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SMOOTHING COUNTING PROCESS INTENSITIES
BY MEANS OF KERNEL FUNCTIONS

By HENRIK RAMLAU-HANSEN
University of Copenhagen

The kernel function method developed during the last twenty-five years
to estimate a probability density function essentially is a way of smoothing
the empirical distribution function. This paper shows how one can generalize
this method to estimate counting process intensities using kernel functions to
smooth the nonparametric Nelson estimator for the cumulative intensity. The
properties of the estimator for the intensity itself are investigated, and uniform
consistency and asymptotic normality are proved. We also give an illustrative
numerical example.

1. Introduction. Let X, ..., X, be independent identically distributed random
variables with a density f and a distribution function F. The corresponding empirical
distribution function is F(t) = (1/n) ¥i=1 I(X, < t), where I(A) denotes the indicator of the
event A. Rosenblatt (1956) suggested that one might estimate the density by

o 1 (" t—s
(1.1) f(t) = 3 j_ ) K(T) dF(s),

where K is a function with integral 1, called the kernel function, and b is a positive
parameter (the window). For a review of existing theory of density estimation by kernel
functions, see Bean and Tsokos (1980).

In the present paper we focus on the distributional intensity instead of on the density
function. Assume therefore that F'is concentrated on [0, [, and let the intensity or hazard
function be a(t) = f(¢)/{1 — F(t)} for t = 0 where F(¢) < 1. Watson and Leadbetter (1964a,
b) studied a kernel estimator for the intensity, given by

(1.2) a(t) = (1/b) Yiei K((t — X»)/b)/(n — i + 1),
where X(1), X, + -+ denote the ordered observations. If we introduce N(¢) = nF(t) and
Y(¢) = n — N(t—), then (1.2) may be rewritten as
(13) a0 =+ [ &(£=2) dgos),
b J, b

where ,é(t) = [6 1/Y(s) dN(s) is the nonparametric estimator for the cumulative intensity
function B(¢) = [§ a(s) ds introduced by Nelson (1972) and generalized by Aalen (1978),
and it is seen that (1.3) essentially is a way of smoothing the increments in ,é( -). Recently
the estimator (1.3) has also been studied by Rice and Rosenblatt (1976) and Yandell
(1981).

In studies of the estimation of densities or intensities by means of kernel functions,
most authors have considered the situation of i.i.d. observations. In real life situations in
actuarial science, epidemiology, criminology, survival studies, demography, and other fields
the observations are often heavily and individually censored, and the theory for the i.i.d.
case does not apply. These applications may be further complicated by the existence of
several observations for each individual when each life history is modeled as a stochastic
process, perhaps as a Markov chain. By applying multiplicative counting processes and
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stochastic integrals, Aalen (1978) has recently demonstrated how it is possible to model
such situations and develop nonparametric estimators for certain cumulative intensities.
The purpose of the present paper is to use kernel functions to smooth the estimator for the
cumulative intensity to obtain an estimator of the intensity itself in the multiplicative
intensity model. The smoothing method thus developed may then be applied to estimate
the hazard rate in survival analysis and to estimate the transition intensities in Markov
chain models under very general types of censoring.

In Section 2, we briefly review some general counting process theory as a basis for the
multiplicative intensity model, and in Section 3, the generalized kernel estimator for the
counting process intensity is defined, and its mean and variance are studied. Uniform
consistency and asymptotic normality are proved in Section 4, and Section 5 contains an
illustrative numerical example, which shows that the new estimator has considerable
practical interest. '

In a companion paper we plan to report how a risk function may be used to choose a
kernel function and a window. In this paper we assume that the kernel function and the
window are given, and that the window tends to 0 when the number of observations tends
to infinity.

2. Counting processes. In some fields of science, data frequently consists of counts
of the number of transitions between different statuses, such as the number of deaths or
failures, the number of disablements or recoveries, or more generally the number of
transitions between two states in a Markov chain. The counts may be subject to various
kinds of censoring. Even under very general censoring patterns, the number of such
transitions observed may be described as a counting process. We will set the scene for our
new developments by briefly recounting some elements of the theory of one-dimensional
counting processes. When transitions of several types are analysed simultaneously, the
theory of multivariate counting processes is the appropriate tool, and the reader is referred
to Aalen (1978) and Gill (1980).

Let (2, F, P) be a probability space and let {F,, ¢ € [0, 1]} be an increasing, right-
continuous family of sub-sigma algebras of F.

We take F, to represent the information collected during the period [0, t]. A counting
process N is a stochastic process on [0, 1], adapted to {F:.}, where each sample path is a
right-continuous step function with N(0) = 0 and a finite number of jumps, each of size
+1. We also assume that EN(1) < «. Since N is increasing and hence a submartingale it
follows from the Doob-Meyer decomposition that N = A + M, where A is a predictable
increasing process and M is a martingale. We shall assume that there exists a non-
negative left-continuous process A, adapted to {F.}, with right-hand limits such that
A(t) = [6 A(s) ds. Then, by Aalen (1978),

t

(2.1) M(t) = N(@) —f A(s) ds

0

is a square integrable martingale with variance process

t

(2.2) (M)(t) = J A(s) ds.

0

The process A is called the intensity process of N and this name is justified by an informal
interpretation which takes (2.1) to mean that E {dN(t) | F;} = A(¢+) and (2.2) to mean that
Var{dN(¢) | F,} = A(t+). This suggests that just after time ¢, N behaves as a Poisson
process with intensity A(t+).

This paper contributes to the study of the multiplicative intensity model (Aalen, 1978),
where it is assumed that A can be written in the form

(2.3) Alt) =a@®)Y(@®), te€]0,1],
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where a is an unknown nonstochastic function called the intensity function, while Y is an
observable stochastic process. The function a and the sample paths of Y are nonnegative
and left-continuous with right-hand limits, and Y is assumed to be adapted to {F;}. The
intensity « is interpreted as the transition intensity on the individual level, and in most
applications Y(¢) measures the size of the risk population just before time ¢. Several
examples of the multiplicative intensity model may be found in Aalen (1976, 1978) and we
give some more below.

In terms of estimation of the intensity function, current nonparametric theory concen-
trates on the cumulative intensity function () = 6 a(s) ds. Since one can rewrite the
combination of (2.1) and (2.3) as dN(¢) = a(¢) Y(¢) dt + dM(t), where dM(t) in a sense is
noise, a natural estimator of 8(¢) is [§ dN(s)/Y(s). Since one may have Y(s) = 0 for some
s, it is necessary to modify B(¢) by defining

(2.4) B*(t) =J a(s)J(s) ds,
0

where J(s) = I{Y(s) > 0}. When Y(s) = 0, we define J(s)/Y(s) = 0. We assume that
E [ {J(s)/Y(s)}a(s) ds < o to ensure that the stochastic integrals below exist. A natural
estimator of B8*(¢) is

s [([Js)
(2.5) B = J; {W} dN(s),

and, by the theory of stochastic integrals, it follows that ,é — B* is a square integrable
martingale with variance process

! {a(s)J(s)} s,

(2.6) m—ﬁﬂm=f o

0

For a short review of the theory of stochastic integrals, see Aalen (1978, Section 2). By
(2.6), the mean square error function becomes
t
J
{a(S) (S)} ds.

= A(+) — P* 2 _
n(e) = E{f(6) — B*(0)) EJ.T@T

0

Let us introduce 7(¢) = [§ {J(s)/Y?*(s)} dN(s). As an illustration of a step which is used
throughout the paper we note that by (2.3) and (2.1)

) “[a(s)ds) [ i)

o= [ (2920 - [ {29 o,
and the second term on the right side is a zero mean martingale. This implies that 7(¢) is
an unbiased estimator of 7(¢). '

One main advantage of this general formulation of the multiplicative intensity model is
that it enables us to take quite general censoring patterns into account. For instance it is
possible to model censoring depending on outside random influences in addition to
censoring depending on events in the counting process up to the moment in question.

Below we give an example of the so-called random censorship model, where censoring
is independent of the counting process.

3. The kernel estimator.

3.1. Definition. Together with the risk population Y, the intensity function « de-
scribes how the counting process N develops over time. Generally, behavioural assumptions
about real life processes are reflected in formulations about a. For many purposes,
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therefore, a is the entity of real interest. For technical reasons, however, the now classiAcal
theory of the multiplicative counting process model goes no further than the study of 8 as
an estimator of the cumulative intensity. To come closer to the desired goal, we introduce
a kernel estimator for a.

DerinITION 3.1.1. Let K be a bounded function with integral 1, and let b be a positive
parameter. The corresponding kernel estimator for the intensity « is

1 (! t—s N

As noted above, this definition is a generalization of the kernel estimator studied by
Watson and Leadbetter (1964a, b). If the jump times of N are T4, Ts, - - -, then

3.1.2) a(t) = (1/b) ¥r, K((t — T;)/b)/ Y(T)),

which may be used for computational purposes. By (3.1.2), the sample paths of & have
properties which are closely related to the kernel function K. If, for example, K is a
continuous function, it follows that the sample paths are also continuous. Formula (3.1.2)
also shows that the kernel function procedure may be regarded as a kind of continuous
moving average with weights integrating to 1, which smooths the occurrence/exposure
rates 1/Y(T;) fori=1,2, ....

3.2. Mean and variance of the kernel estimator. To simplify the mathematics, we
will assume that the kernel has support within [—1, 1]. For practical purposes this is not
a real restriction. Let 0 < b < % and introduce

(3.2.1) a*(t) = %J’ K(t ; s) dap*(s) =J’ K(u)a(t — bu)J(t — bu) du,
0 -1

for t € [b, 1 — b]. With a window b it seems natural to try to estimate the intensity only at
the points ¢ € [b, 1 — b], since it is only for these values of ¢ that &(¢) is a real average of
the raw estimates given by ,é The mean of @, its variance, and an unbiased estimator of
the variance are contained in the following proposition.

ProposITION 3.2.1 Introduce Ky(s) = (1/b)K(s/b) and j(s) = EJ(s). Then
(3.2.2) Ea(t) = Ea*(t) = K + (af) (),
where * denotes ordinary convolution. Furthermore,

o¥(t) = E{a(t) — a*(t)}?

(32.3) 1, ‘ J(t — bu)
: = z ‘[1 K (u)a(t - bu) E{m} du
for t € [b, 1 — b]. An unbiased estimator of o*(t) is
. 1 (! t—s J(s)
204\ — & 2
(3.2.4) 6i(t) = 57 i K < 5 ) {——Yz(s)} dN(s)

forte[b,1— b].

Proor. From the definition of @ and «* it follows that

at) —a*(@) = %J; K<t ; s) d(f — B*)(s),
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and (3.2.2) follows since B — B* is a martingale. By formula (2.6),

o e 1 [t =\ [als)d(s)
E{a(t) — a*(8)} _bZEfO K<—b ){—Y(S) }ds

_1 (o, _ J(t — bu)
=2 J_ K2(w)alt bu)E{—Y(t_ bu)}

1
which demonstrates (3.2.3). The final result in the proposition follows from the fact that

Je-bil 1[Nt
{Y(t—bu)}a(t bu) du + K (——b )J(s) dM(s),

A __l ' 2
(3.2.5) 6%t = b J K*(u) B A

-1

where M is the martingale given by (2.1.).0

If we denote the first term in (3.2.5) by o*2(¢) we also see that E5%(¢) = Eo**(t), and
that

1

K*walt — bu)E{J(t - b”)} d

a2 a2 2—l ~ . 1.
E{é%(¢) — o*(¢)} —bgf Y(t — bu

-1

In general, (3.2.2) implies that the kernel estimator is not an unbiased estimator of a(t).
However, it is possible to show that it is asymptotically unbiased and to derive an
asymptotic expression for its variance in the following manner.

If we consider a sequence {N,} of one-dimensional counting processes, each with an
intensity process of the form A,(f) = a(¢)Y.(¢), one may construct a corresponding
sequence of kernel estimators, which we denote by &.(¢). We use an index “n” to indicate
the n-dependence of the counting process. Note that we assume that the kernel is fixed
(i.e., independent of n), while the window depends on n, as is usual in the kernel estimation
literature. We think of N, as the relevant counting process when the study population
consists of n individuals or items. Then the following proposition holds.

PROPOSITION 3.2.2 Let n — . (a) If the intensity « is continuous at point t and if
Jn = Ed, — 1 uniformly in a neighbourhood of t, then

(3.2.6) Ean(t) = alt).

(b) If (i) nE{J.(s)/ Yn(s)} = 1/7(s) uniformly in a neighbourhood of t, and (ii) a and T are
continuous at the point t, then

1
(3.2.7) ol(t) = E{d.(t) — a¥(t)}? = (nb,)™" {a—((t%)—} J’ K?*(w) du + o((nb,)™")
T -1

‘

as b, — 0.

Proor. Relation (3.2.6) follows from (3.2.2) and the fact that the sequence of functions
{K,, } is a Dirac sequence when b, — 0. Relation (3.2.7) follows easily from (3.2.3) and the
assumptions made. 0

Proposition 3.2.2(a) demonstrates that under the conditions stated, the kernel estimator
is asymptotically unbiased. Formula (3.2.7) shows that if nb, — o, then E{a.(t) — a}(t)}*
— 0, and as a consequence &,(t) — a(¢) =»p 0 when n — oo,

Recently, some authors, Féldes et al. (1981) and Yandell (1981), have been interested
in estimation by means of kernel functions of the hazard rate for a random censored i.i.d.
sample. This situation is covered by our general framework as illustrated in the following
example.
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ExampLE 3.2.3. Consider independent identically distributed death or failure times
Xi, «++, Xy, with values in [0, o[ and a hazard rate a, where F(1) = 1 — exp{— [} a(s) ds}
< 1. Let Ty, - -+, T, be corresponding i.i.d. censoring times with distribution H. Assume
that the censoring times are independent of the failure times and that H(1—) < 1. The
number of failures

N.(t)=Y" I X, =, X,=T))

is then a counting process with intensity process A.(t) = «(t)Y.(t), where Y,(t) =

i1 I(X; = t, T: = t) denote the number of individuals alive just before time t. The
estimator for the cumulative hazard 8 (¢) = [ a(s)I{Y.(s) > 0} ds becomes the ordinary
Nelson estimator

D

. " dn(s) )
n = —d. n = =tXr vy
At JO Yoo V) = L=y s

where D, is the indicator of death for the jth individual. The corresponding kernel
estimator is

) 1 Vol — s\ 4 _ 1., t-X D,
(3.2.8) an(t) _E i K( b, ) dB.(s) —b—nZ/=1 K(————bn ) Y.x)

Note that j.(¢) = EJn(t) =1—[1— {1 — F(¢)}{1 — H(t—)}]" — 1 uniformly on [0, 1]. In
connection with an application of Proposition 3.2.2, we see that
Ja(s)] _ n N _ _ 11
nE{ Y,,(s)} = E{ Yoo Y, (s) > O}Jn(S) [{1 = F(s)}{1 — H(s—)}]
(3.2.9) s
={1- H(s—)}‘lexp{f

0

a(u) du}

uniformly on [0, 1], since Y,(s) is binomially distributed with parameters n and
{1—F(s)}{1 — H(s—)} (Aalen, 1976, Lemma 4.2). Thus, if we assume that « is continuous
on [0, 1], Proposition 3.2.2 applies,

(i) Ean(t)—> a(t) forall te]0,1[,

and

(ii) on(t) = (nb,)"alt){1 - H(t—)}‘leXp{J’ a(u) du} J’ K*(w) du + o((nb,)™")

[ -1

where n — o and b, — 0.

3.3 Estimation of the derivatives of a. Aswe have noted, the estimation of an intensity
by means of a kernel function and a window is a smoothing method which may be regarded
as a continuous moving average. Normally the reason for smoothing an estimator of the
intensity is that one believes the true underlying intensity to be a smooth curve. Therefore
when one smooths the estimator, it seems natural not only to estimate the intensity itself,
but also to try to estimate its slope, its smoothness, etc., as we will now describe. This
notion is inspired by the existing statistical theory of moving averages, summarized by
Borgan (1979).

The kernel estimator (3.1.1) may formally be rewritten in the form

(3.3.1) =K, +p,

which is a convolution of the function K, and the measure determined by . To estimate
the vth derivative of the intensity function, it is natural to use the »th derivative of &. If we
assume that the kernel K is absolutely continuous of order », then K, K’, ..., K“ ™V exist
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and are absolutely continuous, and it is possible to differentiate & up to order ». The
corresponding estimator then becomes

(3.3.2) & (t) = bylﬁ f K‘”’(fg—s> dp(s).
0

The estimator (3.3.2) has properties similar to those of & given in Proposition 3.2.1 and
3.2.2. Some of its small and large sample properties are as follows.

ProrposITION 3.3.1 (a) Assume for simplicity that a and j = EJ are members of
C*([0, 1]), which is the space of v times differentiable functions with continuous deriva-
tives. Then

(3.3.3) E&Y(t) = Ea*"(t) = K, * (a - )"(8),
where a*”(t) = K * (aJ)(t). Furthermore,

2 — s () L x() 2 _ 1 ' (v) 2
(3.34) a,t) =E{a" () — a*"(¢)} b2y+1j K" (u)'E Y(t — bu)

-1

{J(t — b }a(t — bu) du

for t € [b, 1 — b]. This quantity may be estimated by

o 1 [Tt —s\[ J(s)
(3.3.5) CHOR = JO K ( - ){YQ(S)}dN(s).

(b) With the same assumptions as in Proposition 3.2.2, we have

ondt) = E{@?(t) — ax¥(t))?

(3.3.6)

= (nb3v+1)—l{%} f K(u)(u)2 du + 0((nb,2,"“)‘1)

when we consider a sequence of counting processes.

The proof is similar to the previous one and is omitted here. One notes that the variance
terms o7 , are asymptotically of completely different sizes when the window tends to zero.
This may be interpreted to mean that one ought not to use the same window when
estimating the various derivatives.

4. Asymptotic results.

4.1. Consistency of the kernel estimators. Under some rather weak conditions, the
kernel estimator is a consistent estimator for the underlying intensity. The results given in
this section demonstrate both ordinary consistency and mean square uniform consistency.

ProposiTION 4.1.1.  Consider a sequence {N,} of one-dimensional counting processes
exactly as in connection with Proposition 3.2.2. Assume that the conditions in Proposition
3.2.2(b) hold. Then

E{a,(t) —a(t)}?—>0

when n— «, b, — 0 and nb,, — .

Proor. By Proposition 3.2.2(b) it follows that o%(¢) — 0, so it is sufficient to show
that E {a¥ (¢) — a(¢)}? — 0. Since J, —p 1 uniformly in a neighbourhood of ¢, and since
1
(4.1.1) ax(t) —a(t) = Ku){a(t — bou)d, (t — byu) — alt)} du,

-1
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it follows that a} (¢) — a(t) —p 0, and that there exists a constant ¢ > 0, such that
| & (t) — a(t) | < c. Therefore, we conclude thatE {a} (t) — a(t)}? — 0 when n — .0

For a much stronger result about mean square uniform consistency, consider a fixed
interval [zo, 21 ] with0 < zo < z; < 1.

THEOREM 4.1.2. Assume that

(i) J, —p 1 uniformly on [0, 1] when n — o,

(il) « is continuous on [0, 1],

(iii) 1. (1) =n [ E{J.(5)/Y.(s)}a(s) ds is bounded when n — o,
and

(iv) the kernel K is of bounded variation.
Then

(4.1.2) E {SuPregzo. 1] dn(2) — a(t) |2} — 0

when n — ®, b, — 0 and nb2% — .

Proor. It is sufficient to prove that

(4.1.3) E {sup;| @.(t) — a} (¢)|*} = 0
and
(4.1.4) E {sup| ;i (t) — a(t) |*} > 0.

We first prove (4.1.3). From the definitions, it follows that
1
an(t) — af (t) = (1/b,) J’ K((t — 5)/b.)d(Bu — BE)(s).
0

Since K is assumed to be of bounded variation,
|G (t) — ok (£) | < 2(1/B,) V(K) supsepo,| Ba(s) — B2 (s) ],
where V(K) denotes the total variation of K. Therefore, it is sufficient to show that
b:"E {supscron| Bu(s) — B (s) "} — 0.
If we apply Doob’s inequality to the submartingale (ﬁ,, — Bx)? it follows that
b2 E {supscpo.y] Bn(s) — BX (s) |2} < (nb%) ‘4nn, (1).

Since nn, (1) is bounded and nb2 — «, (4.1.3) is proved.
The proof of (4.1.4) is similar to that of Proposition 4.1.1 and is omitted here. 0

Note that in Proposition 4.1.1 we assume that nb, — o, while in Theorem 4.1.2 we
assume that nb2 — «. Thus, the window must tend towards zero more slowly to obtain
uniform consistency than to obtain ordinary consistency.

The assumptions in this theorem are not very restrictive. For example, condition (iii) is
often made in the nonparametric estimation theory to ensure that E {sup:eo, | ﬁ,. t) —
Bx(t)|?} = 0 when n — « (Aalen, 1978). As was pointed out by a referee, however, by
applying the inequality of Lenglart (1977) instead of Doob’s inequality, one may weaken
condition (iii) in Theorem 4.1.2 by assuming that n [§ {J.(s)/Y.(s)} ds is O(1) in
probability to obtain uniform consistency instead of mean square uniform consistency.

Similarly, it is possible to show that the kernel estimator of the vth derivative is
uniformly consistent. If we consider a sequence of counting processes and the corresponding
sequence of estimators &,.” for the »th derivative, the following theorem holds, with a
proof similar to that of Theorem 4.1.2.
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THEOREM 4.1.3. Assume that (i) J, —p 1 uniformly on [0, 1] when n — oo,
(ii) a« € C™([0, 1)), (iii) nn. (1) is bounded when n — o, and (iv) the vth derivative K" is
of bounded variation. Then

E{Suptelm,zl]l &}:)(t) - Ol(")(t) '2} -0

when n — «, b, = 0 and nb?*? — .

4.2 Asymptotic normality. Parzen (1962) proved that the kernel estimator for a density
is asymptotically normal when the number of observations tends to infinity. In the present
section, we derive a similar result for the kernel estimators studied in this paper. We
cannot use the same technique as Parzen did, since in general our one-dimensional counting
process is not based on independent identically distributed observations. Parzen’s proof
was based on a result about the asymptotic behaviour of triangular arrays of independent
observations. We replace that by a result about the asymptotic distribution of a martingale
triangular array, proved by Liptser and Shiryayev (1980) and Shiryayev (1981).

Consider a sequence of counting processes (N,.) on [0, 1] with a corresponding sequence
of martingales given by

t

Mn(t) = Nn(t) _f An(s) dS,

0

where {A,} is the sequence of intensity processes. Let H, be a sequence of predictable
processes where E [} H2(s)A,(s) ds < o and introduce M, (t) = [ H,(s)dM,(s). Then
the following proposition is valid.

PRroOPOSITION 4.2.1. Suppose that

(i) Ve > 0: [6 H,(s) I(|H.(s)| > &)An(s) ds —p 0,
and

(i) f6 H:(s)Ar(s) ds —p 1 when n — o,
Then M, (1) —p N(0, 1), where N (0, 1) is the standard normal distribution.

Proor. Use Liptser and Shiryayev (1980), Corollary 2 and Remark 1. If we apply that

result to the sequence (#,), the proposition follows since the conditions (L:) and (12) in
the paper quoted are equal to our conditions (i) and (ii). O

We now consider a sequence of counting processes where the corresponding kernel
estimators may be written in the following form:

an(t) = an (t) + (1/by) J K((t - 8)/ba)Jn (8)/ Yn (s) dM, (s).
()
Fix the value of ¢. Then

1
(nbn) (@ (t) — a ()} =f H,(s) dM, (s),
0

where
H,.(s) = (n/b,)"’K((¢t — $)/bn)u (s)/ Yu (s).

We are now able to prove our next result.

THEOREM 4.2.2. Assume that (i) nd,/Y, —p 1/7 uniformly in a neighbourhood of t
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as n— o, (ii) the functions a and T are continuous at the point t. Then
(nbn) 1/2{&n(t) - (X: (t)}

converges in distribution towards a normal distribution with mean 0 and variance
{a(t)/7(t)} [11 K*(u) du, when n — «, b, — 0 and nb, — .

Proor. We apply Proposition 4.2.1 and verify condition (i) and (ii). First we have
{(|Ho(s)| > &) = {|K((t — 8)/bn) | neJu(s)/Yn(s) > e(nbn)"?}. Since b, — 0, nb, — o,
neJ,/ Y, —p 1/7 uniformly in a neighbourhood of ¢, and 1/ is bounded in this neighbour-
hood, we see that I{ | H,(s) | > €} —p 0 uniformly on [0, 1]. Therefore, by the definition
of H,(s), [6 H2(s)I{| H.(s) | > €} Y.(s)a(s) ds—p 0 and condition (i) is fulfilled. Since

J HZ(s)An(s) ds = (1/b,) j K2((t — s)/b.){a(s)nd, (s)/ Y. (s)} ds
0 0

1

= J KXu){nd, (t — bu)/Yn(t — bou)}a(t — byu) du

1

—p {a(t)/7(t)} | K*(u) du,

-1

condition (ii) is verified and the theorem is proved. O

In addition to the theorem one may be interested in extra conditions which ensure that
(nb,) V¥ (t) — a(t)} is asymptotically negligible. Applying the mean value theorem, this
occurs if a has a bounded derivative in a neighbourhood of ¢ and nb% — 0 as n — .

We mention without proof that it also follows from Proposition 4.2.1 and the Cramér-
Wold device that &, (¢) and &.(s) are asymptotically independent when s # t, n — , b,
— 0 and nb, — .

ExAMPLE 4.2.3. At this point, we extend our Example 3.2.3 to a multiple decrement
model, which is a time-continuous Markov chain with one transient state labeled 0 and m
absorbing states numbered from 1 to m. This model is often used to analyse different
causes of decrement in demography and actuarial science. If m = 2, it describes the
situation in Example 3.2.3 if the number of transitions to state 1 corresponds to failure and
the transition to state 2 represents censoring. In other applications, one may be interested
in a more general Markov chain where the number of transitions between two different
states constitutes a counting process which may be analysed along the ideas below.

Denote the transition probability and transition intensity from state O to state i by
Pui(s, t) and a,(s), respectively. Assume that Py (0, 1) = exp{— [ a(s)ds} > 0, where
a = Y7 a,. Consider n independent Markov chains of this kind, and assume that each
process starts at time 0 in state 0. If we denote the sample paths of the individual processes
by S,(-), it follows that

Ny@) =S, I{S(¢) =i}, i=1,---,m,

is the number of transitions to state i during [0, ¢]. Then each N’ is a counting process
with corresponding intensity process

AL(#t) =a;(0)Y,(t), i=1,---,m,
where Y, () = n — N, (t=) and N, (t) = 2™ N.(t). The Nelson-Aalen estimator for the
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cumulative intensity function is
t
Bin(t) = J {Ja(8)/ Yn(s)} dN:(s),
0
where J, (s) = I(Y,(¢) > 0), and a corresponding kernel estimator may be written

1
(4.2.1) an(t) = (1/bn) f K((t — $)/bn){Jn(s)/Yn(s)} AN (s).
0

Below we show how it is possible to apply Theorems 4.1.2 and 4.2.2 to this situation. Fix
a value of i. Note that since

P{sup:epo, 11| Jn () — 1|>e} ={1—Pyp(0,1)}"— 0,

it follows that condition (i) in Theorem 4.1.2 is fulfilled. If we assume that the intensity
«, is continuous on [0, 1], it follows in a manner similar to (3.2.9) that conditions (ii) and
(iii) in Theorem 4.1.2 are satisfied. Thus, if the kernel function is of bounded variation and
the intensity is continuous, then the kernel estimator given by (4.2.1) is uniformly
consistent in the way described in Theorem 4.1.2.

We then check the conditions in Theorem 4.2.2.

(i) By the Glivenko-Cantelli theorem,

ndn(s)/ Yn(s) = n (S)/{l —-rlz N (s —)} —p 1/Pw (0, 5)

uniformly on [0, 1], since Py (0, 1) > 0.

(i) The function 7 is 7(s) = Py (0, s) = exp{— [? a(x) du}, and we assume that each
«, is continuous.

In summary, we have justified that for a continuous intensity function the kernel
estimator given by (4.2.1) is asymptotically normal with a variance equal to

(nbn)_lou(t)exp{J als) ds}J K%(u) du.
0 —

1

In a practical situation where one wants to analyse different causes of decrement from an
open population, the observations are often censored because of emigration, retirement or
other reasons. In that case, a similar result holds if the censoring only depends on outside
random mechanisms and if the assumptions in Theorem 4.2.2 are fulfilled.

5. A numerical example. As an illustration of the kernel function smoothing
method, we have smoothed the cumulative death rate of 488 patients with cirrhosis of the
liver. The figures originate from the Copenhagen Study Group for Liver Diseases, and
some results may be found in two reports from the Group (1969, 1974). The purpose of the
study was to evaluate the effect of prednisone on the survival of patients with cirrhosis,
compared with a suitable control group. By randomisation, the patients with cirrhosis were
divided into two groups which received prednisone and placebo tablets, respectively. A
preliminary analysis carried out by the Study Group showed that the mortality in the
prednisone group was nearly identical to that of the control group (i.e., the difference was
not significant). Therefore, the purpose of the present example will be to determine the
common mortality in the groups, taken together. )

Out of the 488 patients, observation of 196 was censored during the observational period.
We will measure time in days elapsed since medication by prednisone or placebo started,
which was close to the day when cirrhosis was diagnosed. We assume that the patients
behave independently of each other. Then the number N (¢) of deaths up to time ¢ is a
counting process with intensity process

At) = a(t) Y (2),
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F16. 1. Estimated cumulative force of mortality for 488 patients from the Copenhagen Study Group
for Liver Diseases with cirrhosis of the liver.

where a is the common hazard rate (force of mortality) and Y (¢) is the number of patients
alive just before time ¢. The cumulative mortality rate

B(t) = f J(s)/Y(s) dN(s)
(1]

has been plotted in Figure 1 for the first 2100 days of medication. It is difficult to get a
precise estimate of a from Figure 1, but it seems that mortality is rather high in the
beginning of the period, it decreases up to a duration of some 400 to 500 days, after which
it stabilizes at a lower level. These features are illustrated much more lucidly in Figure 2,
where we have estimated the force of mortality itself, using K (x)= 0.75(1 — x?), | x| = 1,
known as Epanechnikov’s kernel function. We have also drawn 95% pointwise confidence
limits based on asymptotic normality and the variance estimator in (3.2.4). Figure 2
permits us to see that the mortality starts out at a level around 0.8 per 1000 per day,
decreases steadily to approximately 0.3 per 1000 per day at a duration of some 500 days,
and remains at that level afterwards. These results are in agreement with the previous
findings of the Study Group and in accordance with what one would expect from a medical
point of view. '

The eternal problem of the choice of window size may be attacked in various ways. As
in the case of ordinary density estimation, one may derive an asymptotically optimal
window or choose a window which minimizes an estimator of the risk function as suggested
by Rudemo (1982). Since experience with these methods is still weak, we have simply
chosen a window which gives a reasonable picture of the mortality rate. In this connection,
it is worth mentioning that if the mortality rate is a linear function over intervals of the
form (¢ — b, t + b), then the kernel estimator will be unbiased. This gives a weak but
practical guideline in our choice of window. Since the observations are heavily censored
and since the number at risk is also reduced by deaths, we have used a window which
increases with time elapsed since medication. We have chosen b = 100 for 100 < ¢ < 500
days, b = 150 for 500 < ¢ < 750 days, and b = 200 for 750 < ¢ < 1900 days. This implies that
we are not able to estimate the hazard for ¢ < 100 and for 1900 < ¢ = 2100 days.
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F1G. 2. Mortality rate for the patients of Figure 1 estimated by Epanechnikov’s kernel function and
a varying window.

We close this example by pointing out how the analysis can be extended and how the
kernel smoothing method may again be put to good use in the extension. To discover why
the two groups surprisingly had the same mortality, the investigators have drawn some
laboratory, clinical and histological covariates in the analysis, and have reanalysed the
data by the method suggested for censored survival data by Cox (1972). For details, see
Schlichting et al.(1982). The Cox model specifies the hazard rate a(t) for the survival time
X of an individual with a covariate vector z to have the form a(; z) = ao(¢)exp(¢’z). Cox
(1972) suggested that ¢ could be estimated through a partial likelihood function

L) =TI, (exp(@'2)/S er, exp(@'2)} %,

where n is the number of possible right censored survival times, R; = {j| X; = X,} and D,
is an indicator for death. If ¢ denotes the value of ¢ which maximizes the partial likelihood,
then

Bo(t) = Yx= Di/ {3 er, exp(¢'z)}

was suggested by Breslow (1972, 1974) as an estimator for the cumulative underlying
hazard B, (t) = [} as(s) ds. One may introduce a kernel estimator for the underlying hazard
ao by defining

a(t) = (1/b) f K((t — $)/b) dPo(s),
0

which has the same form as the estimator (3.1.1), and it will surely be possible to derive
large sample properties of & by combining the counting process formulation of the Cox
model in Andersen and Gill (1982) together with the theory of the present exposition.
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