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TESTING FOR NONSTATIONARY PARAMETER SPECIFICATIONS
IN SEASONAL TIME SERIES MODELS'

By Davip P. Hasza AND WAYNE A. FULLER

Kansas State University and Iowa State University

Let Y, be an autoregressive process satisfying Y, = a1 Y:-1 + a2Y,—a +
a3Y;—q4-1 + e;, where {e;}7-0 is a sequence of iid(0, 6?) random variables and d
= 2. Such processes have been used as parametric models for seasonal time
series. Typical values of d are 2, 4, and 12 corresponding to time series
observed semi-annually, quarterly, and monthly, respectively. If a; = 1, az =
1, a3 = —1 then AA;Y,: = e, where A,Y, denotes Y, — Y,—,. If (a1, a2, a3) =
(1, 1, —1) the process is nonstationary and the theory for stationary autoregres-
sive processes does not apply. A methodology for testing the hypothesis
(a1, az, a3) = (1, 1, —1) is presented and percentiles for test statistics are
obtained. Extensions are presented for multiplicative processes, for higher
order processes, and for processes containing deterministic trend and seasonal
components.

1. Introduction. Let the time series {Y,} satisfy the seasonal autoregressive model
(1.1) Y=Y+ aYra+ azYea + e, t=12...,

where the e; are independent identically distributed random variables with mean zero and
variance o7, abbreviated iid(0, 6%). It is assumed that d = 2 and that the initial conditions
(Y-a, Y_g41, - -+, Yo) are fixed constants. It is further assumed that a’ = (a1, ag, az) and
o? are unknown and that n observations (Yy, Yo, -+, Y,) from a realization of {Y,} are
available.

If the roots of the associated characteristic equation

(1.2) mé¥*! —am? — aem — az =0

are less than one in modulus then Y, is, except for the transient effects of the initial
conditions, a stationary autoregressive process of order d + 1. In the stationary situation
the asymptotic theory applicable to the least squares (maximum likelihood when the e, are
normally distributed) estimator of a is well-known. See, for example, Fuller (1976) or Box
and Jenkins (1976). However this large sample distributional theory is not applicable when
the stationarity conditions are violated.

Several authors including Box and Jenkins (1976) have used nonstationary models for
seasonal time series. Typical values of d in such applications are d = 2, d = 4, or d = 12
corresponding to time series observed semi-annually, quarterly, or monthly, respectively.

Under the hypothesis Hy:a’ = (1, 1, —1), we have A;A;Y, = e, where A,Y; denotes Y,
— Y, In this situation Y, is nonstationary and has d + 1 characteristic roots with unit
modulus. Authors who have previously considered least squares estimation and hypothesis
testing for nonstationary autoregressive processes include White (1958), Anderson (1959),
Rao (1961, 1978), Stigum (1974), Dickey and Fuller (1979a), Dickey and Fuller (1979b),
Hasza and Fuller (1979), Evans and Savin (1981), and Hinkley (1982).

We shall present a testing methodology for the hypothesis Hy: a’ = (1, 1, —=1). The
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asymptotic distribution of the test statistic is characterized and percentiles are presented.
The test studied is the likelihood ratio test when the e, are normally distributed.

It is noted that model (1.1) may be unduly restrictive and extensions are presented for
higher order processes in which A;A,;Y, is a stationary time series. Extensions are also
presented for a multiplicative autoregressive process in which Y, satisfies

(1.3) Y — 1Y =a(Yiea — 01Yi—q-1) + en.
In terms of model (1.1) the alternatives to H, are assumed to satisfy o = —aia2 under
model (1.3).

An alternative model to (1.1) with a’ = (1, 1, —1) is
(14) ’ Yg = &)t + 231:1 68,[ + alefl + (Xngfd + athfdfl + e;

where the roots of (1.2) are less than one modulus and the §,/s are zero-one dummy
variables with §,; = 1 if # mod(d) = j. Testing of the hypothesis H,: {a’ = (1, 1, —1), ¢, =
Oforj=1,2, ...,d} is considered.

In Section 2 notation is established and preliminary order in probability results are
presented for model (1.1). In Section 3, asymptotic distributions for the least squares
estimator of a and the associated test statistics are established under H,. Extensions to
higher order processes and to model (1.4) are presented in Section 4. Tables of percentiles,
which permit applications of tests presented earlier, are given in Section 5.

2. Order results. Consider the autoregressive process

(2.1) Y=Y+ aYe g+ asYig1 + e, t=12,...,

where the e; are iid(0, 6®) and d = 2. The asymptotic results will not depend on the initial
conditions and we assume, for convenience, that Y_y = Y_4,; = ... = Y, = 0. It will be
convenient to reparametrize model (2.1) as

(2.2) Yi=B1Y1+ BoAYicr — Yica) + B3(Yica— Yia—1) + e

where B’ = (B1, B2, Bs) = (a1 + az + as, —as — a3, az). The condition that A,A;Y, = e, is
equivalent to 8’ = (1,0, 1). Define Z,= A, Y, = Y, — Y,_;and W, = A;Y, =Y, — Y,_,. The
least squares estimator 8 is given by

(2.3) B=(Xr v Y Y,

where , = (Y,—1, Wiy, Zi—a)'.
Letting [ -] denote the greatest integer function we have, under the null hypothesis,

(2.4) Zi="Zr-a+e=3Y4 era,
VVt = Wt~1 + e = th:l e = Ei;}) thj.

Under Hy: B’ = (1, 0, 1) we have (8 — B) = H,'h, where H, = Y7, ¢4/ and h, =
Yi-1 e, The test statistic we shall consider for testing H, is analogous to the usual
likelihood ratio F' test statistic in a fixed normal regression model. Define the test statistic

(2.5) P, = (365 h,H, lhn,
where
2= (n — 3)71 2;;1 {e: — (ﬁ - B)'1P¢}2.

@, is the test statistic that would be the output from most standard regression programs.
In the following we shall assume, for convenience, that n = md where m is a positive
integer. Define

(26) e = (ei) €rrdy * 0, el+1m~1)d)/) l‘ = 1) 2: MY d)

Zl = (Zz, Zl+d’ crry, ZL+(m~1)d),) i= 1; 2; Y d.
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Therefore, Z; =B e, for i = 1,2, - - - , d, where B is an m X m lower triangular matrix with
(B);,=1fori=j. Let A =B'B.
Define R, = (R1., Ron, - -+, R1:)’ by

—-1/2 —3/2 —-5/2
Rln =n / W,L, Rzn =n / Yn, Rgn =n / Zz‘l Yg,
-1 \d 2 -2 d -2 \d d
(2.7 Run=n =1 Zn i, Rs.=n Ei:l ejAe;, Ren=n Zi=1 2j=1 e'iAe,-,
—4 \d d 2
R7n =n i=1 21:1 e:A €.

LEMMA 2.1 Let Y, satisfy model (2.2) with B’ = (1, 0, 1). Assume the e, are iid(0, o?)
andd = 2. Let D, = diag{n™%, n™", n™'). Then

dR7n - Rén + 2R2nR3n (l/z)dR%n %R%n

D, (¥-1 i) D = dRe.  Ren |+ Op(n7'),
R5n

D, (X-1 Yrer) = (RinRan — Ren, %R, — Y50%, YoRun — %0%)’ + 0, (1).

Proor. The methods needed to prove the result for each element of D, (X1 YY)D,
and D, (Y%= y:e;) are similar. As examples of the methods employed, the results shall be
proved for n™* ¥7_; Y-, and for n™' Y11 Z,_qe,.

The ¢th element of A Y%, e, is given by Y, — Y(,—14. Therefore

Y1y eiA% =Y (Yo — Yi-1a)?
=mY: —2Y, Y% Yi-na + 0 YH-1)d
=mYs—-2d7'Y, Y Yo+ d7 Y Y4 O,(nP).
It follows that
Tty Y =dn Tt Y Y elA% — n Y2 + 207, S5 Yo + O,(n7Y)
= dR:, — R3, + 2Rz, Rs, + O, (n7").
Now consider

n_l Z?:l Zt_de, = n71 25;1 Z,e, - 0'2 + Op(l) = n71 ;i=1 Z;ei bl 0'2 + Op(l)

= 1 1
= %— Y1 (Zhoie1 + nd7'0%) — 0® + 0,(1). = 5 B =3 o’ +0,(1). 0O

‘

3. Asymptotic distributions. Let A, = (Aym, Aom, «+ +, Amm)’ denote the eigenvalues
of A where A1 > Aom > -+« > Apm, and let Xin = (Xitm, Xizm, * -+, Ximm) denote the

eigenvector of unit length associated with A;». We have (see Dickey and Fuller, 1979)
31) Am = Yasec? {(2m + 1) Y(m + 1 — )7},
’ Xgm = 2(2m + 1)"2 cos{(2m + 1)"1(2i — 1)(j — Y)).

Define the orthogonal transformation (ef, €5, « - -, %)’ into (Wim, Wom, + - -, Ugn)’, where
u;m = (uzlm) Uigmy =+, uimm.),, by

(32) Uijm = Z;’LI Xjtm€i+(t—1)d-

LemMa 3.1. Let vy, = 2{(2t — )o} " (-=1)"*' for t = 1, 2, - ... Then under model (2.2)
with B’ = (1,0, 1)
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(1) Rin=2"2d7 2 YLy Y1t Yettum + 0p(1),

(ii) Ron =2"2d™* YL, Y11 ¥7 tum + 0,(1),
(ili) Rs, = 22d ™2 YLy Ty (vi — ¥ thum + 0,(1),

(iv) Rin=2"'d " Y1 (71 yettum)® + 0,(1),

(V) Rsn=d > Yty Yy yiuim + 0,(1),

(Vi) Ren=d > Y71 (Bi51 yeltum)® + 0,(1),
(Vi) Ron=d ™" YL Y70 yiuka + 0,(1).

Proor. Consider Ry, = n~"*W,. The u,, are uncorrelated and W, is a linear
combination of the u,,,. Therefore
Ry, =n"%62 YL, Y Cov(W, tum)lum
=n 2 2YNL, N N Covien, tm)ttum = d 2 Y Y Yo liim,

where 1 = m ™2 Y7 Xiom. We have

, 1
Nem = 2@2m + 1)V 2m 2y, cos{(Zm +1)742t - 1)(3 - §>7r}

. 2t —1
=21/2m12_’,."_lcos{< 5 )%w}+o(1)

where 1, — 7 as m — oo, where

1

. 2t —1

0= ZI/ZJ’ cos{( 3 >wy} dy = 2°2((2t — 1)7} "1(=1)"*! = 21/2y,.
0

We have Y2 77 = 1 and because the X,,, are orthonormal Y 7-; 07, = 1 for each m. Let
¢ > 0 and choose M large enough so that, for m > M, Y% .1 77 < e. Then for m > M

N M= M) =201 (e — Nam)® + Dfnrer (0 — Mum)™

Because 1 — 1 as m — oo, the first term can be made arbitrarily small, say less than
Y ¢2 by choosing m large enough. For the second term we have

Slmrer e = Mem)” = 2 Xare1 0 + 2 Y arer Mom < 8.

Therefore Y721 (7; — nm)*> — 0 as m — . Because the .., are uncorrelated it follows that
Ry, — d* Y%, Y"1 nUun converges in mean square to zero and the first result is
established. The other results may be proven in a similar manner. 0

Let (V,;1=1,2, ---,d;j=1,2, ---} be an array of independent normal random
variables with mean zero and variance ¢°. Define R = (Ry, Rs, - -+, R7)" a.e. by
(R, Ry) = (2V%d ™ Rili X7 v, Vi, 2272 B 55175 Vi),
(3.3) (Rs, Ry) = (2V%d P ¥L Y5 (v — vV, 277 il (B7-10v, V)P,
(R, Re) = (A XLy Y v) Vi, d 2 351 (Bl v, Vo)),
Ri=d* YL Y5y Vs
In Theorem 3.1 we characterize the asymptotic distribution of R, and as corollaries obtain

the asymptotic distributions of # and @ .

THEOREM 3.1. Let the assumptions of model (2.2) hold with B’ = (1, 0, 1). Then
Rn —>y R.
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Proor. Let K =1 be a fixed integer. One may then apply the Lindeberg central limit
theorem to establish that (uiim, ««+, Uitm, *+ <) Udim, -+, Udkm) —2 Nar(0, 6°Ia) as
n — o. The result may then be established by an application of Lemma 6.3.1 of Fuller
(1976). See also Diananda (1953) and Theorem 3.1 of Hasza and Fuller (1979). O

CoRrROLLARY 3.1. Under the assumptions of Theorem 3.1
{(n*(Br — 1), nf>, n(Bs — )Y —o H'h,

where
4R, — R: + 2R,Ry % dR: % R}

H= % dR3 dRs Re |,

Y% R3 Rs R;s
h=<R1R2—R6,1/2R%——1/202,1/2R4—1/202>.

ProoF. The result follows from Theorem 3.1 because H is nonsingular with probability
one.

COROLLARY 3.2. Let the assumptions of Theorem 3.1 hold and let ® )5 be defined by
(2.5). Then ®P 3 -4 (3 6*) 'TW'H 'h.

In Table 5.1 we present the critical points for @ ; for various values of n and d and the
limiting values of the critical points as n — .
Often a seasonal process is modeled as a multiplicative seasonal autoregressive process.

(3.4) Yi— 1Yo =¢2(Yiea— 1 Yi-q-1) + e

If $1 = p2 = 1 then A;A,; Y, = e,. To test the hypothesis that this is so, consider the one-step
Gauss-Newton procedure of estimating ¢, and ¢, with initial values ¢; = ¢, = 1. Under the
null hypothesis the procedure results in the regression of e, on W,_; and Z,_,, where W,
=A;Y,1and Z,_;=A, Y, 4. Let ®? 5 denote the usual F-type statistic constructed to test
¢1 = ¢o = 1. From Theorem 3.1 it follows that ®2, — (20°) 'ThiH7'h;, where H, is
obtained by deleting the first row and column of H, and h; is obtained by deleting the first
element of h. Percentiles of this test statistic are given in Table 5.1

4. Extensions. In this section we shall consider processes for which AA;Y; is a
stationary autoregressive process. We consider the model

(4.1) Y. =B1Y 1+ Bo(Yio1 — Yiea1) + Bs(Yiea— Yieao1) + 21-160, X, + ey,
where X; = A;A;Y, and the e, are iid(0, ¢°) random variables. Note that under Hy: 8’ =
(1,0,1)
(42) Xt = ijzl 0]Xt_} + e;
and X, is a pth order autoregressive process. We assume that the associated characteristic
equation
(4.3) mP =32 ,0m?7 =0
has roots my, ms, «++, m, with |m,| <1lfori=1,2, .-, p.

Let 8 = (6,, 62, ---, 6,)(61, 62, ---, 6,)". The error in the least squares estimator of
(B, 8") is given by

((B=BY, O—0)Y = (i1 ) ™ N1 e,

where ¢, = (Y,—1, W1, Zi—q, Xs—1, Xi—2, - - -, Xi—p)’. Because {X;} has characteristic roots
less than one in modulus, /-, 6, # 1. We then let ¢ = 1 — 7, §, and note that ¢ # 0.
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TABLE 5.1
Empirical percentiles for test statistics
d=2 d=414 d=6 d=12

0.90 095 0.99 0.90 0.95 0.99 090 0.95 0.99 090 095 0.99

10 252 324 509 246 3.06 449 242 3.00 435 237 293 4.23
20 248 3.09 451 244 301 430 241 297 424 237 292 4.19

(3)
Pns 50 245 3.02 429 244 299 422 241 296 419 237 292 417
o 244 298 420 244 298 419 241 296 4.17 237 292 416
10 833 10.08 14.86 8.95 1042 13.72 10.09 11.53 14.58 1349 15.13 1847
o 20 7.36 858 1147 853 9.69 1233 9.72 10.97 1356 1340 14.78 17.76
"I 50 697 793 992 826 928 1136 954 1068 12.86 1324 1455 17.46
®© 6.67 750 917 804 896 1090 936 1039 1243 13.16 14.41 16.93
10 531 637 936 432 496 635 399 446 556 354 3.84 447
DL+ 20 444 509 6.69 394 444 542 371 408 487 340 365 4.18
"It 50 406 454 563 373 412 496 357 390 459 329 352 405
o 381 422 505 360 393 462 345 373 435 322 344 3.88
10 261 346 576 258 3.36 520 253 328 504 246 319 4.90
o 20 259 334 517 254 329 499 250 324 492 245 317 4.84
n-2 50 255 327 499 253 326 492 249 322 488 245 316 4.83
o 252 324 493 252 324 490 249 320 487 245 315 4.82
10 794 9.77 1472 984 11.68 1587 11.75 13.68 1791 17.37 19.53 24.22
PR 20 743 889 1203 963 11.12 1439 1157 1324 16.81 17.29 19.24 23.65
" 50 7.23 844 1130 941 1078 13.82 1146 1293 1630 17.21 19.15 23.18
o 705 816 1048 928 1059 13.26 11.36 12.82 1572 17.20 19.08 22.61
10 439 530 764 387 447 584 364 411 515 337 368 431
A 20 387 450 6.00 359 405 508 344 384 461 324 350 4.04
n—d-3

50 361 414 526 345 386 474 334 368 438 316 340 3.90
o 345 392 488 335 373 448 326 358 423 311 334 380

THEOREM 4.1. Let Y, satisfy model (4.1) with e, that are iid(0, o2). Let H, h be as
defined in Corollary 3.1. Then under Hy: B8’ = (1, 0, 1)

(i) {(n*(B1 = 1), nf2, n(Bs — 1)}’ =4 cH'h,
(ii) n"%@ — 0) -4 N,(0, T"'¢?),
where (I'); = lim ;. Cov(Xy, Xi+ji—j)-

ProoF. Define

WT = 25=1 €, Zj- = thécll] €t—day, Y;r = 25':1 ZJT.

t

It is not difficult to show that the asymptotic properties of (Y 7-: ¢:¢:) (X 7=1 Yze;) are not
affected by replacing Y,—1, W;_,, and Z,_; by c'lYil, c‘le;l, and c_IZtT_ , respectively.
Furthermore

27=1 Y Xe = Op(n2), Z?=1 Wi X = Op(n), Z7=1 Zi—aXi = Op(n),
i=1,2 -++,p.
The result then follows from Theorem 3.1 and the well-known asymptotic distributional

theory for stationary autoregressive processes. [

Now let @ ,_3 denote the test statistic for testing Ho: 8’ = (1, 0, 1) analogous to the
usual Fs ,_,_3 test statistic in a fixed normal regression model.
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COROLLARY 4.1. Let the assumptions of Theorem 4.1 hold. Then
oY, 3 —>4(86>) ' hH'h
where h and H are defined in Theorem 3.1.

Because of Corollary 4.1 the tables giving the percentage points of ® > ; of Corollary 3.1
are also applicable for ®$),_; in large samples.

An alternative to model (2.1) is given by a stationary time series with a deterministic
seasonal component and a possible linear time trend. Consider model (1.4) and the
hypothesis H;: {a’ = (1,1, — 1), §{, =0for j= 1,2, ..., d}. The test H; can be used to
discriminate between the two types of processes: one having nonstationary stochastic trend
and seasonality, the other having deterministic trend and seasonality. We denote by
&P, the usual F type statistic for testing H; and denote by @ ,_3 the F type statistic
for testing H»: a’ = (1, 1, —1). The percentiles for these statistics are presented in Section
5. The characterization of the asymptotic distributions follows along the lines of Section 3.
Details are presented in Hasza and Fuller (1982).

5. Percentiles for test statistics. In Table 5.1 estimates of the percentiles of the
test statistics discussed in Sections 3 and 4 are presented. For the finite sample sizes the
statistics were obtained from samples using the model A;A;Y, = e, with zero initial
conditions. It is noted that the initial conditions do not affect the asymptotic distributions.
The initial conditions will affect the small sample distribution of ®; but not the
distribution of ® 4 4 or of ®#,. The e, were generated as normal (0, 1) random
variables using a random number generator discussed in Marsaglia, Ananthanarayanan
and Paul (1978).

To estimate the percentiles of the asymptotic distributions Corollary 3.2 was used. The
v, sequence was truncated at { = 72 and adjusted so that the first eight absolute moments
of the resulting statistics closely approximated the moments of the R,’s of Theorem 3.1.
The estimated standard errors for the estimated percentiles are about 0.7 percent of the
table entries for finite values of m and about 0.5 percent of the table entries for the
asymptotic distributions. For finite values of m the empirical percentiles are based on
25,000 independent realizations of the sample statistics. For the asymptotic distributions
50,000 independent realizations were used.
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