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NATURAL EXPONENTIAL FAMILIES WITH QUADRATIC
VARIANCE FUNCTIONS: STATISTICAL THEORY"

By CARL N. MORRIS

University of Texas

The normal, Poisson, gamma, binomial, negative binomial, and NEF-
GHS distributions are the six univariate natural exponential families (NEF)
with quadratic variance functions (QVF). This sequel to Morris (1982) treats
certain statistical topics that can be handled within this unified NEF-QVF
formulation, including unbiased estimation, Bhattacharyya and Cramer-Rao
lower bounds, conditional distributions and moments, quadratic regression,
conjugate prior distributions, moments of conjugate priors and posterior
distributions, empirical Bayes and G. minimax, marginal distributions and
their moments, parametric empirical Bayes, and characterizations.

1. Introduction. Certain probabilistic properties of univariate natural exponential
families (NEF) having quadratic variance functions (QVF) were developed in Morris
(1982). There are six basic NEF-QVF distributions: normal, Poisson, gamma, binomial,
negative binomial, and the NEF generated by the generalized hyperbolic secant (GHS)
distributions. Affine transformations of these basic distributions generate all other NEF-
QVFs. In addition to introducing and characterizing all NEF-QVFs, these families are
studied in a unified way using the quadratic nature of their variance functions (VF) in
Morris (1982) with respect to their infinite divisibility, moment and cumulant properties,
large deviation behavior, limits in distribution, and their systems of orthogonal polyno-
mials.

This sequel is concerned with NEF-QVF results of a more statistical nature. Section 2
starts by summarizing some basic NEF-QVF properties, with others introduced as needed
later. Section 3 treats unbiased estimation of arbitrary analytic functions, including
moments and cumulants. Cramer-Rao and Bhattacharyya lower bounds for unbiased
estimators arise naturally and easily in this theory, which is based on the NEF-QVF
orthogonal polynomials.

Conditional distributions and quadratic regression, i.e. distributions and moments of X;
given Y = X; + X, with Xj, X, independent NEF-QVF distributions are the subject of
Section 4. The rth conditional moment is shown to be a polynomial of degree r in Y if and
only if the NEF has QVF.

Bayesian analysis with conjugate prior distributions is studied in Section 5. The
conjugate prior distributions are those whose posterior means are linear in the natural
observation. The conjugate prior distribution on the mean of a NEF is a Pearson family if
the NEF has a QVF. The moments of the conjugate prior distribution and of the posterior
distribution of y are easily expressed in terms of the variance function for X. Finally, the
conjugate prior distribution is the minimax choice for NEF-QVF distributions among prior
distributions with specified mean and variance. That is, the statistician who knows only
the first two prior moments can safely use the conjugate prior distribution.
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Section 6 briefly reviews the marginal distributions of X and their moments when X has
a NEF-QVF distribution, given u, and p has a conjugate prior distribution. Formulas for
estimating the moments of the prior distribution from X are developed based on the NEF-
QVF orthogonal polynomials, a useful result in random effects models and parametric
empirical Bayes inference. Distributions arising in Sections 4-6, as conditional distribu-
tions, as conjugate prior distributions, and as marginal distributions, include the normal,
gamma, beta, F, reciprocal gamma, ¢ (as conjugate prior for the NEF-GHS), binomial,
hypergeometric, negative hypergeometric, and negative binomial. Other named exponen-
tial families arise as nonlinear transformations of natural exponential families with quad-
ratic variance functions, including lognormal, Weibull, extreme value, Pareto, and Cauchy
distributions. The exponential, chi squared, Rayleigh, Bernoulli, and geometric distribu-
tions are special cases of the NEF-QVF family. Thus, most well-known univariate distri-
butions are related to the NEF-QVF distributions, as summarized in Table 1.

A form for the Bayes rule is provided in Section 7 for Bayesian situations. This
immediately suggests parametric empirical Bayes estimators, generalizing the James-Stein
(1961) estimator to all NEF-QVF distributions.

In writing this paper, only results that can be proved in general for NEF-QVF
distributions are presented. Many old results are given with new proofs, and some new
ones are included. This paper also assembles known results from scattered sources and
incorporates them here in the NEF-QVF framework.

2. A review of natural exponential families with quadratic variance func-
tions. A parametric family of distributions with natural parameter space ® C R (the
real line) is a natural exponential family (NEF) if random variables X governed by these
distributions satisfy

(2.1) Py(Xe€A) = J exp{xf — y(0)} dF(x),

A

with F a Stieltjes measure on R not depending on 8 € O, the natural parameter, and sets
A C R. The cumulant generating function () gives (2.1) unit probability. The random
variable X is the natural observation. Exponential families that are not NEFs are nonlinear
transformations Y = K(X) of NEFs.

The natural observation X has mean and variance

(2.2) V(0) =p=EsX= J' x dFy(x)

2.3) ¥7(0) = V(p) = Vary(X) =f (x — p)? dFy(x)

and cumulants C.(g) = ¢ (), r =1, 2, « . ... The function V() in (2.3) on its domain £ =
Y’(®) is called the variance function (VF) of the NEF and characterizes the NEF (but no
particular member of the NEF).

In Morris (1982) it is shown that exactly six basic types of NEFs have quadratic
variance functions (QVF)

(2.4) V(u) = vo + vip + vop.

These natural exponential families with quadratic variance functions (NEF-QVF) are
summarized in Table 1 here, and Table 1 of Morris (1982), as (a) the normal, N(y, 0%) with
V() = o® (constant variance function); (b) the Poisson Poiss(\) with u = A, V(u) = p
(linear variance function); (c) the gamma, Gam(r, A), p = rA, V(p) = rA® = p2/r; (d) the
binomial, Bin(r, p), p = rp, V(p) = rpq = —u?/r + p, (g = 1 — p); (e) the negative binomial,
NB(r,p), 0 =p =1,p=rp/q, V(p) = rp/q* = p*/r + p, (¢ = 1 — p); and (f) the NEF
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generated by the generalized hyperbolic secant (GHS) distribution, NEF-GHS, with V(p)
= u?/r + r, r > 0. The NEF-GHS is a family of continuous distributions with support
—00 < x < o and Y(#) = —log cos(f).

The six basic types of distributions can be extended by convolutions and location and
scale changes all of which preserve both the NEF and the QVF properties, as follows. Let
Xi, -+, Xy be iid (independent, identically distributed) as a NEF-QVF distribution. Then
X* = ¥(X, — b)/c has a NEF-QVF distribution with mean p* = n(u — )/c and variance
function Var(X*) = V*(p*) = v§ + viu* + v¥(p*)? with

(2.5) v =nV(b)/c? vf = V'(b)/ec, v¥ = vy/n.
The discriminant of V() is
(2.6) d = v? — 4vov,.

Then d*, the discriminant of V* is d* = d/c® which is unchanged by convolution and
translation. Formula (2.5) also holds for all real n > 0 when the NEF-QVF distribution is
infinitely divisible, i.e. for all but the binomial cases.

Each of the six NEF-QVF families has up to four parameters, being the location (b),
scale (c), convolution (n) (including division), and exponential (1) parameters. The normal
family has but two parameters because the exponential and convolution parameters also
serve as the location and scale parameters. The Poisson family has three parameters
because p also is the convolution parameter. The gamma family has three parameters
because p also is the scale parameter. Affine transformations of the usual binomial,
negative binomial, and NEF-GHS families of distributions are properly four parameter
families.

3. Unbiased estimation theory. Every analytic function g(u) has a unique uniform
minimum variance unbiased estimator (UMVUE) g(X) if X ~ NEF-QVF and if (3.7) is
finite, Seth (1949), and Abbey and David (1970), except in the binomial (n, p) case
when this holds only if g(p) is a polynomial of degree not exceeding n. Let f(x, 6)
= exp(x 6 — Y(8)) be the NEF-QVF density and define

d™f(x, 8
@31 Pola, ) = vmm){—g,,,—)} / )
M
form=0,1,2, ... (in the binomial (n, p) case, P, = 0 for m > n). Define a; = by = 1 and
Qm, by for m = 1 by
(3.2) an=m!'T[" (1 + ivy) = m! b,,.

Then from Morris (1982a),
{POy (x’”‘) = lyPI(x’M) =x—”‘9 "'}

is a complete set of orthogonal polynomials, P, of degree m in both x and . We have

(3.3) E,Pn(X, W)Pr(X, p) = 8mna@n V™ (1)
with 8 the Kronecker delta and
(3.4) E,Pn(X, o) = bm(p — po)™.

Formula (3.3) shows the orthogonality of the polynomials, that all but P, have mean 0,
and their variances are a,V™(u). Formula (3.4) yields the expectation of P,, under the
“wrong” distribution and is the basis for constructing unbiased estimators, as follows. More
about these polynomials is available in Morris (1982, Section 8).

THEOREM 3.1. Let g(u) be an analytic function of p € Q and choose o in the interior
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of Q so that
(3.5) g(w) = X§ ci(p — po)'/i!

with c;= g9 (o) the ith derivative at . Assume (3.7) is finite. Then the unique unbiased
estimator of g(u) is

(3.6) £(X) =30 ciPiX, wo)/ai.

(Different choices of po € Q lead to different representations in (3.6) but always to the
same g). Also,

37 Var,{£X)} = {g'(WY’V(w) + {g" (WY’ VA(w)/{2(0 + v2)} + 35 (g (W) V'(w)/a.

Proor. (3.6) is unbiased for (3.5) because of (3.4) and the definition (3.2) of b;.
Uniqueness follows because the exponential families are complete. The variance of (3.6)
when p = o is, from (3.3),

Var, {8(X)} = 37 ¢}V () /a;
and since this holds for all yo we have (3.7).0

The first term on the rhs (right hand side) of (3.7) is the Cramer-Rao lower bound for
the variance of an unbiased estimator. The sum of the first % terms of the rhs of (3.7) is the
kth Bhattacharyya bound, also a lower bound for the variance of an unbiased estimator.
Clearly, the kth bound is attained in NEF-QVF distributions if and only if g(y) is a
polynomial of degree at most £, if and only if the UMVUE g(x) is a polynomial of degree
k. Fend (1959) and Rao (1952) showed this last result. Formulas (3.1), (3.6), (3.7) are not
new. Seth (1949) used this system of polynomials to get £(X) in (3.6) from g(u). Abbey and
David (1970) and Blight and Rao (1974) developed the expression (3.7) for the variance
and the Bhattacharyya bounds for these families, and Shanbag (1972) also characterized
the Bhattacharyya bounds in NEF-QVF cases. Patil and Shorrock (1965) prove that for
general exponential families the first two Bhattacharyya bounds are identical if and only
if g(u) is linear. For NEF-QVF families this follows easily from (3.7) because g” (1) = 0 is
equivalent to g(u) being linear. Guoying and Ping (1981) have made recent contributions
to existence of the UMVUE and the Cramer-Rao and Bhattacharyya bounds for NEF-
QVF distributions using the polynomial system (3.1).

Certain unbiased estimators are worth noting especially. Let X ~ NEF-QVF(u, V(u)).
Theorem 3.2 deals with unbiased estimation of the variance function V().

THEOREM 3.2. Define V*(X) = V(X)/bs, and let ¢ = 2v,(2 + 3v;)/bs, and note b3/bs
=1/(1 + ¢). Recall d = v} — 4vov:. Then V*(X) is the UMVUE of V(u),

(3.8) E V*X) = V(u) forallp.

(3.9) Var,(V*(X)) = ¢V3(u) + dV(p).

An unbiased estimate of (3.9) is given inside the brackets of (3.10),
L *2 ; * = *

(3.10) Eﬂ{l_'_cV (X)+1+ch (X)} Var, {V*(X)}.

Proor. We have EV(X) = V(u) + veVar(X) = (1 + v2)V(u), proving (3.8). The
variance of the quadratic function V*(X) is then given by the first two terms of (3.7) with
&(u) = V(u), and so equals (V')2V + (202)*V?/2b,, suppressing the argument pin Vand V".
Since (V')? = 40,V + d, (3.9) follows. It follows easily from (3.8) and (3.9) that

(3.11) E {(V*X) - dV*(X)}/(1 + ¢) = V*(n),
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and then (3.10) follows by using (3.8), (3.11) to determine the unique unbiased estimator
of (3.9).0

The third and fourth cumulants, polynomials of degree 3 and 4, Cs(u) = V’(p) V(r) and
Ci(p) = 6v2V*(w) + dV(p) in NEF-QVF distributions also have UMVUESs, easily deter-
mined by the relations

(3.12) EC3(X) = bsCs(p)
(3.13) ECy(X) = bsCa(p) + dv2b2V(u).

These can be proven directly by expanding C.(X) around X = p in a Taylor series of order
r. A quicker proof for (3.13) uses (3.11) and (3.8) to construct the UMVUE for the rhs of
(3.13), with C4(p) = 6v,V*(n) + dV(p), and then shows this UMVUE simplifies to C4(X).

Central moments M,(n) = E(X — )" also have UMVUEs. That already is established
in (3.8) and (3.12) for Ma(p) = V(u), Ms(n) = Cs(u), but we also have

(3.14) E[(%U-z) (8V¥(X) — 2dV(X)}:| = M,(p).
4

This expression follows from writing Ms(p) = (3 + 6v2) Vi(n) + dV(un), Morris (1982,

Section 7) and using (3.11) and (3.8).

As an application of these ideas, let p = X ~ (1/n)Bin(n, p) with n = 4, ie. p ~
NEF(p, V(p) =pg/n),q=1—p. We have u =p, vo= —1/n,d = 1/n? c = —(4 — 6/n)/
(n— 1) and 1/(1 + ¢) = b3/b, = n(n — 1)/(n — 2)(n — 3). Then the UMVUE of pg/n is
V*(p) = p§/(n — 1), with variance cp’q®/n* + pq/n® from (3.9) which has UMVUE given
by (3.10),

Pg o 2n—4 ]| _ . A
(3.15) Eu[m{l —4pq —(n—_—l)—z)PQ}] = Var, {V*(p)}.

Many other examples of unbiased estimators are possible of course. For example g(u)
= (p — po)™ has UMVUE g(X) = P,(X, po)/b» from (3.6). Then using (3.7) or Morris
(1982, formula (8.7)), this estimator has variance

(3.16) Var,g(X) = m! V™(u) Yo" <m> &

T
with 8 = (1 — o)/ V(p).

4. Conditional distributions. Let X; and X, have independent NEF-QVF distribu-
tions, X, having density

(4.1) exp {0x, — viy(9)}

so that X, ~ NEF-QVF(v.u, »,V(p)) where p = ¢'(8), V() = ¢”(6), and »; > 0 is known.
This is only a notational generalization of the earlier model when »; # 1. We call », the
“convolution parameter” because when »; is an integer in (4.1) X; has the density of the
convolution of » NEF-QVF(u, V(p)) variates. More generally (4.1) makes sense for any
positive »; if the NEF is infinitely divisible (among QVF distributions, only the binomial is
not infinitely divisible). We must remember that ,(0) = »:(8), w; = vip and Vi(w) =
v:V(w./v;) are the CGF, mean, and VF in the previous notation, requiring slight adjustments
when applying earlier NEF results to (4.1).
Let X, X, be independent, X, having density (4.1), and define in this section

(4.2) Y=Xi+X,, v=Ewn+r, mwm=v/v,
with Y a complete sufficient statistic for p, Y ~ NEF (s, »V(u)) also having density of the
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form (4.1). For all NEFs, the conditional distribution of X; given Y is independent of the
parameter u, and

(43) EXl I Y= 771Y.

This is most easily proved by appeal to the following lemma, which will be used repeatedly
in this section.

LeEMMA 4.1. Let S be a complete sufficient statistic (css) for a parameter . Let T be
a statistic with mean ET = g(p). Then ET|S = §(S) is that unique function of S which
is unbiased for g(n), EZ(S) = g(u) (given by (3.6) for NEF-QVF distributors).

ProoF oF LEMMA. ET|S is an unbiased estimate of g(u), depending only on S. By
completeness, it must equal g(S). 0

Formula (4.3) now follows from Lemma 4.1 because both sides of the equation have the

same expectation »; V(y), and Y is a css for p.
If the NEF also has QVF, Var(X;) = »,V(u), we have

U2 v

(4.4) Var(X;|Y) = 22 V<Z>.
v+

This follows by showing when V is quadratic that EX}|Y = (mY)? + (mre/(v + v3))-
V(Y/v), which is done by checking that both sides have the same expectation EX? =
»V(w) + »iu? and then applying Lemma 4.1.

Moreover, if we have Var(X; | Y) = Q(Y) with quadratic @(y) = g2y + g1y + qo, then
Var(X;) = »V(p) also must equal EQ(Y) + Var(mY) = Qwu) + g2rV(n) + 7 Vi),
making V(p) quadratic. Thus, a necessary and sufficient condition within NEF distribu-
tions that the conditional variance (4.4) be quadratic in Y is that X, have one of the six
NEF-QVF distributions. Bolger and Harkness (1965) proved this result without the NEF
assumption, in which case a seventh distribution, the Cauchy, also was shown to have a
similar property.

Tweedie (1946) characterized those distributions for which ES?| X is quadratic in X, S?
the sample variance Y7 (X; — X)?/(n — 1) of n iid observations X, - - -, X,, as being the six
NEF-QVF families or the Cauchy family.

In Tweedie’s case, iid NEF-QVF(u, V(p)) distributions for X; yield

(4.5) ES*| X =nV(X)/(n + v2),

which is proved by checking that the rhs of (4.5) has mean V(u) = ES? and using Lemma
4.1. On the other hand, if ES®| X is quadratic in X then it follows that Var(X;| X) also is
quadratic in X and, by the remarks of the paragraph following (4.4), that the NEF is one
of the six QVF families. This proves Tweedie’s result.

Note that ES?| X always is a non-constant function of X for NEFs unless the {Xi} are
normal. Since every distribution with a MGF belongs to a NEF, we have another proof
that S? is statistically independent of X only for the normal distribution.

Laha and Lukacs (1960) showed Tweedie’s result holds when S? is replaced by a more
general quadratic function. Their result is extended to monomials of degree r = 2 as
follows.

THEOREM 4.1. Let X, X, have independent NEF densities (4.1) with v;, vo > 0. Then
V() is quadratic if and only if E(X7|Y) is a polynomial of degree r in Y = X; + X, for
allr=1,2,3, -...

Proor. If V(u) is a QVF then for any r = 1, 2, ... EX} is a polynomial of degree r in
., c.f. Morris (1982, Section 7). The unbiased estimator H.(Y) of EX’, is a polynomial of
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degree r in Y, given by Theorem 3.1. Now, completeness of Y guarantees that H.(Y) =
EX'1|Y.

To prove the converse, assume @(Y) = EX?%| Y is quadratic with leading coefficient g.
Then EX3 = »3u® + » V(u) also equals EQ(Y) = Q(vp) + g2vV(u), or equivalently:

(n — qv)V(p) = Qo) — vip®.

Thus, either V(u) is quadratic or »; = gqv. If the latter, @(vp) = viu? so Q(Y) = n3Y* =
(EX; | Y)2 This means Var(X;| Y) = 0, or equivalently », = 0, a contradiction. 0

Lemma 4.1 can be used to prove many other conditional expectation formulas. For
example, let X; and X5 in (4.1) have NEF-QVF distributions and r = 0 be an integer. Let
P,(Xi, ripo) be the rth orthogonal polynomial with EX; = »ip0 and let P (Y, vuo) be the
corresponding polynomial for the distribution Y = X; + X; in (4.2). Then

b,
(4.6) EP.(Xi, mpo) | Y = W;b_:Pr(Yy Y o).

Here we must redefine b, = [[57! (1 + ivy/r1) and b = [[67! (1 + ive/») in adjusting (3.2)
to account for »; # 1, v # 1. Formula (4.6) follows easily from Lemma 4.1 and (3.4), which
states that both sides of (4.6) have expectation b, (vip — vipo)”. -

Formula (4.6) gives an explicit method for applying the Rao-Blackwell theorem to
£(X), ie. for computing the UMVUE Eg(X;) |7, if g(X1) can be expressed as Y ¢ ¢, P, (X;,
vipo) for some po.

Finally, let X;, X; be independent with X; ~ NEF-QVF (v;u, », V(1)) as in (4.1) and Y
= X, + X;. The conditional distributions are: (a) normal case, X; ~ N(vin, »; V), X1| Y ~
N(mY, mmvV); (b) Poisson case, X; ~ Poiss(v,u), X1| Y ~ Bin(Y, m); (c) gamma case, X;
~ Gam(v;, p), X1| Y ~ Y . Beta(v1, v2); (d) binomial case, X; ~ Bin(v,, p), p = p, X;| Y ~
HG(Y, m; »), the hypergeometric distribution with density (3})(}*- »)/(;) on x; = 0,
1, .-+, y; and (e)negative binomial case, X; ~ NB(»,, p), n = p/(1 — p), X:| Y ~ NHG(Y,
a1; v), the negative hypergeometric (NHG) distribution on x; =0, 1, ..., Y with density
when Y = y:

(4 7) Yy F(V)F(xl + lll)F(y —x + 1,2)
' = I'(y + »I()I(22)

This is also the marginal density of X; if X;|p ~ Bin(y, p) and p ~ Beta(»,, v2), and so (4.7)
also has been called the “beta-binomial distribution”. The conditional distribution of X;
given X; + X, when X, has a NEF-GHS (v;p, »; (1 + u?)) density is unnamed and apparently
has not been considered.

These distributional results are summarized in Table 1. The means and variances of
these distributions are given by (4.3) and (4.4).

5. Conjugate prior and posterior distributions. The sample mean X of n iid
NEF(u, V(u)) distributions has a NEF (u, V(u)/n) density

(5.1) exp{nxf — ny(6)}.

Let po € ©, the mean space, and m > 0. The conjugate prior distribution on § mimics (5.1),
being

(5.2) £*(0) = K exp{myo0 — my(6)}

with K = K(m, po) chosen to make [ ¢g*(d) df = 1. Here g*(0) is a two parameter family
of densities for # having a NEF with natural parameter uo, convolution parameter m > 0,
m not necessarily an integer, even in the binomial case, and CGF = —log K(m, po). We
think of (5.2) as a distribution on p = y’(6), and not on . This usually is a non-linear
transformation of the NEF for 6 and therefore is an exponential family that is not a NEF,
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except in the case of the normal distribution. The density of u on © with respect to du is
(5.3) &) = K exp{muof(n) — my(0(u)} V" (u)

with 6(u) denoting the inverse function of u = y’(6). Jackson et al. (1970) note that (5.3) is
a Pearson family in y when X, has a NEF-QVF distribution. This is shown in Theorem 5.1.
The converse also may be true, but is unproven. Then an expectation identity for these
prior distributions is proven in Theorem 5.2.

THEOREM 5.1. The densities (5.3) form a Pearson family on p. if V(1) is quadratic.

Proor.. —log g(p) has derivative {m(u — po) + V'(u)}/V(n). This is the ratio of a
linear to a quadratic function of p, Pearson’s condition, Kendall and Stuart (1963), if Vin)
is quadratic. 0

THEOREM 5.2. Let h(p) have continuous derivative h'(u) on Q@ and be such that
Eh(u)(u — po) exists when p has density (5.3). Assume at the end points of @ = (a, b), a
and/or b possibly infinite, that lim h(p) V(w)g(w) = 0 as p — a or b. Then

1
(5.4) E(p — po)h(p) = — ER (WV(p).

Proor. We use integration by parts to write
b

b
f R (W V(g p du =f V(wg(u) dh(p) = h(b)V(b)g(d) — h(a)V(a)g(a)

a

b
- J’ AWV (We ) = {m(p—po) + V'(1))g ()] du

=mE(p — po)h(p).0

The endpoint condition for Theorem (5.2) holds for all NEF-QVF distributions whenever
Eh(u)(n — po) exists. Define M, = E(u — po) forr=20,1,2, -.. .

THEOREM 5.3. Forr =1 and V(u) quadratic, My =1, M; = 0 and

r

(5.5) M= {(V(po) M, + V(o) M1}

m — roy

ProoF. Let A(u) = (n — po)” in (5.4) and write V(u) = V(uo) + (= po) V(o) +
Uz(,lL —/1.0)2. Then (5.4) giVeSMr+l = (l/m)V(,U«O)rM -1+ (l/m)rV'(uo)Mr+ (l/m)verr+1-
We show M; = 0 by choosing A(u) = 1in (5.4). 0

The expectations in Theorem 5.3 may not always exist. We have K > 0 in (5.3) whenever
m > 0 and y, is an interior point of & and Ep also always exists under these conditions. For
r =2, M, exists if and only if r satisfies (r — 1)v. < m. This holds for all » = 2 when v, < 0,
but not always for the reciprocal gamma, F, and ¢ priors of the three distributions with v,
> 0.

. The central moments of the conjugate prior can be characterized in terms of the
quadratic variance function V(p) of the sampling distribution X by using (5.5). The first
four are given below, defining ¢, = [[{™' (m — ivy) for r = 2, eg. cs = m — vy, c3 =
(m — v2)(m — 2v,).

(5.6) Ep=po, M= Var(n) = V(po)/ce
(5.7) M;=E(n—po)’ =2V (o) V(po)/cs
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(5.8) My =E(n—po)* = {3(m + 6v2) V(o) + 6dV (o)} /cs.

The first three cumulants of p are simple multiples of the first three cumulants of X at
= po, but that doesn’t hold up for the fourth cumulant, M, — 3M3, as can be checked by
calculating it when m = 1 from (5.8) and (5.6) and comparing with the fourth cumulant
Ci(p) = 6V V*(p) + dV(u) of a NEF-QVF.

Formulas (5.5) — (5.8) can be used to determine central moments of the Beta(mpo,
m (1 — o)) distribution because it is the conjugate prior to the Bernoulli distribution with
V(ip)=p(l-p),d=1,vs=-1landc, = (I/m)(m +r—1)" -~V

The conjugate prior distributions (5.3) on p for the six NEF-QVF cases have two
parameters, equivalent to the mean po and variance V(uo)/cs. These prior distributions on
w are: (a) normal if X is normal; (b) gamma if X is Poisson; (c) reciprocal gamma (the
distribution of 1 divided by a gamma) if X is gamma; (d) beta if X is binomial; (e) F (the
ratio of independent gammas) if X is negative binomial (because if p has a beta distribution
then p = p/q is the ratio of gammas). The NEF-GHS distribution has conjugate prior
density

(5.9) g(w) = K exp{mpotan=(u)} (1 + p2)~m+2/2,

This is a scaled Student’s #..: density when gy = 0. Thus the t-distribution, and the
Cauchy as m — 0, arise as prior distributions conjugate to the NEF-GHS family. Table 1
summarizes these statements.

Now let X have a NEF-QVF density (5.1) and p have the conjugate prior density (5.3).
Then the posterior density has the same form as (5.3),

(5.10) &o(p) = Koexp{Nxo6(n) — Ny(8(u))} V™' (),

with N =n + m, and x = (nx + mpo)/(n + m) the weighted average of the sample and a
priori means. Formulas (5.4)-(5.8) also hold for the posterior distribution (5.10) by
substituting N and xo for m and y,. Thus x, is the posterior mean

(5.11) Ep|X=x)=x=(1-B)x+ Bu
with B a shrinking factor,

2
(5.12) _EV(/n . m Vigo) + verd

" Var(X) “m+n Vo) + (n + v2)75’

and 7§ = Var(u) = V(uo)/c: from (5.6). All but the last equality in (5.12) hold for any NEF,
but that depends on QVF. It follows because for quadratic functions V(¢), EV(y) = V(Ep)
+ v2Var(u) = V(uo) + v27f and so Var(X) = E Var(X|p) + Var(EX|p) = EV(u)/n +
Var(u) = V(wo)/n + (1 + vy/n)r3.0

Ericson (1969) notes that (5.11) holds in NEFs with B given by the first equality in
(6.12), where Var(X) = EV(u)/n + Var(u). Diaconis and Ylvisaker (1979) characterize
conjugate priors in NEF's as those having the linear property in (5.11).

THEOREM 54. Let M} = E(u — x0)"| X be the rth central moment of p given X,
assuming X given u has the NEF-QVF distribution (5.1) and p has the conjugate prior
distribution (5.3). Let N = m + n and x, be given by (5.11). Then M* = 1, M{ =0, and for
r= ]_’ 2’ ese ’

r

.13 M}, =
(5.13) ! N — rve

(V' (x0) M} + V(xo) M, ).

so that in special cases

(5.14) M3 = Var(u|X = x) = (l—B)E{M|X=x} = V=)
n N-uv
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and

. iy 2V (%) V(x)
(5.15) Ms = E{(p— %) | X =x} = 5 — 855

Proor. Because the posterior density (5.10) has the same form as the prior density
(5.3), this result follows immediately from Theorem 5.3. 00

Note that the squared posterior skewness of u given x is

4V — ”2)2 {4v; + d/V(x0)},

2 =
(516) _ Ya(Xo) = (N — 202)

being proportional to the squared skewness of X given p computed at u = xo, {4v; +
d/V(wo)}/n. When n/N and (N — v;)/N are nearly unity, as with large samples, the
posterior skewness of y is approximately double the skewness of the sample mean.

Duan (1979) showed that M+ is a polynomial of degree r in X when X has a NEF-QVF
distribution given u. Formula (5.13) also proves that result. Duan does this to show for
NEF-QVF distributions that the monomials {u* 2 =0, 1, 2, -- .} form a “fan sequence”,
i.e. a basis of functions with subspaces invariant under the operator E,E* with respect to
conjugate prior distributions. He uses this and data from repeated problems to test that a
specified prior distribution is appropriate.

We close this section by considering a little known but important robustness property
of conjugate prior distributions. For a NEF-QVF distribution, let I, be the class of all
prior distributions on u with specified mean o and variance 75 = V(uo)/(m — v2). The
parameters po, m for the conjugate prior distribution are equivalent to o, 7. Let m € Il
be the conjugate prior on p with these two moments.

DEFINITION. An estimator ¢(x) of u is said to be empirical Bayes minimax for squared
error loss with respect to I, (Morris, 1983), or G2 minimax (Jackson, et al. 1970), if it is
minimax with respect to the risk function r(r, t) = E,(¢(X) — p)% This is a double
expectation, X given p random and p distributed according to 7 € I,.

Denote the Bayes estimator with respect to 7 € Ilp by ¢, (x) = E,u| X = x, the posterior
mean, ¢, (x) being the linear estimator (5.11). Jackson, et al. (1970) prove the following
theorem.

THEOREM 5.5. Let X have a NEF-QVF (u, V(u)/n) distribution. Then the conjugate
prior m € Il is G, minimax; equivalently t, is empirical Bayes minimax with respect to
I1, and squared error loss. That is

(5.17) r(m, tw)=ro = r(m, tr) =< r(m, t)

for every estimator t and for all = € I,.

Proor. First compute r(m, ¢,)
=E, {(1-B)X+ Buo—p}*=(1-B)’E,V()/n + B’E, (p — jw)*
= (1 = B)*{(V(uo) + w273} /n + B}
= (1= B){V(w) + wri}/n=ro

with B given by (5.12) and 7§ = V(u)/(m — vz). Observe that r, is independent of 7. The
inequality in (5.17) holds because ¢, is the Bayes rule for m, and is strict if ¢ # ¢, . O

Theorem 5.5 justifies using the conjugate prior in Bayes and empirical Bayes practice
when one has little knowledge of the distribution of y beyond its first two moments. In
that case choosing 7 # 7, can be risky because the statistician thinks his risk is (7, t,) <
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ro but it may actually be r(7*, ¢,) > ro if some other 7* € I, obtains. Only the conjugate
prior avoids this hazard.

The concept of empirical Bayes minimax is mentioned here with G, minimax because
it is part of a general approach to empirical Bayes inference (Morris, 1983).

6. Marginal distributions arising from conjugate prior distributions. We con-
sider here the marginal moments and distributions of X when X|p ~ NEF-QVF(y,
V(u)/n) with density (5.1) given p and u ~ CP (uo, V(to)/(m — v2)), the conjugate prior
density with mean o, variance 7§ = V(uo)/(m — vz), and density (5.3).

The NEF-QVF orthogonal polynomials are P, (X, wo) at wo. In this context, one must be
careful to use V(u)/n, not V(u) for the variance function in the polynomials, Morris (1982,

Section 8), and we continue to define b, = 7§ ' (1 + ive/n) when n # 1, and a, = r'b,. Let
M, denote the rth central moment of u, determined by Theorem 5.3.

THEOREM 6.1. With E denoting expectation over the marginal distribution of X,
6.1) EP,(X, o) = b.M,.

Thus EX = po and

|4 m+n
sz(% =___(,llo) .
n m-—u:

(6.2) Var(X) = E(X — uo)? = @ +

Proor. E{EP.(X, o) |u} = b, E(u — po)” via (3.4), proving (6.1). Then (6.2) follows
because by M, = by7§ = EP; (X, o)

=E{(X —po)®— V'(po)(X — po)/n — V(no)/n}
= Var(X) — V(uo)/n.O0

Higher central moments of X can be developed with some difficulty by expressing
(X — o) " in terms of the orthogonal polynomials, and applying (6.1). Eg., it can be checked
that

(6.3) (X — po)® = Ps(X, po) + 3V’ (o) P2 (X, po)/n
+ {3+ 602) V(o) /n + d}(X — po)/n + V' (o) V(o) /n*
so the third marginal moment is

(6.4) E(X — po)® = bsMs + 3V (o) b2Ma/n + V' (o) V (o) /0

= V' (10) V (so) (& 430, iz) .
C3 ncs n

The marginal distributions of X are: (a) N(uo, V/n + r8) for X|u ~ N(u, V/n) and p ~
N (wo, 76); (b) (1/n)NB (m, nuo/(m + npo)) for X|pu ~ (1/n) Poiss(np) and p ~ Gam(m,
po/m); (€) (wom/(m + 1))Fonom+2 for X|p ~ Gam(n, p/n) and p ~ pom/Gam(m + 1, 1);
(d)(1/n)NHG((n, o; m) if X |p ~ 1/n Bin(n, p) and p ~ Beta(mpo, m(1 — po)); and (e) the
beta-Pascal distribution 1/n BPasc(n, po = muo/(muo + m + 1); m) with mean o and
variance ((io + u§)/n)(m + n)/(m — 1) for Y = nX on the integers Y=0,1,2,3, --- if X|
~ (1/n) NB(n,p = p/(1 + p)) and p ~ po(m/(m + 1)) Famp, 2m+2 (p ~ Beta(muo, m + 1)).
The NEF-GHS marginal distribution, based on its conjugate prior, seems not to have been
considered. These results are contained in Table 1.

7. Parametric empirical Bayes estimation for NEF-QVF distributions.
Suppose the estimation problem of Section 5 is repeated % times, the statistician observing
k independent sufficient statistics X,, each a sample mean computed from n observations,
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with NEF-QVF distributions

ind .
(7.1) X,|p: ~ NEF(u, V(w)/n), i=1,.-- k.
The %k parameters i, ---, px may differ, but independently follow the same conjugate
prior distribution
ind 2 .
(7.2) pi ~ CPpo, 0= V(m)/(m—uv2)), i=1,--,k

with first two moments (1o, 75) and density (5.3). Thus the % random pairs (X,, u,) are
independent and exchangeable. Were (uo, #5) known, the posterior mean (5.11) would
provide good point estimates for the ., at least for squared error loss function. It they are
unknown, we may proceed as follows.

Let X =Y X,/k and S = ¥} (X, — X)? be the mean and the sum of squares between the
k groups.

THEOREM 7.1. With (X,, w;) distributed as in (7.1), (7.2) then

(7.3) Ew|X,=(1 - B)X;+ BEX
with
ve k-1 n VX)) k-1
. B= E
(7.4) n+uv k n+ vy { n } ES”’

where B is defined in (5.12) and E in (7.3), (7.4) involves marginal distributions.

ProoF. Note that

EV(X,) =E{EV(X,) |} = E{v2Var(Xi|w) + V(w)} = (l—:lg + 1>EV(,u,»),

and hence we can find an unbiased estimate of EV (u,) by averaging the V(X,). However
(1/R) ¥ V(Xi) = v2S/k + V(X). Thus E{v:S/k + V(X)} = ((v2/n) + 1)EV(1;) and it
follows that
EV(w)/n _ E{nS/k+ V(X)}/(n + vs)

Var(X,) ES/(k—1) ’

the shrinking factor defined in (5.12), simplifies to (7.4). O

B=

Formulas (7.3) and (7.4) strongly suggest parametric empirical Bayes (PEB) estimators
when (uo, 7%) are unknown and % = 4. If

(7.5) EV(X)(k —1)/ES = EV(X)(k — 3)/8,

one can remove expectations from (7.3), (7.4) to approximate the posterior mean by ji,
defined by

(7.6) Ew|X,=p.=(1-B)X,+ BX.
Here we take
k-1 no 4
) B=_" + B
(7.7 n+uv k n+ v 78

with Bs = (£ — 3)V(X)/ nS, the naive extension of the James-Stein shrinking factor.

DiscussioNn.

1. Formula (7.6) is the James-Stein estimator (1961) if X; is normal.
2. Non-normal empirical linear Bayes rules were discussed in general by Efron-Morris
(1973, Section 9) and by Robbins (1982) for distributions with quadratic variance functions.
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3. The difference B — B,s ordinarily has the sign of v; and diminishes as 1/n. Thus,
relative to E, Bs overshrinks in the binomial case (v2 = —1), undershrinks (is conservative)
by about 1/n in the gamma, negative binomial and NEF-GHS cases (vs = 1), and is correct
for the Poisson case (v, = 0). For Poisson estimation,

B = (k- 3)X/nS.

4. Note we use Bys by taking o® to be V(X) in the James-Stein coefficient, which is
independent of i, even though Var(X,|w.) = V(u;)/n actually depends on i{. However, most
applications have unequal sample sizes n, for each component. Those more difficult
problems can be treated in a manner analogous to Theorem 7.1 by using the results of
Theorem 6.1 to estimate (5.12),

B, = {V(uo) + v278}/{ V(o) + (n + v2)78}.

5. The approximation (7.5) will improve as either n or % increases, either justifying the
normal theory independence of X, S or making X degenerate at .

6. The approximation (¢ — 1)/ES = E (k — 3)/S used in (7.5) is exact in the normal case
when S has a Chi squared distribution. Of course it is terrible for discrete distributions, for
then P(S = 0) > 0, but since B < 1, one should force B < 1, and with this modification
(7.6), (7.7) will be much better behaved.

8. Concluding remarks. The references to this paper indicate a scattered, somewhat
redundant and disconnected literature concerning the NEF-QVF distributions. Because of
this scatteredness, some authors understandably were unaware of related work. To help
cure this deficiency, and possibly similar deficiencies in this paper, I encourage readers to
forward any further missing references to me.

Several results in Morris (1982) appeared earlier without citations. The results (7.2),
(7.3) page 74 there about the relation of moments to lower order moments and cumulants
appear in Kendall and Stuart (1963, Exercise 3.9). A statement page 77 about the Pollaczek
polynomials should have noted that they were defined for the full NEF-GHS family
(Szego, 1975, page 395). Seth (1949, Section 5) discussed the family of NEF-QVF orthogonal
polynomials.

An important paper extending the theory here is that of Nelder and Wedderburn (1972)
who introduce the variance function and use it in exponential families to find algorithms
for maximum likelihood estimation of NEF linear regression parameters. Also see Wed-
derburn’s (1974) further development of that theory.
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