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THE ESTIMATION OF THE HAZARD FUNCTION FROM
RANDOMLY CENSORED DATA BY THE KERNEL METHOD"

By MARTIN A. TANNER AND WiNG Hunc WoNG

University of Wisconsin and University of Chicago

By convolution smoothing of the empirical hazards, a kernel estimate of
the hazard function from censored data is obtained. Small and large sample
expressions for the mean and the variance of the estimator are given. Condi-
tions for asymptotic normality are investigated using the Hajek projection
method.

1. Introduction. In life testing, medical follow up and other studies, the observation
of the occurrence of the event of interest (called a failure) may be prevented by the
previous occurrence of another event (called a censoring event). Thus, if Ty, .-, T, are
the lifetimes for the n items under study, and Ci, .- -, C,. the corresponding censoring
times, then it is not possible to observe both 7} and C;. Instead, we can only observe
X; = min(T;, C;) and §; = Iir=c; (here I, denotes the indicator of the event A). In this
paper we assume the random censorship model: Ti, --., T, are iid. with cdf Fr,
independent of Cy, .-, C, which are ii.d. with cdf F¢. The cdf and density of X; will be
denoted by F and f respectively (without any subscript).

Let Xq), -+ , X(n) be the ordered X’s, 84, ¢« - , ) be the corresponding indicators, and
R; be the rank of X;. The purpose of this paper is to investigate the properties of

Ar(x) = Y01 (n—j + )78 Kn(x — X(y) =3 (n — Ri + 1) '8 K (x — Xi)

as an estimator of the failure rate Ar(x) = —(d/dx) log(1 — Fr(x)) which is assumed to be
continuous. Here K is a symmetric nonnegative kernel, K (¢) = ot ast— o, [ K(t) dt
=1, K»(y) = h 'K (y/h). The point of interest x is assumed fixed throughout the study
and satisfying 0 < F(x) < 1.

The estimate Az can be regarded as a convolution smoothing of the formal derivative of
the empirical cumulative hazards Hx) = Y x=xa; where a; = 8;/(No. of items at nsk at
time X;) = 8;/(N — R; + 1). In Section 2 we derive the expectation and variance of M, and
provide asymptotic expressions for them. These results generalize those of Watson and
Leadbetter (1964) (henceforth referred to as WL) for the uncensored case. In Section 3,
conditions for asymptotic normality of Ar(x) is established by the Hajek projection
technique.

The above estimator has also been considered, independently of the present work and
of each other, by Ramlau-Hansen (1983) and Yandell (1983). The former, based on the
theory of multiplicative intensity counting process, is perhaps the most general. The latter,
while dealing only with the random censorship model, provides simultaneous confidence
bands. Both analyses, however, require that all the observations fall into a certain compact
interval, and that the kernel has compact support. Such requirements are not necessary in
our approach. It is hoped that the result of the present analysis, which is based on more
elementary arguments, will complement those of the other two papers.
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2. Expressions for mean and variance. Let m(y) = fr(y) — Fe(y)/f(y) if
f(y) >0, then

LEMMA 1. E((S(j)lX(j) =y) = m(y) fOT‘ allj; and
E@nds| Xn =y, X =2)=m(y)m(z) forall r<s, y<z.

THEOREM 1. EAr(x) = [ (1 — F™(y)Ar(y)Kn(x — y) dy,

Var(Ar(x)) = J L(F(y)Ar(y)Ki(x — y) dy + 2j J {F"(Z) - F'(y)F"(2)

y

1-F(y)

_—__—F(z) —F0) [F™(z) — F"(.’)’)]} A (Y1 (2)Kn (x — y) Ka (x — 2) dy dz

where

LF)=Y3" (n—F)" (Z) F*a - F)" "

PROOF. The lemma can be verified by direct calculation. Using the lemma, the
calculation of EA; and Var Ar proceeds in essentially the same line as in WL for the
uncensored case. To illustrate the idea, '

EAr(x) = ¥ J E@p| Xy =y —j+ 1), (9)Kn(x — y) dy

1 n! v-1 - n—j -
—j [2 TEEES) (j—l)!(n—j)!F (1 = F(y) ]f(y)m(y)Kh(x ) dy

= f (1= F*(y)Ar(y)Kn(x — y) dy.
The verification of the variance formula is similar, though involving longer calculation. 00

As n —» « the dominant part of E XT(x) is the convolution A7+K:(x) which can be
regarded as an approximation of Ar(x) by the weighted average [ Ar(y)Kn(x — y) dy. For
this to be a good approximation, it is necessary that the values Ar(y) for y far away from
x must not be so large that the down-weighting of the kernel is insufficient. Since
Ar(y) = fr(¥)(1 — Fr(y)) ™" this amounts to a compatibility condition on the tail behavior
of Kpand 1 — Fr.

DEFINITION. K is said to be compatible with a cdf F if for any M > 0, there exists A
small enough such that A 'K(hA™'(y — x))/(1 — F(y)) is uniformly bounded for |y — x| >
M. This uniform bound will henceforth be denoted by Gy.

THEOREM 2. Letn— o, h— 0 an(Ai nh — oo;
a) if K is compatible with Fr then EAr(x) — Ar(x);
b) if K is compatible with both Fr and Fc then

Var(Ar(x)) = (nh)_l(f K3(t) rlt))\T(x)(l — Fx)™ + o((nh)™).

PRrOOF. Since the arguments are quite similar to those in WL, we will only outline the
main ideas. For part (a),

EAr(x) — Ar(x) = J [(1 = F(y)Ar(y) — Ar(x)]1Kx (x — y) dy.
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Using the compatibility of K to Fr, it is easy to show that the integrand is dominated by
an integrable function. Furthermore, the integrand clearly converges to zero for all y.
Hence (a) follows from the dominated convergence theorem.

For part (b), it is readily verified (Lemma 6 of WL) that n L,(F(y)) — (1 — F(y))™!
provided F(y) < 1. It then follows from a dominated convergence argument that

nh( f K(0) dt) j LF(r (0K (x — y) dy —Ar (£)(1 = Fx) .

This is the dominant term in nk ([ K2(t) dt) ™' Var Ar(x), the other term can be shown to
be convergent to zero by the same argument as in WL. 0

REMARKS.
(i) As an immediate consequence of the theorem, Ay (x) is mean square consistent for

}\T (x ) B
(ii) The compatibility of K to F¢ can be relaxed, if some further conditions are imposed

on K and A,,.

3. Asymptotic normality. In this section the projection method (Hajek, 1968) is
applied to investigate the asymptotic normality of Ap(x). Suppose Yi, -+, Y, are iid.
and Wis a statistics based on Y. The key idea of Hajek’s method is that even though the
central limit theorem is concerned with sums of independent r.v.’s, its scope may be
extended to statistics asymptotically equivalent to such sums. Thus we can try to approx-
imate W by its projection W on the subspace of all such sums of independent terms. Hajek
gave the following formulae which are easy to verify:

W=Yr,E(W|Y,) -~ (n—1)EW, EW=EW,
E(W — W)? = Var(W) — Var(W).
In our present problem, let Y; = (X, §:), and
W=4r(x) =31 W
where
Wi=(n-R;+1) _lﬁth x - X).
LEMMA 2. E(Wi|Y:) = n™'V,(Y)); and forj # i,
EWj|Y)=(n-1" J (1 =F(y)'(1 = F*"(y)m(y)Kn(x — y)f(y) dy
+ (n(n = 1)U (Yy)

where

Va(Yi) = (1 = F(X:))7'(1 = F"(X:))8: Kn (x — Xi),

Un(Y:) = - J' (1= F(y)7[1 - F*(y)

— nF" ()1 — FO) p=xom(9)f () K (x — y) dy.

Proor. Using the facts that:
given (X;, 8;), R; ~ 1+ Binomial(n — 1; F'(X})), and
. . sy p L J1+Binr-2,F(X)) if X;=X;
given (Xi, ), (X, ), By {2 +Bin(n - 2, F(X))) if X>X,

the formulae follow from direct calculation. [0
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Using Hajek’s formula for W, Lemma 2 and Theorem 1, we can write
W—EW=Yr,[E[W,|Y) + (n - VE(W;| Y;) — EW]
=Y [n7WVR (X)) + T UL(Y)) + AL
where A, = — [ F*"(y)m (y)Kn(x — y)f (y) dy.

THEOREM 3. If K is compatible with both Fr and Fc¢, then the standardized form of
W = Ar(x) has an asymptotic normal distribution, as n — o, h — 0, nh — oo.

ProoF. The main steps are
(i) | U.| = O(log n), | As| = O((n(n + 1)) 7).

Proor. Choose M such that Fx(x + M) < 1, then
Os—Un(Yi)sd,,+GMJ 1A+ F+ .- + F'-'— pF~1) dF ()
ly—x|>M
where d, = O(1). Similarly,
0<-A,<OF" (x+ M)+ GMJ' F*'(1 - F) dF. 0

(i) E|Va(Yi)|" = arn(l — F(x)) "m(x)f(x) + o(ar») where

ar,;.=JK;'.(y) dy=h_"_”J'K’dy, r=1,2 ...

PROOF.
E|V,| = J [Q—=F(y)7" 1= F(y))m(y)Ki(x — y)f(y)] dy

SJ [-]dy+ G;wj (1= F")" mf dy.
ly—x|=M

ly—x|>M
Since K% /ay,x is also a peaking kernel, and M is chosen such that F(x + M) < 1, the result
follows. 0

(iii) The standardized version of W and W have the same asymptotic distribution.

Proor. Using (i) and (ii),
Var(W) =nVar(V,/n + Un/n + A,) = n lagpAr(x)(1 — F(x)) ™ + o(nh)™).

Comparing with the variance expression in Theorem 2, it follows that Var(W)/Var(W)
— 1. Hence

E[(W = EW)/Nar(W) — (W = EW)/\Nar(W)]*
= Var(W) E(W — W)?
= Var(W) [Var(W) — Var(W)]— 0. O
(iv) (W— EW)/(Var(W))2 > N(0, 1).
Proor. Since A, is negligible, by Lyapounov’s theorem a sufficient condition for (iv)
is that (Var(W)) "*2nE | V,./n + U,/n|® converges to zero. It is readily established using

the bounds in (i) and (ii) that the above quantity is O((nh) /%), hence completing the
proof. [0
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