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QUASI-LIKELIHOOD FUNCTIONS

BY PETER McCULLAGH

Imperial College, London and University of British Columbia

The connection between quasi-likelihood functions, exponential family
models and nonlinear weighted least squares is examined. Consistency and
asymptotic normality of the parameter estimates are discussed under second
moment assumptions. The parameter estimates are shown to satisfy a property
of asymptotic optimality similar in spirit to, but more general than, the
corresponding optimal property of Gauss-Markov estimators.

1. Introduction. It is well known that if the likelihood function has the exponential
family form, maximum likelihood estimates of regression parameters can often be found
using the method of weighted least squares (Nelder and Wedderburn, 1972; Bradley, 1973;
Wedderburn, 1974; and Jennrich and Moore, 1975). Here we use the term “weighted least
squares” in a fairly general sense: typically the computations involve nonlinear response
functions and weights that vary from one iteration to the next. In particular, when the
variance is assumed constant the quantity to be minimized is a sum of squared residuals,
and the asymptotic results of Jennrich (1969) and Wu (1981) apply. More generally, when
the variances are not constant, the estimating equations can be thought of as a generaliza-
tion of the scoring method used in probit analysis and usually attributed to Fisher.

Modified and conditional likelihoods sometimes have the required exponential form.
Thus the method of weighted least squares may be used for partial likelihoods, Cox (1972,
1975), and for conditional likelihoods of the kind that arise in the consideration of doubly
conditioned 2 X 2 or larger contingency tables. In fact the method of weighted least squares
can be used to find maximum likelihood estimates even in some cases where the likelihood
function does not have the exponential family form (Jorgensen, 1983).

The present paper has two purposes. First we describe a wider class of problems for
which the method of weighted least squares may be used to maximize the likelihood
function. Secondly, the method of weighted least squares may be used under second
moment assumptions thus avoiding the complete specification of the underlying distribu-
tion. Following Wedderburn (1974) we refer to the function being maximized as a quasi-
likelihood. Here we examine the asymptotic properties of the quasi-likelihood function
and we show that the estimators enjoy a certain asymptotic optimality property. There
are close connections to the Gauss-Markov theorem and to the asymptotic optimality of
maximum likelihood estimators.

2. A class of likelihood functions. Let the observed vector of random variables Y
be of length N and suppose that the log likelihood considered initially as a function of the
N-dimensional parameter @ and an additional parameter o may be written in the form

(1) o {y’0 — b(0) — c(y, o)}
for suitably chosen functions &(f) and c(y, o). Differentiating (1) and assuming that the
support of the distribution does not depend on 6, we find

) E(Y)=p=05'6) and Cov(Y) =o?"(f) = 0>V (u), say.
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In fact, the rth order cumulants of Y are given by «, = 6 ~25(8) so that there is a close
connection between (1) and convolutions of natural exponential families (Morris, 1982)
where 072 plays the role of a sample size.

The expression for the cumulants of Y, and in particular equations (2) for the first two
cumulants, describe the random component of the model. However, in applications it is
usually the systematic or nonrandom variation that is of primary importance. Often the
systematic component may be expressed in terms of a regression equation

3) E(Y) =p=p(B),

where f is a p-dimensional parameter vector and u(-) is a vector of known functions having
bounded third derivatives. In many applications the regression function u(-) has a linear
component involving a model matrix X describing the experimental or observational
conditions under which the observations were made. In the present paper we assume only
identifiability in the sense that distinct 8’s imply distinct w’s. This would imply that the
model matrix X or, more generally, the derivative matrix D = du/d have rank p for all
B. )

The regression equation (3) is an important but special case because it does not involve
o>, By way of contrast we also consider regression equations that implicitly involve o2,

@) E {(h(Y)} = ¥(B),

where h(-) is a known nonlinear function of the data. We could replace (4) with a more
general model that involves o” explicitly but this extra level of generality is not required
here.

If 0 is known, the expression on the left of (4) is a function of u alone and, suu,ect to
reasonable monotonicity, we can express (4) in form (3). Furthermore, for known o2, (1) is
an exponential family with the property that the variance and all higher order cumulants
of Y are functions of the mean vector alone. Examples include the exponential, Poisson,
multinomial, noncentral hypergeometric and partial likelihoods of the type that arise in
survival analysis (Cox, 1975). Weighted least squares may be used to compute the
maximum likelihood estimate of 8 in either (3) or (4), (Bradley, 1973).

In the more general case where o is an unknown parameter, (1) is not generally an
exponential family. Furthermore, it is not possible to express (4) in the form (3). However,
weighted least squares may still be used to compute B provided that the model of interest
has the form (3) not involving o2

A further property of the family (1) is that u and o” are orthogonal in the sense that the
mixed second derivative has zero expectation. Furthermore, under (3) but not generally
under (4), B and o are also orthogonal.

Suppose again that o is unknown and that c(y, o) = g(y) + A (o) corresponding to an
exponential family model. I know of only three families of distributions, the normal, inverse
normal and gamma, that satisfy these requirements. These three families share the
remarkable property that 5'(-) and g’(-) are functional inverses. This property is closely
connected with the existence of a statistic, W(Y, p), whose distribution is independent of
p but may depend on o”. A further important property of this exponential class is that, for
fixed o, the maximum achievable hkellhood is a constant mdependent of y and occurs at
= y. Furthermore, the estimate of a is a function of —2{ yT0 b(0) £(y)} which is
equivalent to —2[y 7{f — 0(y)} — b + b (¥))]. This quantity is sometimes called the
deviance and plays the role of the residual sum of squares. The second form of the
expression uses only the functions #(u) and b(#) so that the expression may be used
regardless of whether or not (1) is in the exponential family. In fact the support of (1) need
not be independent of o.

The generalized least squares equations for the parameters in (3) can be written

() D'V (y - u()} =0
where D = du/dp is of order N X p and V™ is a generalized inverse of V. We refer to (5)
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as least squares equations primarily because of the geometrical interpretation which
involves successive projections of the residual vector y — y,(ﬂo) on to the tangent space of
the solutlon locus u(B). Here ,Bo is the current estimate of B. These equations do not
depend on o so that the numerical value of § is the same whether o is known or not. The
Newton-Raphson method with the second derivative matrix replaced by its expected
value, D7V D, results in an adjustment to B given by

Bi—Bo= D"V D)D"V (y - jio),
where the quantities on the right are computed at ﬁo
In the following section the natural order of the assumptions is reversed. Instead of
taking the log likelihood to be of the form (1) from which the moments may be derived, we

begin with the moments and attempt to reconstruct (1). The reconstituted function is
called a quasi-likelihood and its asymptotic properties are investigated.

3. Quasi-likelihood functions. In this and in the following sections the only as-
sumptions on the distribution of the data are those concerning first and second moments
and some additional regularity conditions relating to the regression equation (3).

Given the vector of random variables Y with mean p and covariance matrix 6>V (u) the
log quasi-likelihood, considered as a function of p, is given by the system of partial
differential equations

o/ (p; y)
op
which extends Wedderburn’s (1974) definition. For many purposes it is not necessary to

solve for #(u; y). When an explicit solution is required, it can often be found by constructing
functions @(u), b(0) satisfying (2) and writing

A y)=y"0—5(0) — c(y, o)

where c(y, o) is entirely arbitrary. Explicit solutions are discussed in Section 6; in any case,
the existence of a family of distributions for which /(- , .) is the log likelihood is not
required.

Prov1ded only that the systematic part of the model has the form (3) not involving the
unknown o?, the generahzed least squares equations for ,B are given by (5). There is, of
course, no guarantee that ,B is the maximum likelihood estimator because the correct
likelihood function is generally different from ¢(g; y). In particular the higher order
cumulants of Y may not have the required multiplicative form.

We now proceed to outline the properties of quasi-likelihood estimates. It is important
to emphasize that the properties of quasi-likelihood estimates are not general properties
for all weighted least squares estimates. For example, weighted least squares can be used
for parameter estimation when cov(Y) = V(6% p), where p is a vector of autoregressive
coefficients. Quasi-likelihoods are defined only when the covariance matrix has the simpler
multiplicative form ¢?V (u).

Morton (1981) considers a more general problem involving several nuisance parameters.
His estimating equations have the form of (4) where the quantity y — u(f8) is replaced by
a vector of pivots whose distribution is independent of the nuisance parameters. In the
problems considered here where there is a single nuisance parameter o7, it is not necessary
to construct pivots and in fact the distribution of Y — p or V™V%(Y — )/ will generally
depend on o2

6) = V‘(gz)(y - m

4. Properties of quasi-likelihood functions. The statistical properties of quasi-
likelihood functions are very similar to those of ordinary likelihoods except that the
nuisance parameter, o, when it is unknown, is treated separately from B8 and is not
estimated by welghted least squares. The principal results fall conveniently into three
classes; those concerning the score function U = 34/98, those concerning the estimator ,B
and those concerning the distribution of the quasi-likelihood-ratio statistic.
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The score function, Ug = us(8; Y) = DTV (Y — 1(B)) has zero mean and covariance
matrix 6%, = ¢°D”V "D where —iy is the expected second derivative matrix of /(u(8); Y).
When there is no ambiguity we write £(8; Y) instead of Z(u(8); Y).

Under weak conditions on the third derivative of (3) and assuming that N~ "ig has a
positive definite limit and that the third moments of Y are finite, the following asymptotic
results apply:

) N~Y2Ug ~ 4(0, 6%g/N) + O, (N2,
® E@B-p)=0N™,
) NV — B) ~ (0, No%iz') + O,(N"?).

If the third moment is infinite the error terms in (7) and (9) are 0,(1). Without altering the
order of the approximation in (7) and (9) the observed matrix of second derivatives, I; can
be substituted for ig. In the absence of information concerning higher moments of Y there
is no guarantee that I, is better than iz as a measure of the precision of f.

Furthermore it can be shown that among all estimators of 8 for which the influence
function is linear, i.e. estimators f satisfying

(10) B—B=L.Y —p) +0,(N?,

where L, is a p X N matrix of influences, quasi-likelihood estimates have minimum
asymptotic variance. The reference class of linear influence estimators is a natural one
here because the systematic part of the model (3) is specified in terms of the mean value
parameter, g.

Denote by #(Bo; y) and f(,é; y) the maximized values of the log quasi-likelihood under
H, and under H, where the corresponding parameter spaces of dimensions ¢ under Hy and
p > q under H, are appropriately nested. Then, under Hy,

(11) 20(8; Y) — 24(Bo; Y) ~ ox2-q + O,(NV2).

If £(B; y) were the correct log likelihood as opposed to an artificially constructed log quasi-
likelihood and if Y were continuously distributed, the error term in (11) would be O, (N ™)
(Hayakawa, 1977).

There now follows a brief outline of how the properties described above may be
established. The elements of Uz = DV~ (Y — p) involve a sum of N random variables
each with zero mean and finite variance. The total variance is o%;. If ig = O(N) no finite
set of variances is dominant and the central limit theorem implies (7). For a proof of the
remaining results we summarize the order of magnitude of the various quantities involved.
The first derivative Uy is O, (N'?) with zero expectation: all other derivatives of A8; Y)
are O,(N). Thus I; = —3%4(8; Y)/88% = O,(N), iz = O(N), and Iy — iz = O, (N'/?) with zero
expectation. The equations used for determining ,é, ug (ﬁ; ¥) = 0 can be written as a Taylor
series in (8 — B) giving

12 0= wBy) - Le(B-P),

where I is the observed information evaluated at a point 8* lying on the line segment
joining 8 and 8. Thus, there exists a 8 satisfying 8 — 8 = O, (N /%) and

(13) B-B=17Up=iz'Us+ O,(N7Y) =iz'Us + O, (N 7).

Results (8) and (9) follow immediately. )
To establish (11) expand #(8; Y) in a Taylor series about 8 giving

4B; Y) — 4B, Y) = —(%) (B — BTIx (B — B).
Now replace I by ig and substitute (13) giving
(14) 24(B; Y) — 24(8; Y) = UTpiz' Up + Op(N772).
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Thus if Up is asymptotically normal the quasi-likelihood-ratio statistic (14) is asymptoti-
cally ox2. For composite null hypotheses (14) can be expressed as the difference of two
quadratic forms in Up, one of rank p and the other under H, of rank ¢ < p. This difference
can in turn be expressed as a quadratic form of rank p — g when terms of order N~/? are
ignored. Details are straightforward but tedious: see e.g. Cox and Hinkley (1974, page 323).

Proof of asymptotic optimality follows the same lines as a proof of the Gauss-Markov
theorem. The essential idea is that asymptotic unbiasedness, i.e. E(8 — B) = o(N~?),
implies LD — I = 0(1) where L is the matrix of influences in (10). Minimizing the variance
of B subject to this constraint gives L = (D7V D) D7V~ when smaller order terms are
ignored. This establishes the required result.

The assumptions required here are much weaker than those required for the Gauss-
Markov theorem. Global linearity is replaced by the much weaker local linearity (10).
Unbiasedness is replaced by the weaker requirement that the bias be o (N~"/?): typically
the bias is O (N ™Y). The conclusions, while they apply more widely than the Gauss-Markov
theorem, are inevitably a little weaker being asymptotic rather than exact. It would be of
interest to know whether a more general form of this result applies to weighted least
squares in the more general case where the covariance matrix does not have the form
o’V (p).

In small samples uniqueness of the maximum cannot be guaranteed except in some
special but important cases, Wedderburn (1976), Haberman (1977), Burridge (1981), Pratt
(1981). However, in large samples, iz is O(N) and positive definite for all 8. Also, in any
0(1) neighborhood of the true 8, Iy — iz = o (N). Within this neighborhood of consistent
estimators, I is positive definite with high probability, implying that there is a single
maximum corresponding to a consistent estimator. This analysis assumes that the model
is correct and suggests that if the initial estimate of B is consistent the iterative equations
(4) will converge to the correct maximum with high probability for large N. It is possible
that there might also be local maxima, but these local maxima would correspond to
inconsistent estimators.

5. Estimation of 6% In some applications o2 may be known: often ¢® = 1. More often
0% must be estimated in order to make use of the approximate results (7), (8), (9) and (11).
In the absence of information beyond second moments there is little alternative to using

(15) &=y —-pVI(y—-i/(N-p)=X*/(N-p)
where X? is a generalized form of Pearson’s statistic. The order of magnitude of the error
terms in (7), (9) and (11) is unaffected by the insertion of the estimate 6° in place of o”.
In certain cases it may be possible to improve on (15). For example if the log likelihood
(2) is in the exponential family, then the maximum likelihood estimate of ¢ is a function
of the difference between the likelihood achievable in unrestricted parameter space
nLE RY and that achieved under the model. This difference known as the deviance may be
written n

d(y; i) = 24(y; y) — 24(ii; y).

An estimate of ¢% in general different from the maximum likelihood estimate, can be
obtained by equating the observed deviance d(y; fi) to its approximate expected value.
This estimator has the slight advantage over 6 that it is asymptotically independent of
,é. The principal disadvantage is that the expectation of d(Y; i) is often difficult to

compute.
To take an example, suppose that Y has the gamma distribution with independent

components so that ¢ is the coefficient of variation and
d(y; p) =23 {log(yi/m) — (yi — p)/p}-
The expected value of d(Y; fi) as a function of » = 67 is

(16) 2N{Y(») —logv} —pr '+ O(N Y,
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where y(-) is the derivative of the log gamma function. The maximum likelihood estimate
of » is found by equating the leading term of (16) to the observed d (y; ji): it would seem
preferable to reduce the bias by including the O(1) term to make an allowance for the
number of unknown parameters estimated. There is, unfortunately, no guarantee that the
estimate of o based on equating d(y, f) to (16) is consistent outside the gamma family.

6. Examples of quasi-likelihood functions.

EXAMPLE 1: Least squares. Let V(p) = V, a matrix of known constants. Solving (6)
we find 4(8; y) = (%) (y — n(B) TV (y — #(B)), a quadratic form in the residual vector.
Consistency and asymptotic normality of B were proved by Jennrich (1969) and Wu (1981)
under weaker conditions on the second derivative matrix than those assumed here.

EXAMPLE 2. Uncorrelated observations. Let V(p) = diag{v(u), v(uz), «--, v(un)}.
Then the system of equations, (6), becomes uncoupled and the quasi-likelihood has the
form £(u; y) = Y, ¢(u:; ;) where the components satisfy

(17) (s ) /o = (y — w)/v(p).

Equation (17) was given by Wedderburn (1974) as the definition of a log quasi-likelihood
function. Explicit solutions for some simple functions are given in Table 1. These show
that if the distribution is in the exponential family and if the log likelihood is linear in y
the quasi-likelihood and likelihood are identical apart, possibly, from the unimportant
multiplier, 0>. Thus if E(Y) = var(Y) = p the quasi-likelihood is the same as the Poisson
likelihood. However, if the distribution of Y is of the Euler type, y* ‘e /T'(u) satisfying
E(Y) = var(Y) = p, the log likelihood is linear in log y so that the quasi-likelihood is
different from the likelihood. There is a close connection here with natural exponential
families (Morris, 1982).

ExXAMPLE 3: Invariance under linear transformations. Let Y, =LY, p. =Lgand V,
= LVL7 where L is a nonsingular matrix of order N. The quasi-likelihood ¢’(- ; -) based on
Y. is a solution of

as’

e Vilyr—p) =LV (y—p.

Thus a¢’/op = L7(8¢/u.) = V~(y — p). In other words the quasi-likelihood based on Yz
is the same as that based on Y. This is weaker than the corresponding result for log
likelihoods which are invariant under all invertible transforms.

ExXAMPLE 4: Multinomial response models. The log likelihood for independent mul-
tinomial responses is a sum of terms each having the form (1) with 0> = n™! and §; =
log(7j/m.), j =1, + -+, k. Thus the likelihood is equivalent to the quasi-likelihood with
E(Y;) = nm;, var(Y;) = nm;(1 — 7;) and cov(Y;, Y;) = —nmm. Model construction is
particularly simple and conceptually attractive if there is a transformation to linearity
elementwise on the mean vector p = E (Y). This leads to generalized linear models and in
particular to log-linear models. In some circumstances (McCullagh, 1980), it is more
appealing first to form cumulative totals Z; = Y; + - - - + Y;. Linear models are constructed
by taking the logistic or other suitable transformation of the elements of E (Z). In either
case the usual asymptotic results based on ,é and the inverse matrix of second derivatives
depend only on the correctness of the second moment assumptions. In particular, to the
order of approximation considered here, discreteness is irrelevant.

ExaMPLE 5: Models with constant coefficient of variation. Suppose for simplicity that
Yy, - -+, Yyare uncorrelated with common mean y and variance o’u? where o is the known
coefficient of variation. More realistic examples involve regression or the study of how u
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depends on other variables and ¢ would generally be unknown. However the broad
qualitative conclusions to be drawn from the present example apply quite generally.

As always, for a single sample the quasi-likelihood estimator of 1 is y: the varlance o*u?/
N can be obtained directly or via £(u; y) = —Z(y:/u + log p). The quantity N/o%u? can be
thought of as the information in the quasi-likelihood available for estimating p. In
particular, no information is derived from the sample variance, in part because its precision
cannot be assessed without involving higher order moments.

An alternative estimator, and one that seems appealing if the data are symmetrically
distributed or nearly so, is to assume normality and independence and to use maximum
likelihood. The resulting estimator, fi, does not have a simple closed form but it appears to
be more precise: its asymptotic variance is 6%u*(1 + 20%) '/ N. However the validity of this
asymptotic variance depends critically on the assumptions of independence and normality.
It is readily shown after a little algebra that the correct asymptotic variance assuming
independence up to fourth order but not normality is

(18)

02u2 {1 + 0%2 + y2) + 20m

N (1 T 20’2)2 } + O(N_a/Z)’

where y; and y: are the standardized third and fourth cumulants of Y. By independence up
to fourth order we mean that the mixed cumulants of Y7, - -+ , Yy up to degree four are all
zero. Note that (18) can be arbitrarily large even for symmetncally distributed random
variables.

The point here is that if information concerning hlgher moments is available, inferences
can sometimes, though not always, be improved through the use of this information.
However, the artificial injection of such information can have a number of undesirable
side effects. In particular the true variance (18) may greatly exceed the apparent variance

212(1 + 20%7'/N. Even worse, the estimate fi is not consistent unless the assumed
moments up to fourth order are correct.

It is of interest to examine the conditions under which, to the order of approximation
considered here, no further information concerning u may be derived from the sample
variance, s%, beyond that already included in Y. There is a connection here with first order
sufficiency and ancillarity (Cox, 1980). The required condition, that the residual from s?
after linear regression on Y should be first order ancillary for p, implies k3 = 26%u° a
property of the gamma family.

EXAMPLE 6: Over-dispersion. The dispersion parameter o” arises in a fairly natural
way when the data are distributed according to the normal, inverse normal or gamma
distributions. The usual models for discrete data including the Poisson, multinomial and
non-central hypergeometric families do not include such a parameter. In applications it is
well known that the variance often exceeds that predicted by the Poisson or multinomial
distribution. Bartlett (1936) used the approximate relation var(Y) = (1 + by for
counts from field trials. Armitage (1957) found var(Y) = 02sz with 1 < b; < 2 and, for the
most part, o> > 1. Finney (1976) suggests estimating b from a large body of data and then,
subject to occasional checks, to assume b constant. Fisher (1949), treating continuously
distributed data as “pseudo-counts”, took b; = 1 and found o2 = 0.2 approximately. The
main point here is that if b is assumed known, quasi-likelihood estimates may be used,
thus avoiding the difficulty of constructing a probability model for over-dispersed discrete
observations.

Finally, in problems involving random effects it would often be appropriate to examine
components of dispersion using the scale defined by o® rather than the more usual
components of variance. For example, if effects were multiplicative it might be appropriate
to examine components of the coefficient of variation, this, rather than the variance, being
constant across groups.
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TABLE 1
Quasi-likelihood functions associated with some simple variance functions.

v(p) (us y) name restrictions
o? Yo(y — )2 normal —
o’u ylogu—p Poisson w>0y=0
o’u? —y/u—log u gamma w>0y=0
2
2 p i LA — #0,1,21>0,y=0
o' M”(l_p 2_p> P#0,L25pu>0y=
a’e" —(y—we™*+e™* — —
olu(l — w ylog(lﬁu> + log(1 — ) binomial O<pu<lj0=sy=1

.

7. A higher order theory. If further distributional or moment assumptions can be
made it may be possible to develop a more refined theory than that given here. For
example, if the log likelihood is in the exponential family, exact inference for g is possible
provided that (1) can be written in the form @ = X8. On the other hand, if the exponential
family is curved, conditioning on ancillary statistics has an effect of order N~ and cannot
be ignored when improved approximations are required. The presence of the nuisance
parameter ¢° complicates matters: in particular, an appropriate definition of ancillarity is
required.

Secondly, if higher order moments are known to be different from those obtained from
(2), inferences based on the quasi-likelihood would appear to be inefficient. In simple cases
some gains might be made by combining information from several low order moments.
Whatever the form of the final estimator, an important consideration is that a good
estimate of its precision should be readily available.
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