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ON THE SMOOTHNESS PROPERTIES OF THE BEST LINEAR
UNBIASED ESTIMATE OF A STOCHASTIC PROCESS OBSERVED
WITH NOISE"?

By RoBERT KoHN AND CRAIG F. ANSLEY
University of Chicago

Suppose x(t) is a vector stochastic process generated by a first order
differential equation and f(¢) is a linear combination of the elements of x(¢).
Functionals of x(¢) are observed with noise. We obtain the smoothness
properties of the best linear unbiased estimate of f(¢), and those of its
derivatives that exist. In addition we obtain the smoothness properties of their
mean squared errors.

1. Introduction. Let f(¢) be a scalar stochastic process described by
(1) @) =c'x(®)
(2) dx(t)/dt = A(t)x(t) + b(t) dW(t)/dt.

(2) is a vector stochastic differential equation driven by a scalar continuous time uncorre-

lated increment process.
Let \i(x),i =1, --., N, be given by

(3) Ai(x) = cix().

As discussed later in this section, and also in Section 4, A;(x) will often be a linear functional
of f(.). Suppose that we have N discrete observations

) yi=N(x) + e

with e; a sequence of observational errors.

The main purpose of this paper is to obtain the smoothness properties of the best linear
unbiased estimate of f(¢) and its mean squared error, given the observations y; to yn.

The results of this paper are motivated by work connecting smoothing splines and best
linear unbiased estimates of a stochastic process. See, for example, Kimeldorf and Wahba
(19704, 1970b, 1971), Wahba (1978), Weinert and Kailath (1974), Weinert and Sidhu (1978),
and Weinert, Byrd and Sidhu (1980). In fact the smoothness properties of smoothing and
interpolating Lg splines can be deduced from Corollary 2 (to Theorem 1) of Section 4. See
Remark 3 of Section 4 for details.

The paper is structured as follows. The assumptions are stated in Section 2, the main
results are obtained in Section 3, and these results are then applied to a scalar stochastic
differential equation in Section 4.

When the functionals c{x(t;) = f(¢;) for i = 1 to N, the y; are discrete observations of a
continuous time process observed with noise. Such models are often used in engineering
and statistics. For example, the scalar stochastic differential equation of Section 4 is often
used to model a continuous time series. See, for example, Hannan (1970), page 405.

For some further examples consider the scalar stochastic equation

(5) df(t)/dt + of (t) = dW(t)/dt.
If in (5) we take W(-) as a Wiener process, then f(¢) is the Ornstein-Uhlenbeck process;
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Breiman (1968), page 349.
If in (5),
W) =YYz, N@t)>0

=0, N()=0

where N(t), t = t;, is a Poisson process and the Z; are independent random variables, then
W(t) is a compound Poisson process (Parzen, 1968, page 128), and (5) becomes a model of
shot noise (Parzen, 1968, page 128).

2. Assumptions.

AssuMPTION 1. (i) In this paper ¢ lies in the interval [T, T;].
(li) To<ti=b=<...<tn<T.

AssuMPTION 2. (i) W(¢) is a scalar uncorrelated increment process with dE[ W(¢)]/
dt = m(t) and d var[ W(¢)]/dt = r(t).

(ii) Bis a positive integer greater than or equal to 1. r(¢) and m(¢) have 8 — 1 continuous
derivatives. If 8 = 1, then r(¢) and m(t) are continuous.

AssuMPTION 3. (i) A(¢) is an n X n matrix function of ¢ with continuous elements.
b(t) is an m X 1 vector whose elements have max(1, 8 — 2) continuous derivatives.
(ii)) cand ¢;,i=1, ---, N, are n X 1 constant vectors. For j = 0, define {;(¢) and 7,(¢) by
$ot) = ¢, mo(t) = b(t)
$i1(t) = dS;(8)/dt + A@)'$(8)
n,+1(2) = dn;(t)/dt — A(t)n;(¢).
ASSUMPTION 4. (i) With a a positive integer and B8 defined as above, {;(¢) is differ-

entiable for j = 1to a + 8 — 3 and continuous for j = 1 to a + B8 — 2. ,(¢) is differentiable
for j =1 to 8 — 2 and continuous for j = 8 — 2.

(i)
¢ini(t) =0 forall ¢ and j=0 to B—2

$(E)b(t) =0 forall ¢ and j=0 to a—2
$@m@E) =0 for j=0 to a-—3.
AssuMpTION 5. (i) The e;, i = 1 to n, have zero mean and finite variance.

(ii) e;is uncorrelated with W(¢) fori =1toNand To<t=< T,.
(i) W(¢) — W(T,) is uncorrelated with x(T) for all To < t < T'.

3. Smoothness results. Let F(f) be a n X n fundamental matrix solution of
dF(t)/dt = A(t)F(¢)

with the columns of F(¢) linearly independent; Coddington and Levinson (1955), page 69.
Put :

D(t, s) = F(O)F(s)™.
Then,
©6) aD(t, s)/at = A()D(t, 5)
) aD(t, 5)/ds = —D(t, 5)A(s).
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Solving for x(¢) from Equation (2) we obtain

t

(6] x(t) = D(¢t, To)x(To) + J D(t, s)b(s) W(ds),

Ty

see Coddington and Levinson (1955), page 74.
Put y™ = (y1, -+, yn), and let f(¢|N) and x(¢|N) be the best linear unbiased

estimates of f(¢) and x(t), respectively, given y™,
Put

¥ (¢|N) = E{(x(2) — x(¢| N))(x(¢) — x(¢| N))'},
£/ ¢IN) = E((F@) — ft| N))?}.
Throughout this section we will assume that Assumptions 1 to 5 hold. Then,

THEOREM 1. Subject to Assumptions 1 to 4, f(t|N) and ¥/ (¢|N) have a + B — 2
continuous derivatives in (To, T1).

To prove Theorem 1 we need to establish a number of preliminary results. Purely for
convenience, we will assume that all random variables are jointly Gaussian. This enables
us to avoid cumbersome notation by working with conditional expectations rather than
having to always refer to best linear unbiased estimates.

LEMMA 1. (i) Fort> T,

9) cov{ f(t), yi} = ¢’D(¢, To)cov{x(To), y:} + c'Qi(t)c;;
where

AL,
(10) Qi(t) = J D(t, s)b(s)b(s)'D(t;, s)'r(s) ds,

Ty

and t A\ t; = min(¢, ;).
(i) Under Assumptions 1 to 5, cov(f(t), y;) has a + B — 2 continuous derivatives.

Proor. From (8) and our assumptions it is easy to establish (i).
(ii) For ¢ <t and j =1 to a — 1 we can establish that

d’{c’'Q:(t)e;}/dt’ = §(t) Qi(t)ei + §-1(2)'b()b(2)' D(t:, 8)'r(¢)

= {(t)'Qi(t)ci,
because {i(£)b(t) = 0 for j = 0 to a — 2. We can also establish for j = a to a« + 8 — 2 that
d’{c'Qi(t)c: ; ‘
(11) i%-tﬁ= G/ Qut)e + 24;357, ({1 (OB eiD(E:, DBE)F(B)).
Furthermore,

d!
PTG {$F-1- ()b () ciD(t:;, 1)b()r(2)}

o (a at dvr
= Zu+k+v=t’m {W (fj—l—:b)}{aF (ciDb)} X {(—1?;} .

Now we can check that
(12) d*[ciD(t;, t)b(t)]/dt* = c!D(t;, t)na(8).
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Because c¢i{nx(¢;) = 0 for £ = 0 to 8 — 2 and D(¢t;, t;) = I,,, letting ¢ | ¢; makes the right side
of (12), and hence the left, tend to zero (for 2 = 0 to 8 — 2). It follows that the second term
on the right side of (11) tends to zero as ¢ 1 ¢; for j = a to a + 8 — 2. Because @;(t) and {;(¢)
are continuous it follows that for ¢ 1 ¢;,

d’(c’'Qi(t)c;) /dt’ — §i(t:) Qi(t:)c:.
For ¢t > t;, it is not hard to show that for j =0to a + 8 — 2,
d’(c'Qi(t)c:) /dt’ = §(2) Qi(t)ci.

Hence c¢’Q;i(t)c; has a + B — 2 continuous derivatives at ¢ = ¢, and from the above
derivation also for all other ¢.
Because

d’c’D(t, To)/dt’ = ¢H(t)D(t, To)
forj=1,...,a+ B —2,¢'D(t, To) has a + B — 2 continuous derivatives. The conclusion
of Lemma 1(ii) now follows.

LEMMA 2. E{f(t)} and var{f(t)} have a + B — 2 continuous derivatives.

Proor. First consider E{f()}. Put

h(t) = D(¢t, To)E{x(To)} +'J D(t, s)b(s)m(s) ds.

Ty
Then, E{f(t)} = c¢’h(t). As in the proof of Lemma 1, for j = 1 to a — 1,
d’E{f(®)}/dt’ = (@) h(t) + $-1(0)b()m(2) = §(2)'h(2).
Forj=atoa+ -2

dE{f()}

o df
o = (&) h(t) + Y18 P74 {$j—1-,bm}.

It now follows from our assumptions that E(f) has a + 8 — 2 continuous derivatives.
The proof for var{f(¢)} is similar and we omit it. (I

ProoF oF THEOREM 1. We know that
(13) f(t|N) = E{f(®)} + cov{f(t), Y IV(y™) {y™ - E(y*™)}
(14) Y/ @€|N) = Vi(t) — cov{f(t), y™}V(y™) "cov{f(t), y},

where Vi(t) = var{f(¢)}. The proof now follows from Lemmas 1 and 2.0

COROLLARY 1.
f(¢|N) = c’x(¢| N)
andforj=1toa—1,
d’f(t| N)/dt’ = §(e)x(¢| N)
(15)

'L ¢N) _

L = S ({);:(t) L ¢ NG-).

We now look at the smoothness of f(¢) itself and the best linear unbiased predictor of
f(t) given y™.
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THEOREM 2. Fora=2,
() £ = §@)x(@) for j=0to a — 2.
(i) The best linear predictor of f(t) given y
error

(16) Gy L | N)G@).

(iii) If W(t) is continuous, then f“ " (t) is also continuous.

M) s Lty x(t | N) with mean squared

Proor. Using integration by parts, we deduce from (8) that
17) x(t) = g(¢) + b(H)W()
where

t

g(t) = D(t, To) {x(To) — b(To) W(To)} + j D(t, 3‘)7'1 (s) W(s) ds.

Ty
Hence f(t) = c’g(t). Now

h
PO~ aws® +mOWE

so that we can check that f(¢) = {i(t)g(t), for j =1 to a — 2, because {j—1(¢)m: () = 0 for
Jj=1toa— 2. Hence

@) = §i)x(t)

because {;(¢)’ {x(t) — g(¢)} = 0 from (17). (i) and (ii) now follow.
To obtain (iii) note that

FEe(t) = $amr (D)8 (1) + Soma(B)m(e) W)

so that if W(¢) is continuous so is £ 2(¢).0

REMARK 1. (i) Given x(¢| N) and I (¢| N), (15) and (16) give us computing formulae
for d’f(t| N)/dt’, and its mean squared error.

4. Application to a scalar differential equation. In this section we apply our
theory to the stochastic scalar differential equation

(18) Lf(t) = W(dy),
where
dn n—1
L =:17+an—1(t)a—t,,—_f+ et ao(?),

with a;(t) having j continuous derivatives and ao(¢) continuous.
Fori=1to N, let

(19) A(x) = N(f) = T3 v V(&)

where 1 < 8 < n. Then as in Weinert, Byrd and Sidhu (1980), we can rewrite (18) and (19)
in the form of equations (1) to (4), with x;(¢) = fV""(¢), j=1ton,

c=1i, b=1is ci=(yio, ) Yin-p 0, -+, 0)

and
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For j =1to n, i;is an n dimensional vector having 1 in the Jth position and zeros elsewhere.

COROLLARY 2. Put a = n and assume that if 8 = 3, then for j=0ton—1, a;t) has
B — 1 continuous derivatives. Then:
(i) The results of Theorems 1 and 2 and Corollary 1 hold for (18) and (19).
(ii) Let L* be the adjoint of the differential operator. Then, ifm(t) =0,

(20) L*r()'Lf(t|N) =0, for t#¢t, i=1---N.
Fort> ty
(21) Lf(t|N) = 0.

Proor. (i) We can check that {; = i+ for j = 0 to n — 1, and that the first

n — j — 1 elements of 7, are zero. It follows that $jb=0for j=0toa—2, {m =0forj
=0toa—3,and cin;=0foralliand j =0 to 8 — 2. Now

$n®) = =(ao(t), +- -, ana(8)

so thatif o + 8 — 2 > n, i.e, B = 3, {;(t) exists and is continuous forj=2toa+8—2.
Having checked that Assumptions 1 to 4 hold, it will follow that (i) holds.
(ii) m(f) = 0 implies that E{ f(¢)} = 0. From (13) it will suffice to show that

L*r(®)7'L cov(f(t), y;)) =0, i=1to N, t+#t,.

We will use the expression for cov(f(¢), ¥;) given by (9) and (10). First note that
L{c’D(t, To)} = 0 for all £. Next for ¢t < ¢;,

dQ;(t)ci/dt — A(t)Q:i(t)c; = bb’'D(t;, tY c:r(t)
with @; defined as in (10). It follows that

L(cQi(t)c) =1, {% Qi(t)e; — A(t)Qi(t)Ci} = b'D(t;, t)'cir(t).

Hence
r(t)"'L(c’'Qi(t)e;) = i D(t;, t)'c;.
From (7), we can check that

ditD(ti, t)e, + A(t)Y'D(t, t)'e;=0

so that (Levinson and Coddington, 1955, page 85)
L*i,.D(¢;, t)'c; = 0.
Therefore
L*r@)'L{c'Qi(t)c;} =0,

so that (20) holds. Using the same technique as above, we can similarly show that for
t>t;, L(c’Q:(t)c;) = 0. Hence (20) holds for all i and all ¢ # ¢. (21) follows easily from the
above discussion.

REMARK 2. If the coefficients a;, j = 0, .-+, n — 1, are constant, then a thorough
analysis of the smoothness properties of f(¢| N) is given by WDS. In fact their analysis
considers a rational differential operator with constant coefficients. See Weinert, Desai
and Sidhu (1979), Theorem 6.1. It is straightforward to apply our Theorem 1 to obtain
their results.

REMARK 3. Weinert, Byrd and Sidhu (1980) show that the optimal Lg smoothing
spline equals f(¢| N) where the stochastic process f(¢) is described in this section, W(¢) is
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a Wiener process, and in addition,
cov(f(¢), &) = —p;zi(t), i=1,---,n;
=0 i>n.

The 2z;(¢),i =1, - - ., n form the basis of the null space of L.
Now

cov(f(2), y:) = cov(f(¢), Ai(f)) + cov(f(2), e:),

and z,(¢),i=1, - - -, n, has all the smoothness properties described in Corollary 2. It follows
that Corollary 2 holds for f(¢| N) and }: £ (¢| N') with f(¢) as just described and hence for Lg
smoothing splines.

Acknowledgment. We would like to thank a referee for several useful suggestions
and corrections.

REFERENCES

BREIMAN, L. (1968). Probability. Addison-Wesley, Reading, Mass.

CopDINGTON, E. A., and LEVINSON, N. (1955). Theory of Ordinary Differential Equations. McGraw-
Hill, New York.

HANNAN, E. J. (1970). Multiple Time Series. Wiley, New York.

KIMELDORF, G., and WAHBA, G. (1970a). A correspondence between Bayesian estimation on stochastic
processes and smoothing by splines. Ann. Math. Statist. 41 495-502.

KIMELDORF, G., and WaHBA, G. (1970b). Spline functions and stochastic processes. Sankhya Ser. A
32 173-180.

KIMELDORF, G., and WAHBA, G. (1971). Some results on Tchebycheffian spline functions. J. Multi-
variate Anal. Appl. 33 82-95.

PARZEN, E. (1962). Stochastic Processes. Holden Day, San Francisco.

WaHBA, G. (1978). Improper priors, spline smoothing and the problem of guarding against model
errors in regression. J. Roy. Statist. Soc. Ser. B 40 364-72.

WEINERT, H. L., BYrD, R. H,, and SipHU, G. S. (1980). A stochastic framework for recursive
computation of spline functions: Part II, Smoothing Splines. J. Optim. Theor. Appl. 30
255-268.

WEeINERT, H. L., DEsal, U. B,, AND SipHU, G. S. (1979). ARMA splines, system inverses, and least
squares estimates. Siam J. Control Optim. 17 525-536.

WEINERT, H. L., and KarLATH, T. (1974). Stochastic interpretations and recursive algorithms for
spline functions. Ann. Statist. T 787-794.

WEINERT, H. L. and SipHU, G. S. (1978). A stochastic framework for recursive computation of spline
functions: Part I, Interpolating Splines. IEEE Trans. Inform. Theory 24 45-50.

GRADUATE SCHOOL OF BUSINESS
UNIVERSITY OF CHICAGO
1101 EAST 58TH STREET
CHICAGO, ILLINOIS 60637



