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ON MODEL SELECTION AND THE ARC SINE LAWS!

BY MicHAEL WOODROOFE
University of Michigan

Generalizations of the arc sine laws are shown to provide insight into the
operating characteristics of certain techniques for selecting models to fit a
given data set, when the available models are nested. As a corollary, one sees
that a popular technique may be expected to include about one superfluous
parameter, even if the sample size is large.

1. Introduction. There are several techniques which may be used to select an
appropriate model from a class of available models to fit a given data set. In particular,
Mallows’s (1964, 1973) C, criterion and Akaike’s (1974) entropy maximization criterion
have been recommended for use in model selection. Assuming that one of the available
models is correct, one may inquire about such operating characteristics as the probability
of finding the smallest correct model and the distribution of the number of superfluous
parameters in the model selected. Here these operating characteristics are studied in the
special case that the models are nested—as, for example, in polynomial regression and
moving average models for time series. In this case there is a natural relation between the
operating characteristics and certain generalizations of the arc sine law, as described by
Feller (1966, Chapter 12), for example. Briefly, the selection techniques choose the model
for which a criterion is maximum; and the generalized arc sine laws determine the
distribution of the index for which sums of i.i.d. random variables attain a maximum. So,
if the model selection criteria form sums of i.i.d. random variables, the arc sine laws may
be used to determine the distribution of the index of the model selected.

In Section 2 the relation between the operating characteristics of Akaike’s technique
and the generalized arc sine laws is indicated in the simplest case—when the data are
independent, normally distributed random variables with unknown means and unit vari-
ances. Then the generalized arc sine laws are reviewed in Section 3, and applied to the
normal case in Section 4. A natural extension then yields the operating characteristics for
Mallows’ C, in Section 5. In Sections 6 and 7, the simple normal example is shown to
provide an asymptotic distribution for the number of superfluous parameters for models
with a well-behaved likelihood function and a large sample size. As a corollary, it is noted
that Akaike’s technique is inconsistent in large samples. The same is true of Mallows’ C,,
but not of Schwarz’s (1978) Bayesian criterion. These remarks are detailed in Section 8.

There are several related articles. The formulation of the problem as one of selecting
from multiple hypotheses is similar to that in Anderson’s (1962) determination of the
degree to use in polynomial regression. Anderson developed optimal procedures. The
emphasis here is on the properties of suboptimal, though closely related, procedures. That
Akaike’s technique is inconsistent in large samples was shown by Shibata (1976) for
autoregressive processes and more generally by Hinkley (1976) in an unpublished manu-
script. Much of the present Section 6 was anticipated in the latter. Recently, Shibata (1980,
1981) has studied model selection techniques under a different limiting operation. Under
this operation, Akaike’s technique and Mallows’s C, are asymptotically efficient.

2. Akaike’s Criterion. This technique starts with a large model which is assumed
to be correct, but possibly redundant, and eliminates parameters which appear to be
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superfluous. Thus, let X = (X;, - -+, X,,)’ denote a random column vector having a density
f(.; 8, where 8 = (6, - - -, 6)" is a vector of unknown parameters taking values in an open
subset Q C R*; forj=0, -+, k, let

Q,={0€Q:0,=0,i=5+1,---,k};

and let H;: 6 € Q, be the assertion that the smaller model, with @ replaced by ;, contains
the true distribution of X. Thus, the models are assumed to be nested, as in polynomial
regression or moving average models for time series. Next, let

A j = supseg, log f(X; )

be the maximum value of the log likelihood, assuming Q;, j = 0, --., k. Then Akaike’s
technique selects the model for which

AIC(j) = A, — j = max.

Now let 8° denote the true value of the parameter. That is, suppose that X has density
f(+; 8°. Then Akaike’s technique selects the model for which

AIC*(j) = A} — j = max,
where A} = supseq, log f(X; 0) — log f(X; 6°)

is the log likelihood ratio statistic for testing § = §° vs. § € Q,,j = 0, - -+, k. Thus, the
index of the model selected is

(1) Jr = min[j: AIC(j) = maxo<;<x AIC(Z)];

and AIC may be replaced by AIC*.

To see the relation between Akaike’s Criterion and the generalized arc sine laws,
consider the simple special case in which n = &, X, --., X; are independently, normally
distributed random variables with unknown means 6, - .. , 6, and unit variances, and 6°
= (0, .-+, 0). Then,

1. . 1
AIC*(j)=— f:leZ"j=Zji=1 <§X?_1)=Sjy say,

2
forj=0, ..., k. Observe that Si, - .-, S; form an initial segment of a random walk with
negative drift, since E(% X} — 1) = =%, i=1, --., k. Thus,
(2) Jr = min{j: S; = maxi<i<x Si};

and o/}, is the number of superfluous parameters included, since §° = 0. The distribution of
random variables of the form oJ, have been studied extensively in the context of general
random walks S;, S, - -+ . Some of the relevant results are reviewed in the next section.

3. The generalized arc sine laws. Let Y1, Y;, - - be any sequence of i.i.d. random
variables, and let S, j = 0, denote the associated random walk, Sy =0and S; =Y, + ...
+ Y;,j = 1. Further, let po = go = 1,

p;j=P{$>0,...,5;>0}

and

q;=P{$=0,...,8,=<0}, j=1
Then
(3) P{J.=j} =piqr-j, for0<j=sk k=1,

where J,, £ = 1, are defined by (2). The quantities p,;, j = 0, and ¢;, j = 0, may be
determined from the generating functions
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4) P(s)=Y%opis’ and Q(s) =Y%o0q;s/, 0<s<],
in view of the following, remarkable identities. Let

a,=P{S,>0}, n=1,

then

(5a) P(s) = exp{ZLl % ans"} , 0<s<1,
and

(5b) ' Q(s) = exp{ZLl% - a,,)s"} , 0<s<l.

For example, if Y; has a continuous, symmetric distribution, then a, = % for all n = 1, so
. k —% —1/2 .
that P(s) = Q(s) =1/v(1 —s),0<s<1,and P{Jr=j} = (1) ( j k—j for0<j
< k and k£ = 1. That is, J; has the classical, discrete arc sine distribution as described by
Feller (1968, Chapter 3), for example. The results of this paragraph are taken directly from
Feller (1966, Chapter 12).
The mean and variance of J, may be computed easily from (3). In fact, E(J:) =
S5 0D jqr-jis the coefficient of s*! in the expansion of P’(s)@Q (s); and the latter is easily
seen to be a; + - -+ + ax. So,

(6) E()=a1+ - +ar, k=1,
and D(Jp) = Z,ﬁlja,- - ZZ a;a;, k=1,
1=i<j<k

by a similar argument.

There is natural interest in the distribution of JJ, when £ is large; and, if E(Y7) <0, then
the latter is easily determined. In fact, if E (Y;) <0, then the series Y n_; n ', is convergent
and

(M limy o g = lims1 {(1 — $)Q(s)} = eXp(- Zn-1 % a,.) =g, say;

S0, P{dJr=j} > q.pj,
as k— o for all j = 0.

4. Normal case. Now reconsider the simple normal case in which X;, -.., X, are
independent normally distributed random variables with means 6:, ---, 6; and unit
variances. If §, = 0 for all { < k, then AIC*(j) =Y, + --- + Y;forl1=j<kwithY; =
Y% X? — 1for 1 < i < k; and the generalized arc sine laws may be applied directly to find the
distribution of /3, with ‘

a,=P(x}>2), 1=sj=<k

For example, the limiting distribution of J, as & — o is im Py {J, = j} = q.p; for j =0,
where p;, j = 0, are determined from (5) and g is as in (7).

Table 1 lists the exact distribution of <, for £ = 5, 10 and the limiting distribution as %
— o, Observe that the probabilities approach their limits quite quickly, but that the
convergence of E (J) is slower. Observe also that the limiting distribution assigns slightly
more than 1% of its mass to integers j > 10. Two of the numbers in Tables 1 and 2 are of
special interest. If § = 0 and k is large, then the probability of correctly determining that
0 = 0 is approximately 0.712, but the expected number of superfluous parameters included
is approximately 0.946.

The exact computations for the special case # = 0 provide bounds for the general case.
To see how, let
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TABLE 1
The Distribution of Jy for k = 5, 10, .
J k=35 k=10 k=
0 .736 718 712
1 117 113 112
2 .061 .058 .057
3 .038 .035 .035
4 .027 .023 .023
5 .022 .016 .016
6 .012 .011
7 .0088 .0083
8 .0067 .0061
9 .0054 .0046
10 .0047 .0035
> 10 0115
E(J2) 571 791 946

The computations were done on an Apple II microcomputer, using formula
(24.4.6) of Abramowitz and Stegun (1970) to compute the Chi squared distribu-
tion function. E(J,) was computed from (6).

() Y (J; 0) = Po(Jr > ),

forj=0,..-,k,k=1,and 0 ER* IfH € Q, — Q._,, where 1 = r < k, then v, (r + j; 0) is
the probability that the criterion includes more than j superfluous parameters in the model
forj=0,..-,k—r—1

THEOREM 1. Forl=r<kandO<j<k-r,

supsee,—o,-, Yr(r + J; 0) = yr—r(j; 0).

ProoF. LetSy=0and S;=Y,+ .-- + Y forl=j=<k.Thend,>r+jiff S,; >

max(So, -+, Sy+,) forsomei<k—r. If6 € Q. — Q,_,, then
Po(Jr>r +]) = Pg{Sr.H' > max(So, ey SH.,'), Ji<k- r}
9) = Pe{S;+i— S, >max(S,—-S,, ---,S+,—S,),Ji<sk—-r}

= Py {S; > max(So, -- -, Sj), Ai<k-r}= Ye—r(J; 0).
Moreover, the difference between the first and second lines in (9) is at most
Py{max(0, Sy, ---, Sr4j) >max(S,, --+,S+;),Ij=k —r} = Py{S, <max(, -- -, S,)}

which tends to zero as 6, — oo.

5. Mallows’s criterion. Now consider a linear model
X=MB+e¢,

where M is an n X k matrix of full rank 2 < n and ¢ = (&1, .-+, &)’ has the n-variate
normal distribution with mean vector 0 and covariance matrix ¢2I,. Here the unknown
parameters are 8 € R* and ¢ > 0; and the nested models are

Q,={BER"Bi=0,i=j+1,.--,k}, 0= =<k

Let SSE; denote the error sum of squares when the model H;: 8 € Q ;, 0 < ¢% <  is fit; and
let * = SSE,/(n — k) denote the unbiased estimator of 62 when all % regression parameters
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are fit. Then
C,=6%8SE, + (2p — n)

has been suggested as a criterion for judging the adequacy of the models H,, 0 = p < k.
See Mallows (1964, 1973) and, for example, Daniel and Wood (1980, pages 86-90). The
distribution of the index

S = min{p: C, = min; <<, C,}

may be found by a natural extension of the techniques of Sections 3 and 4.

Let L, C R* be the linear subspace spanned by the first  columns of M, 1 < j < k; and
let e;, - - - ,.e, be an orthonormal basis for R" for which e;, - - -, e, is an orthonormal basis
for L, for 1 <j < k. Then

SSE,=Y1%,1Z7 1<j<k,
where Z,=e)Y, 1<i<n,

are independent normally distributed random variables with means 6, = e MB for 1 =i <
k, and e;MpB = 0 for k£ < i < n, and common variance o°. See, for example, Lehmann (1959,
Section 7.2). It follows that

Co—C,=62YE1Z] —2p=06"2S},
where Si=Nr,(Z}-26%, 1=p=<k
and S =min{j: S} = maxi<,<x SF}.

As in Section 4, the distribution of % in the special case that 8 = 0 provides a bound for
the general case. Let

An i (J; B) = Pop( > j)
for0<j<k 1=<k<n,BER"

THEOREM 1. Forl=s=r<kandO=<j<k-r,

SUPgeq,—ar—1 Bu i (r + 75 B) = Bnri—r(J; 0).
The proof of Theorem 1’ is similar to that of Theorem 1 and has been omitted.

Suppose now that 8, = 0 for j = 1, ..., k, so that Z,, ..., Z, are ii.d. normally
distributed random variables with common mean 0 and common variance ¢ Then, since
Z, -+, Zy are independent of 6%, the conditional distribution of %, given 6% may be found
from the techniques of Sections 3 and 4. Let

a,(t)=P(x;>2t), t>0,j=1;

let p,(¢) and gq,(¢), j = 0, be defined by (4) and (5) with a,, j = 1, replaced by a,(t),j =1,
for each ¢ > 0; and define q..(f) by (7) with a, replaced by a,(t) for ¢t > %. Then

(10) Poo( S =j|6°) = p,(6*/0°)qr,(6%/0”)

for 0 =j <k, 1<k <n, and ¢ > 0; and the unconditional distribution of % may be found
by integrating over the possible values of 2. In particular, the (unconditional) expectation
of % is

Eoo( %) = ¥)=1 Eoo{a,(6%/0)} = Y- P{F(j, n — k) > 2},

where #(j, n — k) denotes a random variable having the F-distribution on j and n — &
degrees of freedom, 1 <j < k.



MODEL SELECTION 1187

TABLE 2
Expected Values of ¢

k n
12 24 36 48 96 192 ©
6 1.274 873 .780 739 .683 .657 633
12 1.762 1.315 1.156 972 .899 .836
18 3.712 1.952 1.526 1.132 1.003 904
24 3.102 1.995 1.245 1.056 926

The computations were done on an Apple II microcomputer, using formula (26.6.5) of Abramowitz
and Stegun (1970) to compute the F distribution function and formula (26.4.6) to compute the Chi
squared distribution function. The last column gives the values of E( %) from Section 4.

Selected values of E,o(%) are listed in Table 2. Observe that the convergence of
E.o( %) to its limit is quite slow as n — o,

If n — k is large, then the distribution of 6%/0? is nearly degenerate at 1, suggesting that
the conditional probabilities in (10) might be expanded in a Taylor series about 1. This
expansion is detailed in Theorem 2. First, the derivatives of pi(t) and gq,(t) wr.t. ¢t are
studied.

LemMMmA 1. Forj = 1, the derivatives of p;(t) and q;i(t) wr.t. t >0 are

. .
(11) pit) =i, 7 a; (t)pj—i(t)
and
. .
(12) qi(t) = =Y 7 ai(t)g;-1(t),
where a;(t) = =W W/Dizleit )P (14 1)

denotes the derivative of a;(¢) w.r.t. t > 0 for i = 1. Moreover, (12) holds when j = © and
t > Y% too.

Proor. Let P(¢, s) denote the generat.ing function of p;(¢), 7 =0, for 0 < s < 1 and
t > 0. Then p;(t) is the coefficient of s/ in P(¢, s) = dP(t, s)/at; and

3 1 .
P(t, s) = { by H di(t)s‘}P(t, s), 0<s<l1,¢t>0.

Relation (11) follows immediately; and (12) may be established similarly for 1 =j < o.
Observe that | d.(¢) | + | dz(¢) | + - - - is convergent uniformly in ¢ = % + ¢ for any € > 0,
by Stirling’s Formula. Thus, for ¢ > %,

1
log g (¢) = = ¥ 72, 7 a;(t)

may be differentiated term by term. That (12) holds when j = » follows.
When iterated, (11) and (12) yield expressions for the second derivatives of pi(t) and
q;(t), j = 1. For example,

1
g,(t) = -3 7 {d.()q-: (t) + a:(t)g,—i ()}

for t > 0 and j = 1; and, using the uniform convergence of |di(t)| + |d2(¢)| + --- and
|di(¢)| + |d2(¢)| + ---, one finds easily that ¢;(t) — §u(¢) uniformly in ¢ on compact
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subintervals of (%, ) asj — oo.

THEOREM 2. Let k= k,, n=1, be integers for which0 <n — k— © asn— «. Then

. . .. . 1 1
Poo( % =J) = D1qr— + {D,qn—, + 2D,Gi—; + P, G-} <n —7 ) + 0<n ~7 )
as n — » for each fixed j = 0, where p, = p,(1), p, = p,(1), etc.

PrROOF. Since the probabilities are independent of o7, there is no loss of generality in
supposing that ¢® = 1. Let F, denote the distribution function of % and, for fixed j = 0, let
8n(t) = P, (t)qr—, () + 2D,(8)Gr—, (t) + p,;(£)Gr—,(t) for ¢ >0 and n = 1. Then, for any § >0,

1+68

1
Poo(H=J) = j P, ()qr—, (t)dF, (t) + 0( )
n—=Fk

1-68

1
(13) =D)qr—y +gn(1)<m)

1+8
+J %{gnu:)—gn(m(t—1>2an<t>+o< ! )
1 n—=Fk

-8

where ¢ denotes an intermediate point between ¢ and 1. Indeed, (13) follows from
elementary properties of the Chi squared distribution. Finally, it follows from Lemma 1
that g,., n = 1, are equicontinuous in ¢ on compact subintervals of (%, ®); so, given & > 0,
the last integral in (13) may be made less than e[ (¢ — 1)°dF,(¢) by taking § > 0 sufficiently
small; and since [(t — 1)’°dF(¢) = 2/(n — k), the theorem follows.

6. Asymptotics with large n. Now consider a sequence of problems, indexed by
the sample size n = 1. Suppose first that the parameter space  is the same for all sample
sizes. Thus, € is an open subset of R* for some & = 1; 0 € &; and the nested models of
interest are @, = {# €Q2:,=0fori=j+1, ---, k}. Thedata X;, -- -, X, are assumed to
have a joint density f, (-; §) w.r.t. a dominating (sigma-finite) measure for all § € Q for each
n = 1; so, the log-likelihood function may be written

L, (0) =log fu (X1, -+, Xn; 6), 0EQ,
for each n = 1. As in Section 2, the true value of the parameter is denoted by 6° =
@9, .-, 8%’ and the index of the model selected may be written
(14) Jor =min{j: A}, — j = maxo=,<x A — 1},
where
(15) A}, = suppeg, I (6) — L, (6°)
fori =1, ..., k and n = 1. It is shown that the simple normal example of Section 4

provides an asymptotic distribution for J,; as n — o, under some regularity conditions.

It is most efficient to state the regularity conditions directly in terms of the likelihood
function. In their statements, P denotes a probability measure under which X, ---, X,
have joint density f,(-; 8°) w.r.t. the dominating measure. Thus, the dependence of P on
n and 6° is supressed in the notation.

ConpITioN C1. For every € > 0,
SUp) 9-¢° =¢ Ln(0) — Ln(8°) —p —

as n — o, where || - || denotes the Euclidean norm.
If a maximum likelihood estimator exists, then C1 guarantees that it converges to §° in
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probability as n — co.

ConprTioN C2. For some g > 0, L, (f) is twice continuously differentiable in || § — 6°||
< g w.p.1 (P) for all sufficiently large n.
If C2 is satisfied, then the gradient and Hessian,

d a
Z,(0) = [6_01]“”(0)’ ’a_ekL"w)] ,
and
62
M, (6) = [WL,M'): Lj=1, .- ,k] ,
are v(s)lell defined for ||@ — 6°| < e and sufficiently large n. It is convenient to write Z, =
Z,(6°).

ConbpITION C3. Condition C2 is satisfied; and there are €1, 0 < &; < &, positive constants
ar, n = 1, and non-random matrices My, ||§ — 6°|| < & for which (i) a,— o, as n — oo, (ii)
M, are continuous in § and positive definite, (iii) Z./vVa, is asymptotically normal with
mean 0 and covariance matrix M = Mp, and (iv) supj - =, | @z’ M. () — Ms|le — O in
probability as n — o, where || - ||.- denotes the trace norm.

Conditions C1, C2, and C3 imply that a maximum likelihood estimator 6" exists with
probability approaching one, and that Vo (6" — 6% is asymptotically normal with mean
vector 0 and covariance matrix M ™', where M = Mjyo.

THEOREM 3. Suppose that conditions C1, C2, and C3 are satisfied. Suppose also that
0° € Q) — Qi for some h, 1 < h < k. Then

lim, P (Jur — h >j) = yr-r(J; 0)
forj=0,.--,k —h— 1, where y; is as in (8).

Observe that J,, — A is the number of superfluous parameters included in the model
selected.

ProOF. Since the distance from 6° to £, is positive for all i < A — 1, it follows directly
from C1 that maxe<,<pA}, —, — © as n — o; so,

Joe —h=min{j: Afr+, — (b +J) = maxos,<k-rAin+. — (B + 1)}

with probability approaching one as n — . Let ¢ be as in the statement of Condition C3;
define stochastic processes W,(t), t € R*, n = 1, by

t
Ln(ﬂ" + —) —L.8%, | t]|=eavan

Van
Wa(t) =
Ln<0° + "e—;t"> —L.6%, | t]>evon

andlet K, = {tE R*:t,=0fori=j+1,...,k}forj=1,.-.,k Thenforh<j<k,
A7, = supeex, Wa(t)

with probability approaching one as n — . Now, for each fixed ¢t € R*, W,(¢) converges
in distribution to W (t) = t'Z — Y%t’Mt as n — o, where Z has the normal distribution with
mean vector 0 and covariance matrix M; in fact, it follows from C3 that the joint
distribution of A}, — A, ---, A — k converges to that of S, - .-, S, as n — « where

S, = supiex (¢'Z — Vot'Mt) — j
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for 1 <j < k. Finally, by straightforward linear algebra, there are i.i.d. standard, univariate
normal random variables Y3, - - ., Y} for which

8=V, (BYZ=1), j=1,.-.,k
It follows easily that J,x — kA converges in distribution to
J =min{j : Sp+; = Maxo<i<k—rSh+i} = min{j : Sp+; — Sp = maxo=i=k—r Sh+1 — Sn},

which has the distribution (8), with & replaced by 2 — hA.

7. Asymptotics with large n and large k& Let R® denote the set of all infinite
sequences of real numbers x = (x;, x», - - -), endowed with the product topology; let © be
an open subset of R* for which (0, 0, -..) € 6; let

QU={0€0:0,=0foralli>k}, k=1,
and let
Q=U°Z=1ﬂk.

For each n = 1, let Xi, ---, X, be random vectors with joint density f.(-; ) w.r.t. a
dominating measure for some unknown 6 € §; let k,, n = 1, be a non-decreasing sequence
of positive integers for which k, — « as n — «; and suppose that Akaike’s technique is
applied with © replaced by & at the nth stage for each n = 1. Then the index of the model
selected is

J,, = mln{] N A,fj —j = maxOSisknA,"{i - l},

where A}, A%z, --. are defined by (15). The results of Sections 4 and 6 suggest that J,
may have the limiting distribution q..p;, j = 0, under general conditions.

As in Section 6, the true value of the parameter is denoted by 6°, and P denotes a
probability measure under which Xj, .-, X, have density f,(-; §°) w.r.t. the dominating
measure. It is assumed below that §° € €, and that Conditions C1, C2, and C3 are satisfied
when Q is replaced by ;. for all large k. In addition, the following condition is needed.

ConpiITiON C4. For every € > 0 there is an integer ¢, = 1 for which
(16) P{maX/osfsknA:/ — Y% (= 0} <e¢
for all sufficiently large n.

THEOREM 4. Suppose that §° € Q), — Q,—1, where h = 1. Suppose also that Conditions
C1, C2, C3, and C4 are satisfied. Then

lim,—oP(J, — h=j) = qup,

for all j = 0, where q. and p;,j =0, are as iﬁ (4) and (5).

ProoF. Givenj= 0 and ¢ > 0, there is an integer & = A for which |g;_; — ¢« | < e and

P*(Jn = Jns) = 1 — ¢ for all sufficiently large n, where J,,, is defined by (14). Since
lim P*{Jp,,— h =j} = qs-,p, as n — », by Theorem 3,

@opj — 2¢ < lim inf, . P(J, — h =)
=< lim supr—oP(Jr — h =J) = qop; + 2¢;

and, since ¢ > 0 was arbitrary, the theorem follows.

Condition C4 is related to the order of consistency of the maximum likelihood estimator
when k = k, — « with n, a difficult question. See, for example, Huber (1973) and Yohai
and Maronna (1979) for discussions of this question for M estimators. The following
example indicates that C4 may be replacable by a growth condition on k..
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EXAMPLE. Suppose that n is of the form n = km, and that (with the obvious
conventions)

X,=6+U,

where Uy, - -+, Urn are 1.1.d. with a common distribution G. Suppose further that G has
a positive, bounded, twice continuously differentiable density g (w.r.t. Lebesgue measure)
which has finite Fisher information and satisfies some other mild conditions, described in
the Appendix. Then Condition C4 is satisfied if

(17) logk=o0(m) or klogk=o0(n) asn-— oo.

The pfoof of this assertion is given in the Appendix. The point of the example is this:
in this simple regression problem, Condition C4 may be replaced by the mild growth
condition (17).

8. Remarks. In the simple normal example of Section 3, it was shown that the
probability of including no superfluous parameters is at least 0.712 and that the expected
number of superfluous parameters is at most one for all values of n. This seemed
reassuring—better than the author expected at the beginning of this study. These numbers
seem much less reassuring in the context of Theorems 3 and 4, however, since it is possible
to find the correct model with probability approaching one as n — . In fact, as explained
below, Schwarz’s (1978) Bayesian criterion will do so, under appropriate regularity condi-
tions.

To understand the behavior of Schwarz’s technique, suppose that X;, - .., X, are i.i.d.
random % vectors with common density

(18) 8o(x) = exp{0'x — y(0)}, xER*0€Q

with respect to some dominating, sigma-finite measure. Let  denote the natural parameter
space of the family (18); suppose that  satisfies the conditions imposed in Section 6; and
let A},, 0 <j =<k, be as in Section 6. Then Schwarz’s technique selects the model for which
A}, — %j log n is maximum, so the index of the model selected is

K, = min(j : A}, — %j log n = maxo<,<xA}, — Y%i log n).

If0°€ Q, — Q,._,, where r =0 and Q_, = @, then A%,/n converges to a negative value for
O0<j=r—1land A},/n— Oforr<j=<kw.p.lasn— o« So, liminf, ,.K, = r w.p.1. To
bound the distribution of the number of superfluous parameters, observe that

P(Ky =7+ i) < Yo P{AL, > %(j — rlog n + AL} < Yerws P{AL, > %(j — r)log n}

fori=1, ...,k — r. For smooth exponential families, the Chi squared approximation may
be applied in the tail to yield

P(A%, > blog n) ~ P(%x?> blog n) ~ {I'(%j)} "(blog n)"* 'n™® asn— o
fori=1, ...,k —r. See Woodroofe (1978) for details. Thus,
PK,=r+1i)=0{n""*log n)"*"* 1} asn— o,

fori =1, ..., k — r. The asymptotic behavior of Schwarz’s technique is quite different
from that of Akaike.

9. Acknowledgements. Thanks to Jan Kmenta for helpful discussions; and thanks
to the editor and referees for helpful criticisms and for several of the references.
APPENDIX

The assertion made in the Example in Section 7 is proved here. The notations of
Section 7 are used throughout.
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THEOREM 5. Suppose that n is of the form n = km, and that
Xj=0,+Uy 1=j=m1=<is<k

where Uiy, «+ - , Upm are i1.d. with a common distribution G. Suppose further that G has
a positive, bounded, twice continuously differentiable density g (w.r.t. Lebesgue measure)
for which the following conditions are satisfied:

®© ’ 2
@) y:J wdx<w,
. &)

(i) for some o, 0 < a <1, j {g(x)}* dx < oo, and

(iii) letting H (x) = log g(x), —o < x < oo, H” is bounded above,

SF=[—H" dG, and [ supy<. | H" (x — t)|* dG(x) < o for some ¢ > 0 and B > 1. Then
Condition C4 holds, if log k = o(m).

ProoF. The conditions imply that there are maximum likelihood estimators b, =
9,~(Xi1, e+, Xim) of 0; for which 6, — by oen, 0, — 0, are i.i.d. (with a common distribution
which is independent of 6y, ---, ) for each fixed £ and m; moreover,s/ﬁ (él — 6y) is
asymptotically normal with mean 0 and variance 1/.#as m — o; and, for every & > 0, there
is a p = p(e) for which 0 < p < 1 and

P{|6,—6,|=¢) < Cp™

for all m = 1 for some constant C (cf Wald, 1949).
To simplify the exposition, suppose that §° = (0, ..., 0)’ and that .# = 1. Then, for
l=¢=<k,

*,= Y m{Ld{d) — Li0)},
where

Lit) = % $m L (HX,) - ) — HX)), —<t<w.

Expanding L,, - .-, L in Taylor series about 91, cee, 9k, we find that
Ako= =% Y LI (t)Z 3,

where
Zmi=Ymb; 1=is<k,

and ¢, --., ¢ are intermediate points between 91, ey 6, and 0,--.,0. Let e > 0 be so
small that

®| ©

z 9
c= J Supp<{—H"(x — t)}g(x) dx = 3 =—-4;

and let
A={b;|<e forall i=1,-.--,k).
Then
P(A’) = Ckp™,
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which tends to zero as k — o since log 2 = o(m). Next, the terms L{(¢), --- , L¥ () are
bounded. Fori=1, ..., &, let

1
Vini = m Trisupyse — H'(Xiy = ), Wi = ViiZii- Ijij<o.

Then
A:ZIASI/ZEf‘;l Wmi, 15/5 k.

Now Wi, +-+, Wi are ii.d. for each m = 1; W,; converges in distribution to cx} as
m — oo, where ¢ < %, by the Central Limit Theorem and the Law of Large Numbers; and
Wi, m = 1, are uniformly integrable, by Lemma 2 below. In particular, the mean u,, =
E (W,.1) converges to ¢ as m — o; so, there is an mo for which w,, < % for all m = my. It
follows that

(19) P(max;< {skA:{— %[2 0, A) = P{maX(</5k/_1 f=1 1/2(Wmi - m) = 1/8},
= = o

for all m = m,. Finally, a simple adaptation of the proof of the strong Law of Large
Numbers shows that the right side of (19) may be made arbitrarily small for all m = m, by
taking ¢ sufficiently large. See Lemma 3 below. Since P(A) — 0 as k, m — o, Condition
C4 is satisfied.

LEMMA 2. Suppose that (i)-(iii) are satisfied; then for any y < B, supm=1E (W};) <
oo,

Proor. For sufficiently small ¢ > 0, there are positive constants C and 7 and a p,

0 < p < 1, for which
PO | <e1| Zni|>8) = Cle™ +p™)

for 0 < ¢ < evm; see Woodroofe (1979, page 806). Thus all powers of Z,,; are uniformly
integrable. The lemma now follows directly from (iii) and Holder’s inequality.

LEMMA 3. For each m = 1, let Y1, +++, Y be iid. random variables, w.r.t.
probability measure P = Py, for which
(20) E(Yn) =0 and supm=iE | Ymi[*< o

for some a > 1. If k = k,, — © as m — «, then for every 8§ > 0 there is an integer £, = 1 for
which

21) P(maxye renl ™" | $ict Yomi | > 8) <8

forallm = 1.

‘

ProoF. Consider ¢, of the form 4 = 29, where ¢ = 1 is an integer; let r = r,, be an
integer for which 2"7' < 2 < 2"; and let Y, = 0 for 2 < i < 2". Then, the left side of (21)
does not exceed

E;=q P(max;sz/ | 2§=1 Y,m‘ | > 1/2821).

By the martingale inequality, Condition (20), and Theorem 2 of Von Bahr and Esseen
(1965),

P(max <y | Yoot Youi | > %62) < (402N E | YE; Yoi |
and

El l2;1 Ym;|“SC-2j
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for all j = 1, ..., r for some constant C. Thus, the left side of (20) does not exceed
2967C ¥5-, (4)7“7", which is independent of m and may be made arbitrarily small by
taking g sufficiently large.
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