence
have the same law. Hence by Propositions 3.1 and 3.2,

| W, = sW, || = Op(b log n + b"/? + (nb)"log n).

If in addition K5 and S4 hold, Eh,(-) may be replaced by h(-) in W,.

One may then substitute W, for ;W, in a sequence of functionals, such as maximal
deviation or mean square deviation, provided b = b(n) converges to 0 at the correct rate.
Let M, be a sequence of functionals satisfying Lipschitz condition such that, for some
J,>0,

|Mn(x)—Mn(y)|$Jnlx_y|'

If | W, — sW,. || = 0,(1/J,), then M,(W,) converges in law if and only if M.(sW,) does,
and to the same limit.

REMARK. Censoring has been assumed to be random right-censoring for this work.
The results of Meier (1975) and the comments of Breslow and Crowley (1974) and Aalen
(1978) indicate how one could proceed in the case of fixed right-censoring. If one knows
the censoring form, then it may be incorporated directly. The assumptlon SG that G
= —log C has a continuous derivative may be replaced by

S6’. The jumps in G are uniformly bounded over [0, T']. That is, | dG| < M for some
M <o,

Then one needs to replace |g(y)| dy by |dG(y)| at every occurrence in the proof of
Proposition 3.2. ' '

4. Simultaneous confidence bands. The strong approximation results of the
previous section show that we have the same approximating process for the censored case
as for the noncensored case. Therefore we obtain the same limit as Bickel and Rosenblatt
(1973). This is inverted to derive simultaneous confidence bonds. We extend Konakov
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and Piterbarg (1979) to allow refinement of the asymptotic approximations, adding a
second-order term to the limiting probability.

Let T, = X, the ith ordered lifetime, with i = [n(1 — 8)]. Thus T,, > T'= L™(5) < o,
converging in probability. The following is due to Bickel and Rosenblatt (1973) (see Rice
and Rosenblatt, 1976).

THEOREM 4.B. Let r, = (2 log(T./b))"? and d, = r, + (log w*)/r,, with

= ru[wJ) + w*(=J)](8x)7/* ( f w2>- if wJ)>0

=U wfz/f w2]1/2/2w if w)=0

in which J is the constant of assumption K3. Let M,, = || 3W II, the sup over [0, T,]. Let
K1-K4 hold. Then for all x,

Pr{r.(M, — d,) > x} — exp(—2e~*).
The next result for censored rates follows directly:

THEOREM 4.1. Let K1-K7 and S1-S6 hold. Let M, = | (nb/V},)"*(h, — h) ||, in which
the sup is over [0, T,]. Let r, and d, be defined as in Theorem 4.B. Then, for —» < x < o,

Prir.(M, — d,) < x} — exp(—2e7*).

Simultaneous confidence bands arise from these results using Slutsky’s Theorem on
V.. First, estimate L by L,. Replace h by h, in V,, to yield the symmetric form

+ k(hy/La)"*

with k = (dn + x/r.)(f w?/nb)”* and x = log(—2/log(1 — a)). The asymmetric band arises
by inverting a quadratic in h:

k2 h, 1/2 k2 1/2
h, + oL, + k(z;) 1+ anL| -

The latter band is wider for all x, reflecting the more conservative substitution. This band
is above 0 unless h,(x) = 0, when it becomes [0, k?/L,(x)]. The symmetric band may have
a negative lower bound, which in pratice is usually truncated to 0. Similar results for
competing risks models may be found in Burke and Horvath (1982).

Konakov and Piterbarg (1979, Theorems 3 and 4) obtained a second order expansion
of the hmltmg distribution which depends on n through the term t,. One needs additional
assumptions on the smoothness of the kernel window w(-), and on the bandwidth 4. The
strong approximation argument presented in Section 3 extends their result to the censored
estimators.

THEOREM 4.2. Let K1-K7 and S1-S6 hold. Let b = n™, Y4 < p < Y. Let r, and w* be
as in Theorem 4.B. Suppose w(J) = w(—J) = 0, and | (w”)? < «. Then for —0 <y < oo,

Prir.(M, — d,) < y} = exp(—2 exp(=y — (y + log w*)*/2r%)) + Li(n, ).
Ify>r,(1 —d,) and b/T, < (6/7w*)", then
| Li(n, x) | < un~"e %x?

for some u>0and v > 0.
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PRrROOF. The proof rests on the substitution, for fixed n, d, + y/r, = I, + x/l,, with [2
=rZ + 2log w*. See Konakov and Piterbarg (1979) and Yandell (1981).

REMARKS. (1) Pointwise asymptotic confidence bands arise in similar form to the
above, with k = Z(f w?/nb)*?, in which z is the upper (1 — «/2) point of the normal
distribution. However, Sacks and Ylvisaker (1981) show that the optimal bandwidth b
depends on f for pointwise density estimation.

(2) One can approximate the variance V,(-) by

T
Vin(2) = b7 f w“’(" > y) AVin(),

in which Vg, .(x) is an estimate of Vy(x) = [§ (J/R) dH. This may more accurately depict
the variance for small n, particularly at the boundaries of the data. The asymmetric band
can be formulated with this variance estimate.

(3) In order to get x for a particular significance level «, one chooses

x = log(—2/log(1 — a))

for Theorem 4.B and Theorem 4.1, or

x = —(r2 + log w*) + ra[r2 + 2 log w* + 2 log(—2/log(1 — a))]¥2
for Theorem 4.2.

5. Testing. One may perform goodness-of-fit tests for the composite hypothesis
H:h = hy(-, §), in which 6 is an unknown real-valued parameter. See Bickel and Rosenblatt
(1973) for goodness-of-fit tests based on maximal absolute deviation and mean square
deviation which work here because of the strong approximation. A two-sample test of the
hypothesis H:h, = h, is possible using the next theorem.

THEOREM 5.1. Let K1-K7 and S1-S6 hold for survival processes with censoring in two
independent populations. Let h;, i = 1, 2, represent the hazard rates. Let V), be the variance
process for h(-), the common (unknown) rate under the null hypothesis. For samples of size
n, and ng, n = n, + ny, let h;.,, be the kernel estimate of h;, i = 1, 2, using the same b and
w(-). Let r, and d, be defined in terms of b and w as in Theorem 4.B. For0 s x < T,, t, =
min(T,,,-Th,), let

W(x) = (n1n2b/(nVi(x)))?(hyn(x) = hoin(x)).
If ny/n — )\, for some 0 < \ < 1, then under H, for any x,
Prir.(| W| = d.) < x} — exp(—2e™),
in which the sup is over [0, T,].

PROOF. Substitute nl/n for A by Slutsky’s theorem. Write W = (1 — \)2W, — \'2W,
in which W; is the deviation statistic for sample i as in Theorem 4.1. The strong
approximation results imply that W, W, and W, have the same asymptotic distribution.

REMARKS. (1) Without assuming equal variance, the process

(ninab/(na Vi + 0y Ve))2(hayn = hain),

with V; the variance of h;, has the same asymptotic distribution as W.

(2) One may choose b = (n1b; + n2b2)/n. If b= kini?, i=1,2,%<p <Y, thendb =
kn7P, with k = kA1 + ky(1 — N)'P. Note that k = ky, k.

(3) A graphical test arises (Al Wiggins, 1981) by plotting h;,, and h,;, and surrounding
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them with a simultaneous confidence band which is an adjustment of the individual bands,
the relative widths being proportional to (V;(x)/n;)/? or to n;'/2. The test rejects if any
gap appears in the band between the two curves. Alternatively one could plot the difference

hy;n — ha,, with a simultaneous confidence band.

6. Monte Carlo simulation. Monte Carlo simulation studies are presented for
pseudo-random samples of exponential survival and censoring. The exponential parame-
ters were 1 for survival and several values between 0 and 2 for censoring. Numbers came
from a log iransformation of ranm, a uniform generator on the MathStat PDP 11/45
UNIX (a trademark of Bell Laboratories) computer system. The effects of censoring on
the form of the confidence bands are investigated for individual trials of sample size 200.
Empirical 80% pointwise confidence intervals with Monte Carlo trials and sample size
200 are compared to theoretical pointwise confidence intervals. Empirical distributions
with 100 Monte Carlo trials of the maximal deviation statistic r,(M, — d,) are investigated
at length, with sample sizes from 50 to 500. Kernel bandwidths derived from normal
theory are scaled down by factors of .5, .25 and .125 to compare empirical distributions of
the maximal deviation with -the first and second-order theoretical curves. Results are
plotted as theoretical vs. empirical significance level.

The kernel bandwidth and window were chosen to minimize the mean integrated square
error (Rosenblatt, 1971). The window was the quadratic w(x) = 1.5 — 6x% —0.5 < x < 0.5,
with-w(x) =.0 outside this interval. The bandwidth is taken from the classical case of
normal density and no censoring, i.e. b = 4.483sn™°? with s? the sample variance of the
mean survival time (Rosenblatt, 1971; Yandell, 1981). T, was chosen as S,;*(0.2).

Theory suggests estimating the asymptotic variance V, by h,(x)L;'(x) | w® However,
for finite samples, the estimate b~ [§ w*((x — y)/b)L;"(y) dH.(y) better reflects the bias
at the boundaries (0 and T' = —In(0.2)). Simulations show that the asymptotic variance is
too small near the boundary. The empirical 80% bands in Figure 1 show this underestimate
near 0 by the asymptotic 80% pointwise confidence bands. The empirical bands were
derived by dividing the time axis into 32 equal probability intervals of 0.025 and deter-
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Fi1G. 1. 80% simultaneous confidence bands for n = 200. Solid line: Monte Carlo bands for 100 trials
(see text). Dot-dash: symmetric theoretical bands. Short-dash: asymmetric theoretical bands.
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mining the empirical distribution of maxima and minima of 100 simulations of the rate in

each interval. All simulations presented use the finite sample variances.

Simultaneous 80% confidence bands are shown in Figure 2 for a constant rate with
symmetric and asymmetric form. Note the greater dispersion in Figure 2(b) with 50%
censoring over no censoring in Figure 2(a), reflecting the effect of censoring on the
variance. The slight asymmetry of the empirical bands in Figure 1 suggests using asym-
metrical bands in practice. The constant rate estimates are drawn, showing that a test

(Section 5) would not reject a constant hazard rate.
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FIG. 2. Rate estimate for n = 200: (a) no censoring: (b) 50% censoring (rate 1). Short-dash = kernel
estimate; long-dash = constant rate estimate; solid line = symmetric 80% bands; dot-dash = asymmetric

80% bands.
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Empirical distribution functions (EDF's) of the maximal deviation statistic were com-
puted from 100 Monte Carlo trials. The EDF for the rate deviation is compared with the
theoretical curve exp(—2e™) in Figure 3 for sample sizes 50, 200, and 500 and no censoring.
Note the slow convergence. Thus 80% confidence bands of Figure 2 are wider than
necessary, i.e. conservative. The times of maximal deviation were fairly evenly distributed.
Figure 4 investigates the rate of convergence of the EDFs of maximal deviations for h, as
a function of bandwidth, reducing b by a factor of 2 for each curve, with n = 200 and no
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F1G. 3. Empirical distribution of maximal deviation statistic. Solid line = theoretical exp(—2e~*). Other
curves are EDF for n = 50 (short-dash), 200 (dot-dash), and 500 (long-dash).
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FiG. 4. EDF of maximal deviation as bandwidth b varies (n = 200, trials = 100). Short-dash =
theoretical. Solid EDFs are b = 4.4835n7%% x 1.0, X 0.5, X 0.25, and X 0.125. No censoring.
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censoring. The convergence to exp(—2e~) is fairly rapid compared to the convergence in
n. However, Figure 5 shows that the bias increases markedly as the bandwidth is reduced.
Figure 6 investigates the effect of censoring on the distribution of maximal deviation, with
n = 200 and reduced bandwidth b = 1.121sn%2 Note that the curves for 50% censoring
(h = g = 1, long dash lines) are slightly above those for the noncensored data, but the
characterstic shape remains. A detailed analysis of effect of censoring awaits more
thorough Monte Carlo studies.

Hazard Rate
®

Time
F1G. 5. Hazard rate estimate as bandwidth b varies (n = 200). Short-dash = constant rate (1). See
Figure 4 for solid curves. No censoring.
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Fi1G. 6., EDF of maximal deviation with censoring (n = 200, trials = 100). Short-dash = theoretical;
solid = no censoring; long-dash = 50% censoring (rate 1). Bandwidth b = 1.1215n7°2,
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The relative difference between the theoretical level and empirical significance levels
for the rate estimator is shown in Figure 7, for the first-order (a) and second-order (b)
theory. Thus in practice one may want to have a second-order, and maybe even a third-
order term to ensure some semblance of the correct significance probability for a simul-
taneous confidence band.

7. Data analysis. This section examines data from a survival experiment with serial

sacrifice, designed to investigate the effect of a 300 rad dose of gamma irradiation on mice
(Upton et al., 1969). Animals in two groups, treated and control, died naturally or were

8.5

125 : 4

Empirical Level

0.9 2.1 0.2 0.3 0.4 9.5

First Order Approx.

Empirical Level

0.0 L 1
e.e 0.1 8.2 0.3 0.4 8.5

Second Order Approx.

Fi1G. 7. Significance levels from empirical study vs. (a) first order Bickel-Rosenblatt and (b) second
order Konakov-Piterbarg. Short-dash = unity line. See Figure 4 for solid curves. No censoring.
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sacrificed. The data consist of time and mode of death; data on pathologies were not used
here. There were 1080 control mice and 1454 treated mice, in which 361 control and 343
treated mice were sacrificed. We investigate the following questions: (1) By treatment
group, is the death rate constant over the experiment? What do the death rates look like?
(2) Do death rates differ between treated and control groups? The estimates use the
‘quadratic window and bandwidth computed by normal theory as in Section 6. Simultaneous
80% confidence bands were derived using the finite sample variance and the results of

Theorem 6.1.
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FiG. 8. Kernel rates for mouse survival: (a) control group, n = 1080; (b) treated group, n = 1454. Short-
dash = kernel rate with solid line 80% symmetric confidence bands. Long-dash = constant rate estimate,

0.000945 for control, 0.00233 for treated mice.
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10

Hazard Rate

Age (days)

F1G. 9. Kernel rate graphical test of equal rates. Short-dash = control; long-dash = treated. Solid line
= simultaneous confidence band of Section 6, remark (3).

Kernel estimates of control and treated group survival rates are plotted in Figure
8(a-b). The control death rate is definitely increasing with age, as compared with the
estimated constant rate of .945 X 1072, One could perhaps fit a Gompertz-Makeham rate
(h(t) = a + b*) or a Weibull rate (h(t) = pat®?), but the general shape of the curve is
fairly well determined, without parametric assumptions. The kernel bandwidth for the
control group is 153.6 days. The treated group death rate also increase, clearly rejecting
the hypothesis of constant rate (estimated at 2.33 X 107%). The treated kernel bandwidth
is 181.2 days. One sees that it would be difficult to fit any of the standard parametric
models because of the flat section of the treated death rate between 250 and 400 days.
One might postulate an early death rate increase due to radiation, leveling off in middle
age, and picking up again as the mice get old and susceptible to a variety of pathologies.
These fine points might be missed if one only studied the survival curve.

Treated and control group rate estimates are shown together in Figure 9, computed for
common bandwidth 169.4 days and 7T, = 544, with a simultaneous confidence band
weighted proportional to n;*/2 about each curve. Clearly they are different. One sees that
the net additive effect of gamma irradiation to the death rate increases except during the
middle age range. Thus the hazard rates are probably not proportional between treated
and control groups.

8. Conclusion. We have presented a class of kernel estimators of the rate functions
of a survival process in the presence of censoring. These generalize estimators proposed
by Watson and Leadbetter (1964a, b) and are seen to be asymptotically unbiased, strongly
consistent, and asymptotically normal (Ramlau-Hansen, 1983). Through a series of strong
approximations, the asymptotic distribution of the maximal deviation of an estimate from
its true value was derived, leading to simultaneous confidence bands and graphical tests.
Theory and simulations indicate the desirability of second- and perhaps third-order
expansions of the limiting distribution, due to the slow convergence rate of these maximal
deviations. Data from a survival experiment with serial sacrifice was briefly analysed,
indicating a large treatment effect without making unrealistic assumptions about the form
of the survival distributions. The simulations and data analysis demonstrate that for
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moderate sample sizes (say 1000 or more) one can do rather well with inference about
rates with right censoring. A program called “kernel” to compute estimators and simul-
taneous confidence bands is available as part of the ISP system distributed by the Statistics
Department, University of California, Berkeley.
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