The Annals of Statistics
1983, Vol. 11, No. 2, 640-653

A SHARP NECESSARY CONDITION FOR ADMISSIBILITY OF
SEQUENTIAL TESTS—NECESSARY AND SUFFICIENT
CONDITIONS FOR ADMISSIBILITY OF SPRT’S!

By L.D.BrowN,? ARTHUR COHEN,? E. SAMUEL-CAHN

Cornell University, Rutgers University, and Hebrew University

Consider the problem of sequentially testing the hypothesis that the
mean of a normal distribution of known variance is less than or equal to a
given value versus the alternative that it is greater than the given value.
Impose the linear combination loss function under which the risk becomes a
constant ¢, times the expected sample size, plus the probability of error. It is
known that all admissible tests must be monotone—that is, they stop and
accept if S,, the sample sum at stage n, satisfies S, < a,; stop and reject if S,
= b,. In this paper we show that any admissible test must in addition satisfy
b, — an < 2b(c). The bound 2b(c) is sharp in the sense that the test with
stopping bounds a, = —b(c), b = b(c) is admissible.

As a consequence of the above necessary condition for admissibility of a
sequential test, it is possible to characterize all sequential probability ratio
tests (SPRT’s) regarding admissibility. In other words necessary and sufficient
conditions for the admissibility of an SPRT are given. Futhermore, an explicit
numerical upper bound for b(c) is provided.

1. Introduction and summary. Consider the problem of sequentially testing the
composite null hypothesis that the mean of a normal distribution of known variance is less
than a given value versus the alternative that it is greater than the given value. Impose the
simple linear combination loss function under which the risk becomes ¢ (expected sample
size) + (probability of error).

It has previously been shown that all admissible tests for this problem are monotone—
that is they stop and accept (reject; resp.) if S,, the sample sum at stage n, satisfies S, =
a, (S, = b,). We show in Section 4 that an admissible test must in addition satisfy b, — a,
=< 2b(c). This bound is sharp in the sense that the test with stopping bounds &, = b(c),
a, = —b(c) is admissible.

The proof of this result involves an examination of the properties of sequential
probability ratio tests (SPRT’s). Every SPRT is of the above form with

(1.1) a, = a+ ny, b,=0b+ npu

for some a, b, i € R. It is well known that for every SPRT there is a value of ¢ for which
this test is unique Bayes, and hence admissible among those which take at least one
observation. On the other hand for given ¢ not all SPRT’s are admissible. In fact, we will
show that if one considers only procedures which take at least one observation then an
SPRT is admissible if and only if 0 < b — d =< 2b(c). (If one considers also procedures
which are allowed to stop without taking any observations—as we do for most of what
follows—then admissibility of an SPRT requires also that | a + | be not too large. See
following Proposition 3.2.)

Symmetric SPRT’s, i.e., those for which i = 0 and a = —b, play a central role. The
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ADMISSIBILITY OF SEQUENTIAL TESTS 641

constant b(c) is defined by examining the class of symmetric SPRT’s. This is done in
Section 3. An additional result proved there is that the symmetric SPRT with a = —b(c),
b = b(c) dominates all symmetric SPRT’s with & — a > 2b(c). (We have no parallel for this
domination result for general monotone procedures—that is if b, — a, > 2b(c) for some n
we know that the procedure is inadmissible, but do not know, in general, how to construct
a procedure which dominates it.)

Consideration in Section 5 of a testing problem involving the Wiener process with
constant drift yields (.427- - -)¢™'/? as an explicit numerical upper bound for b(c). If ¢ is not
large this upper bound is close to b(c). We also relate d(c) to the probabilities of error of
a symmetric SPRT in one example. This relation should be of interest to the practitioner.
Some generalizations are described in Corollary 4.5 and in Section 6.

The linear combination risk function used here is a natural and convenient choice. Such
a risk has been used by Wald (1947), Le Cam (1955), Lehmann (1959), Ferguson (1967),
and others. One other possibility is of course to evaluate procedures according to a two-
component risk whose components are expected sample size and probability of error.
Interestingly the monotone procedures form a complete class for the problem with linear
combination risk function but not for problems with componentwise risk function. See
Brown, Cohen, Strawderman (1979). Furthermore Bayes tests derived using the linear
combination risk turn out to be very appealing on other intuitive grounds. See Schwartz
(1962) and Berger (1980). This provides additional justification for using such a risk
function.

2. Notation and preliminaries. Let X, --- be a sequence of independent identically
distributed normal random variables with mean 6 and known variance, o2. Without loss of
generality set ¢% = 1.

In its customary form the problem under consideration involves sequentially testing the
null hypothesis that § < 6, versus the alternative that § > 6,. Without loss of generality
take 6, = 0. The terminal decision is either 1 = 1 (“accept”) or T = 2 (“reject”). The value
of the loss function corresponding to stopping at time n and making decision 7 is

cn if =1 and =<0
L@, (n,1))=1cn if r=2 and >0
cn+1 otherwise.

Assume throughout that ¢ < %.
For technical reasons a slightly more symmetric formulation is desirable. Let ® = ©,
U 0O, with ©; and 0, topologically disjoint components of ® described as follows:

(2.1) ©, = (—, 0) U 0y, ®; = 0; U (0, ).

©; (respectively ©:) has the obvious topology in which ©,(0;) is isomorphic to (—o, 0]
([0, o)) (thus, neighborhoods of the point 0, are of the form (—¢, 0) U 0y, etc). f 0 € O is
the true parameter point then X, X,, . .. are independent identically distributed normal
random variables with variance ¢®> = 1 and mean

(2.2) p=0 if 670, or O p=0 if §=0, or O..
The loss function is

L@, (n,7)) =cn if €6,
(2.3)
=cn+1 if 60,

A procedure is admissible in the customary formulation if and only if it is admissible in
the above symmetric formulation. Hence the two formulations are indeed equivalent from
a practical point of view. In the following only the symmetric formulation is used.

To every prior in the customary formulation, there corresponds in an obvious way a
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unique prior in the symmetric formulation which yields the same Bayes procedure.
However there are priors in the symmetric formulation which have no counterpart in the
customary one. These are the priors which give mass to the point 0. and (to avoid
trivialities) to ®; — {0,}. Further aspects of the symmetric formulation are discussed later.

The risk of a test procedure 8 is of course (6, §) = E,(L(8, (N5, Ts)) where (Ns, Ts)
denote the (random Markovian) stopping time and terminal decision rule corresponding
to 8. By convention set (8, 8) = oo if P,(Ns < ) < 1. We note that the formulation allows
the value N = 0.

Let I be a prior distribution on ©. I can be written as I' = m 'y + 72I's where I', is the
conditional distribution on ®, and 7, = I'(®,). To avoid trivialities assume throughout that
each 7, > 0. The statistic S, = Y., X, is sufficient given the observations Xi, - .-, X,.
Hence the posterior distribution on @ given X, ---, X, is only a function of n and the
values, s, of S,,. It will be written I'»(- | ) = 71 (8)Tni(+ | 8) + 7a2(s)Tnz(- | s) where I',, and
7., Tepresent the indicated posterior conditional distributions and probabilities of ©,. Let
r(I, 8) = [ r(6, 8)I'(dF).

Here are some important facts:

To any prior distribution, I, corresponds a Bayes procedure. Call it &r. (Thus, r(T’, r)
= infsr(T, 8) < %.) The collection of Bayes procedures is a complete class (i.e. includes all
admissible procedures). See Brown, Cohen and Strawderman (1980) and Berk, Brown, and
Cohen (1981b). Even for ¢ < % there are certain priors for which the Bayes procedure
must stop before taking the first observation. For the remainder of priors there is a Bayes
procedure which takes a first observation with probability one. Such Bayes procedures are
essentially uniquely determined, non-randomized and monotone. (See Brown, Cohen, and
Strawderman, 1979). Thus such a §r is essentially uniquely determined by a set of stopping
boundaries a&, b5, n =1, 2, .- -, according to the rule—if S, = a%(S. = b%) stop at time n
and accept (reject). Otherwise sample X,...;. (The discussion following (4.2) slightly extends
the definition of al, b%.)

Consider values 8, € ©; and 6, € 0,, not both 0. The log likelihood ratio based on Xi,
e, Xn is

An(s) = log TTir { fa(x) /fon ()} = log{ fii (s)/fin’(s)}
(2.4)
= (0: — 61){s — n(0: + 6:)/2},

where f§”(s) denotes the density under 6 of S, (normal with mean nf, variance n).
Consequently, a sequential probability ratio test (SPRT) is a test with stopping boundaries
of the form

(2.5) a,=a+ np, b,=0b+ nu
for some constants a, b, ii. A symmetric SPRT is one for which @ = —b, i = 0.

It is well known that the Bayes procedure for a prior concentrated on the two points 6,
#, either takes no observations or is an SPRT. In particular if 8, = —6: # 0 and m = 72 =

Y then the Bayes procedure is a symmetric SPRT if it takes any observations. Let b(6-, c)
denote the upper stopping boundary (b,) of such a symmetric procedure, as a function of
62, c. By convention, if the Bayes procedure takes no observations, set b(:, ¢) = 0.

The main result of Section 3 is an upper bound on b(-, c), plus a related domination
result for symmetric SPRT’s whose b value exceeds this bound. As a preliminary, we state
the exact form of a Bayes procedure for any two point prior.

For any prior T, and any sample size n = 1, define the neutral boundary, 7., through
the equation

(2.6) sz‘a"’(nn)F(dﬂ)=J 4" (n.)T(d8).
] ©2
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Thus 7, is the unique value for which 7,1(s) = mna(s) = Y. Where necessary we write 1, =
nt and 7, = 7}, to indicate dependence on the prior T

ProPoSITION 2.1. Let I' be a prior distribution concentrated on 6, € 0, and 0: € 0,
with not both 0, = 0, and 6. = 0. Suppose the Bayes procedure for I" takes at least one
observation. Then it is an SPRT with boundaries

@27  an=—b+m+(n—Di=—b+mm, ba=b+m+(—Di=b+n
where b = b((0: — 61)/2, c) and jp = (6, + 62)/2.

PRrROOF. Let I'° be the prior giving mass % to each of the points —(f, —6,)/2 and
+(6; — 6,)/2. The joint distribution under 6; (resp., 6;) of S — Si, S3 — S, - - - is the same
as the joint distribution under —(0; — 6:)/2, (62 — 61)/2) of So — S1 + 5, Ss — So + fi, -+ -.
Furthermore

(2.8) ah(m) = % = 75(0).

Hence, given that a first observation (S;) has been taken, the problem with prior I" and
cumulative sums S, S, Ss,- - - is equivalent to the problem with prior I'’ and cumulative
sums S; — 1, Se — m — &, S3 — m — 2, - - -. The Bayes procedure for the latter problem
is a symmetric SPRT with boundaries +b. Consequently the Bayes procedure for the
former problem has boundaries b + n; + (n — 1)i. This verifies the first expressions in
(2.7). It also follows from (2.8), and the sentence preceding it that

(2.9) NMn =M + (n - l)ﬁy

which verifies the remaining expressions in (2.7).0

The value of n; which for given 6, 6, lead to Bayes procedures taking at least one
observation are described in Proposition 3.2. It will also be noted in Section 3 that b(y, ¢)
= 0 (and consequently the Bayes procedure takes no observations) if and only if ®(—p) <
Y% — ¢. This fact was previously exploited in Cohen and Samuel-Cahn (1982).

3. Necessary and sufficient condition-symmetric case. We first review some
well known facts about SPRT’s. A reference for the following statements is Ferguson
(1967). (See Chapter 7 and especially Exercise 7.5.3) Fix p > 0 and —6; = 6, = p. For now,
let '™ denote the prior giving mass 7, (1 — 7) to 6;, 6, respectively. Let V(7) = V(m, p) =
r(I', 8p=). Let

(3.1) qu=glb.{m:V(r)=1—-7}.

(For 7 < 7y, V(m) <1 — 7. Note also that 7y = %, by symmetry.) The Bayes test for 7 =
% is a symmetric SPRT with upper boundary

(3.2) b= by, c) =log(ry/(1 — mv))/2p.

The Bayes test stops without taking an observation (and has Bayes risk =%) if and only
if b(y, c), as defined in (3.2), equals 0. This occurs if and only if p < §* = 6*(c), where §*(c)
is the unique value for which

(3.3) P(f*) — P(—0*) = 2¢

(® denotes the standard normal c.d.f.).

It is easily seen that lim, ...V(7, p) = ¢, which implies 7y — 1 — ¢. Hence lim, . b(p, c)
=0.

As previously noted, the risk of any Bayes test is continuous in § € ©. This fact can be
used to show that V(m, p) is continuous as a function of p, and hence that b(., ¢) is
continuous.
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The above facts directly yield the following proposition.

PROPOSITION 3.1 The bound b(c) = sup,-ob(u, ¢) < . A symmetric SPRT is a Bayes
test for some symmetric two point prior if and only if b < b(c).

Proposition 2.1 can be combined with Proposition 3.1 to provide a description of all
SPRT’s which can be Bayes for two point priors. In particular, an SPRT of the form (2.7)
can be Bayes for a two point prior only if b < b(c). Here is a precise statement of this
result.

PROPOSITION 3.2. Given ¢, an SPRT with boundaries of the form (2.7) is admissible
Bayes for some two point prior if and only if b < b(c) and |n1 — p| < b.

Proor. Consider an SPRT of the form (2.7). If b < b(c) then there exists a p such that
b(p, ¢) = b. Let 6 — 1 — p, 8 = i + p. Consider the two point prior giving probabilities ,
(1 — 7) to 6, 6; such that 7, is as specified in (2.7)—that is

(l - 77)’;7'014(7]1) = Wﬁi—u(nl )’
or, equivalently,
(3.4) 1= m)fulm — @) = 7f—.(m — p).
Among procedures which take at least one observation, this SPRT is Bayes. Consult, for
example, Ferguson (1967, Chapter 7) and Propositions 2.1 and 3.1. This SPRT will be
Bayes among all procedures if and only if a Bayes test (Bayes among all procedures) may

take an observation. This occurs if and only if 1 — 7y < 7 < 7.
An algebraic reduction of (3.4) yields as an equation for #:

(3.5) 7/(1 — m) = e P,
Hence 7 is monotone in n; and 1 — 7y < 7 < 7y if and only if
mi — | =< (Uilog {mu/(1 — )}

According to (3.2) this is equivalent to the desired condition | n; — it | < b. This proves that
this condition is necessary and sufficient for a test of the form (2.7) with b < b(c) to be
Bayes for a two point prior.

To complete the proof of the proposition, we need only note that if an SPRT is of the
form (2.7) with & > b(c) then as a consequence of Propositions 3.1 and 2.1 it cannot be
Bayes for a two point prior. [

We conjecture that an SPRT can be Bayes only for a two point prior. If this conjecture
is valid then Proposition 3.2 would show that the only Bayes SPRT’s are those of the form
(2.7) with 0 < b =< b(c) and | — i| < b. Consequently all admissible SPRT’s would be of
this form. (Theorem 3.4 treats the symmetric case and proves such an admissibility result
for this case via a different line of argument.)

Let 8(b) denote the symmetric SPRT with stopping boundaries +b. It has risk

(3.6) (6, 8(b)) = r(6, b) = cE¢(Ns) + Byo)(d)

where N, denotes the stopping time of the SPRT and Bs(b) denotes the probability of
error in the terminal decision. (B4(b) is symmetric in 6, as is E¢(Ns).)

LEMMA 3.3. Let 8’ € ©. Then r(8’, b) is strictly increasing in b for b > b(@’, c).

PRrROOF. Suppose the lemma is false. Since lim,_,7(6’, b) = « and r(8’, -) is continuous
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there exist two values b, > b, > b(§’, c) such that r(6’, b,) = r(6’, b2). From (3.6) one gets
3.7 c{Ey(Ns,) — Eg¢(Np,)} = Bo(b1) — By (b2).

Note that Ey(Ns,) > E4(N,,) since b; < b,.
From Lehmann (1959, Lemma 6, page 107) it follows that (¢’ -) is continuous, strictly

decreasing, and lim. .0b(8’, ¢) = «. Hence there exists a ¢; < ¢ such that b, =
b(@’, c1). This implies, because of symmetry, that
(3.8) c1{E¢(Ns,) — Eg¢(Ns,)} = Bo(b1) — Bo(b2).

(3.8) contradicts (3.7) since ¢ > ¢;.0
We can now prove the main result of this section.
THEOREM 3.4. The symmetric SPRT, 8(b), is admissible if and only if 0 < b < b(c).

Proor. The quantity & = 0 corresponds to the test which takes no observation
and decides to accept or reject at random. Since any test taking an observation has
lim, o {r(p, 8) + r(—p, 6)}/2 = cEo(Ny) + % > % = r(u, 6(0)), the test §(0) is always
admissible. If 0 < b < b(c) then, as previously noted, b = b(g, c) for some p > 0. Thus §(b)
is unique Bayes for a two point prior and hence admissible. If & > b(c) = b then

r(6, 8(b)) < r(8, 8(b))
for all § € ® by Lemma 3.3. Hence, 8(b) is inadmissible. 0

4. A complete class theorem. It was noted in Sections 2 and 3 that all Bayes
procedures for two point priors have stopping boundaries satisfying b, — a, = 2b(c),
n =1, .... This fact, together with further basic facts concerning concavity and uniform
convergence of Bayes risk functions, will be used to prove the main result of this section:
all admissible procedures (= all Bayes procedures) have stopping boundaries satisfying

4.1) by—a,<2blcy n=1,.-.-.

This result considerably improves on Lemma 3.3 of Brown and Cohen (1981) which states
only that for each prior I' the Bayes procedure has stopping boundaries which satisfy

(4.2) sup{bf —af:in=1,...} <o,

We need first to discuss the nature of the Bayes stopping boundaries al, . For the
trivial case where I'({0;} + {0:}) = 1 the Bayes procedure stops with probability one at
time 0. We need say no more about this case, and hence assume in the following that I is
not of this form.

Let pi(s, 8) denote the conditional integrated risk given that S, = s when using a
procedure 8 which continues sampling at least to stage n, and when the prior is I'. Let
8{® denote the Bayes procedure for prior I under the restriction that sampling continues
at least to stage n.

It follows from Brown, Cohen, Strawderman (1979) that 8{* accepts (rejects) for S, <
al(S, = bL) and continues otherwise, for some —o < al = b} =< «. Hence

= cn + 7l(s) if s<al
(4.3) oh(s, 6(F) { = cn + 7hi(s) if s= bl
< cn + min{75, (s), 7ha(s)} if al <s<bl.

The above uniquely defines al, b% even for values of n under which the unrestricted
Bayes rule ér will have stopped with probability one before sampling reaches stage n. Of
course, if 8r can reach stage n with positive probability, then its stopping boundaries are
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al, bL, the same as those of 8{".

LEmMMA 4.1. Let TV, i=1, ..., I be a collection of prior distributions. Let A, = 0,
i=1 ... I satisfy Y=1 \i = 1. Define I" = Y/, A,I'Y. Suppose b, =< Bnlar = ox;
respectively). Then by < B.(ak = ax).
Proor. For any procedure ™ which continues at least to stage n
pE(s, 6™) =¥ Aiph(s, 8™) = T Aipn (s, 81¥)
(4.4) =cn+ 7ha(s) ifs=<an
=cn+ 7hi(s) ifs=p,

by (4.3). If 6™ has stopping boundaries a., b, and B, < s < b, or @, < § =< an, then strict
inequality holds in (4.4) for these values of s. It follows from (4.3) and (4.4) that §” cannot
be Bayes for I'” at stage n unless b, < 8, and a, = a,. 0

Give {I'} the usual weak* topology under which I'” — I" if
J ()T (d) — f c(0)IV(df)

for all continuous bounded functions c¢: ® — R. Let I'” be a given prior. A consequence of
(4.2), as noted in Brown and Cohen (1981), is that N;,.. is uniformly exponentially bounded.
It easily follows that also NB(;}; is uniformly exponentially bounded. That is, for some ¢ < 1

(depending on I") and for each n

(4.5) Py(Ngw > k) = 0(¢*) uniformly for every 6 € ©.
It easily follows from (4.5) that

(4.6) r(-,8®) is bounded and continuous on ©.

An argument showing that (4.5) implies (4.6) in a similar context appears, for example, in
Berk, Brown, and Cohen (1981b).

The continuity of (-, 8{) is an important feature of the symmetric formulation adopted
in Section 2. (In the customary formulation described at the beginning of that section it is
usually the case that r(6, 8r) is discontinuous in 8 at § = 0. Hence the desired weak*
convergence result (4.7) does not hold in that formulation.)

As a consequence of (4.6) if ' — TV then

(4.7) J r(8, 8{")I'"(df) — f r(8, 8{2)I(d8).

Let M < . Define the M-truncated risk r? by
F(M)(6’, 8 = CEa(Ns AM) + Py(0 & ®T5 and N(; = M).

Observe that »™(8, §) / r(d, §) as M — . Hence
(4.8) limpy e J’ r™g, §)I'(df) = j r(4, §)I'(d6).
Also r'™)(., §) = ¢cM + 1 and is continuous.

LEMMA 4.2. Suppose I'” — I". Then

(1) ’ (1) ’
(4.9) al’ > al’, b - bL.
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ProOF. Let {i;} be a subsequence such that {a "} and {5} converge in [—, =],
say
(410) arfhl)_) Qn, brf"l)_) bny n= 1) 2, M

with —w < @, < b, < ». Let § denote the procedure with stopping bounds (a,, b.). Fix
1 < no < . It follows easily from (4.10) that

(4.11) r™@, 87w — r*0@, 85), 66,

where, as before, 8™ denotes the procedure which continues to stage no, and then uses the

boundaries a,, b,, n = ng, no + 1 - -+ . Furthermore, the convergence in (4.11) is uniform

over bounded subsets of ©. It is actually uniform over all ® unless —» = a, <a." or

br" < b, = . Hence, for any fixed M,
(4.12) J r*, 3(11"@),)F(")(d0) — j r®™ g, 8§\’ (do),
since, also, 7¥(-, 8§) is bounded and continuous, and I'® — I". Note that
(4.13) J r(8, 8{)\ ' (df) = j r(4, S(F"P,), ' (d) = j r e, B(F"ﬂ,),)r(l"(da).
Combining (4.7), (4.12), (4.13) yields
j r®@, 5 (de) = J r(8, 8{)I"(df).
It then follows from (4.8) that
(4.14) fr(a, 8§ T (df) = f r(8, 8{7)I'"(d6).

However, as noted, §{* is the essentially unique Bayes procedure, under the restriction of

taking at least n observations. Hence 8§ =§{%’. This completes the proof of the lemma

. . (¢,) (¢, ) .
since n, = 1 was arbitrary and also the subsequences {a} "'} {b%"'} were arbitrary conver-

gent subsequences. [
Here is the main theorem.

THEOREM 4.3. Every admissible procedure satisfies
(4.15) b — an = 2b(c).

ProoOF. Asnoted in Section 2 we need only prove that any Bayes procedure, ér-, which
takes a first observation satisfies
(4.16) by —ak =2b(c).

Let I'' be any prior for which 8- takes a first observation. Fix 1 < no < «. Let 5 =nk,.
We now verify the existence of a sequence of simple priors I'*) such that

(4.17) M =m, =1 ---andI'¥ > TI"

Suppose supp I C Iy = [— B, 0:] U [0,, B], for some B < o, where supp means support of
the prior. The set

Sp(n) = {T:supp I C In, nn, = n}

is convex and is compact in the weak* topology. The external points of Sp are the
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probability measures concentrated on (at most) two points. By the Krein-Millman Theo-
rem (see e.g. Royden, 1968, page 207) I'” is a limit of finite convex combinations of such
two-point probability measures. This proves (4.17) for such a I". If supp I'” is arbi-
trary, it is easy to see that I'" may be approximated by a sequence of distributions,
{I's:B, — «}, say, each of which has support in Ip and satisfiesnh® = 7. Again (4.17)
follows. Furthermore it follows that I'*’ can be written as

(4.18) ©'® =y A T6)

with A, >0, = A, = 1, and each I'®’’ concentrated on (at most) two points and satisfying

@)

(4.19) . Nng =N
By Propositions 2.1 and 3.2,

n—b(c)<akh”’ = bh" =n+b(c).

By Lemma 4.1,

n—>blc)=ak’ =bL"=n+blc).
Lemma 4.2 then implies
n—b(c) < ak = b, =71+ b(c).

This proves (4.16), and hence also (4.15). 0

Here are some consequences of the preceding results.

COROLLARY 4.4. The stopping times of all admissible procedures are uniformly
exponentially bounded — i.e. for some ¢ < 1,

(4.20) Py(Ns=k) = O(e%)
uniformly for all 8 € © and all admissible 6.

Consequently, the risk functions r(-, §) of admissible procedures are bounded and
uniformly continuous on © uniformly for all admissible 6.

These statements follow easily from (4.15) by arguments like those in Berk, Brown, and
Cohen (1981b). O

One may also discuss the sequential problem in which the only allowable procedures
are those which take at least one observation. (Equivalently one may modify the loss
function so that the first observation is supplied free of charge—so that all admissible
procedures again take at least one observation.) This formulation was also discussed in
Brown, Cohen, Strawderman (1980), and it was shown that the complete class consists of
Bayes procedures, certain generalized Bayes procedures, and certain partial truncations
(at stage n = 1) of these. All these procedures become—a posteriori given S;—ordinary
Bayes procedures from stage 2 onwards. Theorem 4.3 thus immediately yields (4.15) for
n = 2. Some care in applying the formulation of Brown, Cohen, Strawderman (1980) for
this situation in the proof of Theorem 4.3 also yields (4.15) for n = 1. In summary:

COROLLARY 4.5. Conclusion (4.15) is also valid for the sequential problem in which
all allowable procedures take at least one observation.

For the following let
07 = sup{6:0€ ©,, § Esupp I'}, 6% = inf(6:0 € Oo, 6 € supp T'}.
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ProPOSITION 4.6. Suppose I has 6, <0 or ;> 0. Then as n — ©

(4.21) M — an — b((6F — 61)/2), bh — k% — b((65 — 61)/2).

Proor. Let I'*denote the prior giving mass % to each of ] and 6%. Then I',.(-|3%)
— I'* as n — «. The proposition then follows from Lemma 4.2 and Proposition 2.1. 0

In the case of a “gap” prior as defined in Brown and Cohen (1981) (one in which 67 =
0,7 =1, 2, and 0, is an isolated point of the support of I, for i = 1 or 2) a modified version
of (4.21) is valid. We omit the details.

Note that if 8] = 0, for i = 1, 2 and the prior is not a gap prior, then ar = by, = 3, for
all n sufficiently large, by Berk, Brown, and Cohen (1981a). Hence the stopping time for
the Bayes rule is bounded.

5. Testing for the Wiener process. Let W(t) be a Wiener process with variance
one and shift # per unit time. We consider testing Hy: 6 < 0 versus H;: 6 > 0, where the
observation costs ¢ per unit time. This problem is interesting in its own right, and a
solution to this problem sheds light on our original (discrete time) problem. We (again)
consider the risk function to be the error probability plus ¢ times the expected duration of
observation.

The main difference between our original problem and the present problem is that in
the original problem when testing Hy:§ = — 6, one would not take any observations if
|6] < ®~'(% + c) (see (3.3)), while in the continuous case one would always start observing
the process.

Consider testing the simple hypothesis that the parameter is —#8, versus the simple
alternative that it is 6, by means of the test which continues as long as | W(¢)| < b, stops
and rejects (accepts) when W (t) = b (W (t) = —b). Recall 8(0, b), E¢qN,, and r(6, b)
denote error probability, expected stopping time and risk, respectively. (By symmetry they
are the same for § and —@). Then as in (3.6)

(5.1) re(8, b) = cEs(N,) + B(6, b).

LEmMaA 5.1. For the above problem

B8, b) = {1+ exp(260b)}7", and for 6 #0, E;N, =b{1—2B(6, b)}/6.

The content of this lemma is well known, and the proof is straightforward.

For fixed ¢ and € it follows from (5.1) and Lemma 5.1, through differentiation,
that r.(6, b) is minimized by b = b*(6, c¢) which satisfies the equation
(5.2) 2b*(6, ¢c) = §/c — [sinh{26b* (4, c¢)}]/6.
We are interested in maxyb*(8, ¢) = & *(c). The value §’ = 8(c) for which this maximum
is attained satisfies db*(8, c)/d@|s-¢- = 0. Differentiating both sides of (5.2) therefore
yields, (after multiplying by %)
(5.3) 0%/c—{26'b*(8’, c)}cosh{20’b*(6’, ¢)} + sinh{26'b*(8’, c)} = 0.
Noting from (5.2) that 67%/c = 26'b*(0’, c)+sinh{26’b*(6’, c)} and substituting
20’b*(0’, ¢) = u in (5.3) yields the simple equation
(5.4) u{l — cosh(u)} + 2 sinh(z) =0
which has the unique solution u = u* = 2.3994. ... It therefore follows that 8’6*(¢’, c) is

constant and does not depend on c. Substituting back in (5.2) and solving for 8’ yields 6’
= f(c) given by

(5.5) 0(c) = c*{u* + sinh(u*)}'* = ¢'/* 2.8040- - -,
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and
(5.6) b*(c) = ¢V u*{u* + 2sinh(u*)}"%/2] = ¢ /%0.427. - ..

It turns out that 8(8(c), b*(c)) and r.(8(c), 5*(c)) do not depend on c. We summarize
the above in

THEOREM 5.2. Let 8 be the shift of a Wiener process with variance one per unit time.
For testing Ho:0 = —0, versus H,:0 = 6, let b(8,) be the value of b which minimizes
re(b, 6o). The maximal value of b(6) is obtained for 8, = 0(c) given by (5.5) and satisfies
the definition of b*(c) in (5.6), where u* is the solution of (5.4). The values of B(8(c),
b*(c)) and r.(6(c), b* (c)) are independent of ¢ and are

(5.7) B(c), b*(c)) = [1 + exp(u*)]™" = 0.08322 . ..
(5.8) re(0(c), b*(c)) = u*{u* + sinh(u*)} '[% — {1 + exp(u*)}™']
+[1 + exp(u*)]™' =0.2104 - ...
The bound 5*(c) of (5.6) is an upper bound for the key value (c) of the preceding
sections, as shown by the following corollary.
COROLLARY 5.3. For each fixed 6 b*(0, ¢) = b(0, c). Hence, in particular

(5.9) b(c) = b*(c) = ¢~V2(0.427).

ProoF. Fix any prior distribution I'. In parallel with definition (4.3)

=ct+1-— 'n',*ll‘(s) if s<af
(.10)  pr (s, 0t") =ct+1—mh (s) if s= b}

<ct+min{l — 74 (s), 1 — 7% ()} if aF <s<b}

where the quantities with asterisks are the Wiener problem parallels of those in Section 4.
Note that for ¢ = n I'¥(-|s) = I'x(- | s) and so, also 7, (s) = mn(s), i = 1, 2. For any
procedure 8 in the discrete problem of Section 2 there is a corresponding procedure §in
the Wiener problem which stops only at discrete times ¢t =0, 1,2, ---, and at these times
agrees exactly with 8r. Clearly

(5.11) Pl (s, 82 ™) < pxT(s, pi) = ph(s, 81”).

It follows from (4.3), (5.11) and the above that a}' =< al and b} < b;". This yields the
assertions of the corollary. (A closer examination shows that strict inequality holds in
(5.11), and hence also in the assertion of the corollary.) O

REMARK 5.1.  If the process has variance o? per unit time 8(c) of (5.5) and 5*(c) of (5.6)
should be replaced by 6(c)/o and b*(c)o respectively.

REMARK 5.2. Note that 5*(c) = O(c™?) and Eg) Ns+y = O(c™") as ¢— 0. This should
be contrasted with the usual result, viz. that for a fixed testing problem the stopping
boundary of a Bayes rule is O(—log ¢) as ¢ — 0.

REMARK 5.3. It is clea_r that the value of b(c) of our previous sections, can be
approximated very well by 5*(c), when c is small. Thus (5.6) is useful also for our original

problem, and b(c) is also O(c~"?) as ¢ — 0.

REMARK 5.4. It should, however be noted that for large values of ¢, (c < '), b(c) and
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b*(c) are very different. (Large values of ¢ are usually not interesting in applications.)
Note that for ¢ > .2995 8(c) < ® (% + c), and we have seen that the best SPRT for the
original problem of testing —@ vs. 8 for any | 6] < @ '(% + ¢) = 6(c), is not to take any
observations. (Thus an improved approximation of &(c) would be to replace b*(c) for ¢ >
.2995 by b*(6o(c), c) where b*(c) satisfies (5.2)).

Simple considerations yield that b(c) < log{(1 — ¢)/c}/{2® (% + c)}. Note that for ¢
> .244, b*(c) exceeds this upper bound, and hence one is better off using this upper bound
on b(c). The quantity b(c) can also be bounded below, if so desired, by comparison with
the maximal width to be used in a one-step-look-ahead procedure. The upper and lower
bounds are not close unless c is very large.

In Table 5.1 we list a few values of 5*(c) with corresponding 6(c).

REMARK 5.5. It is interesting to relate b*(c) and the error probabilities of an SPRT.
A symmetric SPRT for Hy: 0 = —6, vs H;: 6 = 6, determined by error probabilities 8 has
approximate boundaries determined by b = {log(1 — B8)/B}/26,. So, for example, when c
= .04 and 6, = 1, using Table 5.1, we see that if 8 < 1/(1 + e**®) = .0137 the SPRT is
inadmissible.

Corresponding to Theorem 4.3 we can state a theorem for the Wiener process. We have:

THEOREM 5.4. Let the continuation region of a sequential test for testing 8 < 0 versus
6> 0 be given by ai* < W(t) < b}, b > 0. A necessary condition for the sequential test to
be admissible is that for (almost) all t > 0, b} — a* < 2b*(c) = ¢ /2 0.8557. This bound
is the best obtainable in as much as there exists an admissible test with b} — a¥ = 2b*(c)
for all t, namely the test with —a} = b¥ = b*(c).

6. Generalizations. The techniques applied in Section 4 are not restricted to the
normal problem studied there or to the loss function (2.3). We now state a much more
general version of Theorem 4.3. This version can be proven by arguments which exactly
parallel those in Section 4, and so the proof of the following version is omitted.

The important features of the formulation needed for such a generalization are that the
structure of the problem be such that (i) the monotone procedures form a complete class
(see Brown, Cohen, Strawderman, 1979), (ii) the Bayes procedures (or the truncated
generalized Bayes procedures) form a complete class (see Brown, Cohen, Strawderman,
1980), and (iii) the risk functions of Bayes procedures are continuous (see Berk, Brown,
and Cohen, 1981b). Here is a formulation which yields these features.

Let X1, Xs, - -+ be independent identically distributed random variables with density py
from a one dimensional regular exponential family having natural parameter space (¢, u).

TABLE 5.1
c b*(c) (c)
0.001 13.53 .089
0.002 9.57 125
0.004 6.76 177
0.006 5.52 217
0.008 4.78 251
0.010 4.28 .280
0.020 3.03 397
0.040 2.14 561
0.060 1.75 .687
0.080 1.51 793

0.100 1.14 .887
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Let 6, € (¢, u) and let
6.1) 0= (4 6) U b, O:= (0, u)U b

by analogy with (2.1).
Let the loss function be

cn if €0,

(6.2) L, (n, 7)) = {cn +w@) if 026

where ¢ > 0 and w(-) is bounded, continuous, and non-increasing (non-decreasing) in 4 for
0 € 9:(6 € O2). Note: Brown and Cohen (1981) does not explicitly apply to a loss function
as general-as (6.2). However, it can be generalized to such loss functions without too much
trouble. Undoubtedly even more general loss functions can be used. In particular, the
boundedness condition imposed on w(-) can certainly be considerably relaxed.

Let A(n), B(n) be defined by

(6.3) A(n) =inf{a!:T € S®(n)}, B(n) =sup{di:I' € S?(4)}
where
(6.4) S®(n) = {I':T is a two point prior, n} =7}.

(The quantities af, bL, 71, etc., are defined by analogy with quantities already described
in Sections 2-4. In particular

(6.5) f Po(nT)w(8)T(d6) =f po(nT)w(O)T(d6).
[CH

O

The set S®(n) appears implicitly in the proof of Theorem 4.3.)

THEOREM 6.1. In the above setting the procedure with stopping boundaries (a., b,)
can be Bayes for prior T" only if

(6.6) m+AmD) <a,<b,<nL+B@L), n=1,....

Consequently a procedure with stopping boundaries (a., b,) is admissible only if there
exists values n,,n =1, - .., such that

(6.7) M+ AM) < an < by <. + B(na).

The proof of the above theorem needs to stray in one respect from the patterns of proof
in Section 4. In general (if the measure dominating p, is not continuous) Bayes procedures
may be randomized. Such procedures are not uniquely determined. Hence one cannot
conclude that af” — af and 5" — bl in the generalization of Lemma 4.2. Instead one
shows that if I'” — I'” and al” — @, and bf" — b, then (a,, b,) are Bayes stopping
boundaries for the prior I'’. This is revealed by the analog of (4.10). (One needs also to pay
attention to the fact that randomization is possible at S, = a, or b,, etc. That possibility
affects, but does not disrupt, the proof.)

Of course, in order for a result like Theorem 6.1 to be ultimately useful, one needs to
study more carefully the nature of A(yn), as was done in Sections 3 and 5 for the normal
problem.

It appears reasonable to presume that Theorem 6.1 could be extended also to certain
non-i.i.d. sequences X, - - - such as those treated in Brown, Cohen, Strawderman (1979),
and Brown, Cohen, Strawderman (1980). The requisite version of result (iii), mentioned
above, has not yet been proved, but it is reasonable to conjecture its validity. In such a
result the boundaries A(-) and B(-) would of course now be functions of both n and 7,.
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