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ON THE E-OPTIMALITY OF PBIB DESIGNS WITH A SMALL
NUMBER OF BLOCKS!

BY GREGORY M. CONSTANTINE

Indiana University

It is shown that several families of PBIB designs with relatively few
blocks are E-optimal over the collection of all block designs. Among these are:
the Partial Geometries with two associate classes; PBIB designs with A; = 1,
Az = 0 and fewer blocks than varieties; PBIB designs with triangular schemes
of size n, \; = 0, \2 = 1 and block size k= n/2 (or \1 =1, As =0and k=n —
1); PBIB designs with L; schemes based on v varieties with A, = 0, A2 = 1, &
= (orA; = 1,A\; = 0 and either i — 1 = vv <k or <vv =i —1). The duals
of these designs are also E-optimal. In certain settings Partial Geometries are
the unique E-optimal designs. ’

1. Introduction and notation. The object of this work is to investigate the E-
optimality of certain discrete statistical experiments (chiefly PBIB designs) in the additive
setting of the one way elimination of heterogeneity. For v, b, & positive integers, we denote
by Q.. the collection of all £ X b arrays with varieties 1, 2, - .-, v as entries (2 <k <v).
Any such array d € Q,,, is called a design. The columns of d are called blocks. A design
is said to be binary if each block of d consists of distinct varieties; d is called equireplicated
if each variety occurs the same numbers of times throughout the whole array d.

Let a; be the unknown effect of variety i and B; be the unknown effect of the jth block.
In the additive model of elimination of heterogeneity in one direction, we assume that the
expectation of an observation on variety i in the jth block of d is a; + B;. The observations
are assumed uncorrelated with common (unknown) variance o2 Our main interest is in
comparing the variety effects ai, az, - -+, a,. The information matrix of variety effects
under this model is

kC; =k diag(rai, «++, rav) — NaN4u

where Ny = (na;), with ng; indicating the number of times variety i appears in the jth
block of d; rg; is the replication number of variety i in d. J denotes the matrix with all its
entries 1 and I is the identity matrix. By Aq; we denote the (i, j)th entry of NaN 5. It is
known that for any d, Cy is nonegative definite with row sums zero. Let further 0 = pao =
a1 =< -+ =< pau—1 be the eigenvalues of C;.

A design d* is called E-optimal over Q. under this model, if the maximal variance of
normalized best linear unbiased estimators of variety contrasts is minimal under d*. In
terms of eigenvalues, it is well-known that E-optimality deals with the association d — Ca
— ua1 and with the objective of finding a design d with maximal ps; over all of £,,54; see
Ehrenfeld (1955) or Kiefer (1959, 1978).

In the next section we show that a design d* € Q. with kue: = (v/(v — k))(r — 1)
(¢ — 1) and r = bkv™! integral, is E-optimal. As a result, a number of families of PBIB
designs (mentioned in the abstract) with A; and A, zero or one are proved E-optimal.
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2. Results. We denote by 1 the column vector with all its entries 1 and by </ the (not
necessarily square) matrix with all its entries 1. The following two lemmas provide upper
bounds for pq:. Various bounds can also be found in Chakrabarti (1963), Jacroux (1980a,
1980b), Cheng (1980) or Constantine (1981).

LEMMA 2.1. Let C be a v X v nonnegative definite matrix with zero row and column
sums. Denote the eigenvalues of C by 0 = uo < p1 < « - + < pp—1. Then the sum of entries in
any m X m principal minor of C is at least (m(v — m)/v) p1,1=m=v— 1.

Proor. Observe that a matrix obtained from C by row and (same) column permuta-
tions has the same eigenvalues as C. It will therefore be enough to prove the lemma for the
m X m leading principal minor of C. Call this leading principal minor M. Then

s (3 2(()-2)= (0)-22) () -2 ==

as stated. The inequality relies on the known fact that
. x'Cx
M1 = MiNy'1=0 —5—
x'x

1

and on observing that ( ( 0

) - % 1) "1 = 0 (since the 1 in (3) is m X 1). This ends the
proof. [

Our next lemma gives an upper bound for u;; when d € Q. is equireplicated.

LeEMMA 2.2. If an equireplicated design d € Q. contains a block which consists of
m distinct varieties, 2 < m < k, then

kpar < (k — 1)(mr — k).

v
m(v —m)

Proor. By eventually relabeling the varieties and reshuffling the blocks, we can
assume that the first block in d consists of 7411 1’s, na21 2’s + -+ and ngm m’s. Index the
rows and columns of C; by the varieties 1, 2, - - ., v (in this order), and let M, be the m X
m leading principal minor of C;. Observe, firstly, that Y% 74 = r and that

b 2 b 2 b
Zf=1 Nagj = Nai1 + E,_z Ng;= Zf=1 Naj=Tr.

Hence Y%, n%, = r — na: and therefore Y% n%;=n2%; + r — na. Secondly, note that
Y% Aaij, which is a sum of m(m — 1) nonnegative terms, satisfies

YR Aay = Z:"-L-j 22=1 Naildpu = Y ej Nail a1

Using these two inequalities and the fact that Y721 nq: = &, we obtain:

EI'Mal = mrk — Y72 Yo nly — Yoy Aay < mrk — Y1 (0% + 1 — Ras) — N, Raulan

=mrk — (3% nain)® — mr + Y1 nai = (kB — 1)(mr — k).

That kpa1 = (v/m(v — m))(k — 1)(mr — k) follows now from Lemma 2.1. This ends the
proof. 0O

Through the remainder of the paper, let the varieties in a design d € @, be always
labeled so that the replication numbers ry; satisfy rq; < rg2 < - -+ < rq,. We now prove the
following result:
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THEOREM 2.1. Letr=bkv™" be an integer. A design d* € Q. which satisfies kpa
= (v/(v — k) (r — 1)(k — 1) is E-optimal over Q. and its dual is E-optimal over Q5.

Proor. Let d be any design in Q... Then d is either equireplicated or it is not.
Suppose it is not. Then rq; = r — 1 and by Lemma 2.1 with m = 1 we have

kpg < (r—1) (% — 1) < kpa~,

vilrcn(k—l)svil(r—l)(k—1)<vfk
which shows that such a design is strictly E-worse than d *.

Assume now that d is equireplicated. We may also assume that d has a block which
consists of m distinct varieties, 2 < m < k. (Observe that if d has no such block, then the
information matrix Cy is the zero matrix, and hence for such d we have ps; = 0 < pg-;.) By
Lemma 2.2 we can write

kILdl Sm_(vv?nT) (k—1)(mr — k). )

Let Q(m) = —kpg-im?® + {vkpa+1 — v(k — 1)r}m + vk(k — 1). Note that

v
m(v——m)(k = D(mr — k) < kpar,
for all 2 =m < k& if and only if @(m) = 0, for all 2.< m < k. Since Q(m) is a quadratic in m
with negative leading coefficient and @(0) = vk(k — 1) > 0, checking that Q(%) = 0 would
insure that @(m) = 0 for all 2 < m =< k. By assumption kus+1 = (v/(v — k))(r — 1)(k — 1)
which implies —k’uq+1 + vkpar — v(k — 1)r + v(k — 1) = 0. In terms of @ this last
inequality is simply 27'@(%) = 0. Since % is positive it follows that @(%) = 0, as desired. We
have therefore shown

kpqr = (& — 1)(mr — k) < kpa-,

m(v — m)
for all 2 < m = k. This shows the E-optimality of d* over Q.. That the dual of d* is E-
optimal over £, follows from results of Shah, Raghavarao, Khatri (1976) and Cheng
(1980, page 203).

All the Partially Balanced Incomplete Block designs which we shall prove E-optimal
next, have E-optimal duals since (as we shall see) they satisfy the condition stated in
Theorem 2.1.

Connor and Clatworthy (1954) found the nonzero eigenvalues of the information matrix
of a PBIB design with two associate classes to be

kui=r(k — 1) + % {0 — M) (—y + VA) + Ar + A2)
and
kus = r(k — 1) + % {(A — M) (—y — VA) + A1 + Ag).

It is easy to see that p; < s if and only if A; < A;. y and A are expressed in terms of the
parameters of the association scheme as y = p%, — piz and A = (p%: — pls)? + 2(pl + p%)
+ 1; see Raghavarao (1971, page 126).

When specialized to PBIB designs Theorem 2.1 yields:

CoOROLLARY 2.1(a) A Partially Balanced Incomplete Block design with \; = 0, A\, = 1

and y — VA+1= 2k —vl)_(r: —v is E-optimal over all block designs; (b) A Partially

Balanced Incomplete Block Design with \; = 1, A, = 0 and 1 — y — VA =

— 1 —
W is E-optimal over all block designs.
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It follows from this corollary that Partially Balanced Incomplete Block designs with
parameters as below are E-optimal: (a) \; = 1, As =0, t = k(k — 1)(r — 1)(v — )" an
integer, pl; = (¢t — 1)(r — 1) + 2 — 2 and p?% = rt; (b) Partial Geometries with two associate
classes, as introduced by Bose (1963); (¢) A1 = 1, A2 =0and b < v; (d) Ay =0, A2 = 1,
triangular scheme of size n and block size £ = (n/2) = 3; (e) A; = 1, A2 = 0, triangular
scheme of size n and block size £ = n — 1; (f) A; = 0, A\, = 1, L, association scheme and
block size & = ﬁ; (g) A1 = 1, A2 = 0, L, association scheme and the block size % satisfying
eitheri—1=Vv<kork=vo=i-1

With regard to (c) the reader should also see Bose and Clatworthy (1955). They showed
that any PBIB design with A; = 1, A» = 0 and b < v necessarily has parameters as those
listed in (a), above. Examples of such E-optimal PBIB designs can be found in the
comprehensive tables of PBIB designs compiled by Clatworthy (1973) and the references
given there.

With the exception of settings which allow BIB or Group Divisible designs with A; =
A1 + 1, an E-optimal design is in general not unique with this property. And though
nonuniqueness prevails in general, if Partial Geometries exist in Q, ;. they are the only E-
optimal designs, provided that

bk(k—1)2> (B — 3)v® + (k + Dv.

This follows by first observing that the first paragraph of Theorem 2.1 and Lemma 2.2
narrow down the search to the class of binary equireplicated designs in which any pair of
varieties appears in at most one block. Now if a design d in this class is not a Partial
Geometry (r, &, ), then it has a block B and a variety  not in B with the property that at
least ¢ + 1 blocks of d contain i and have nonempty intersection with B. Lemma 2.1 applied
to the (2 + 1) X (k& + 1) principal minor of C; determined by i and the other % varieties in
B gives

Fpai=vk+ 1) wo—k—1D)"Y R+ Drk—1) —k(k—1) — 2t —2).

When the numerical condition given above is satisfied, this last upper bound for kg, is
strictly less than kus+1, where d* is a Partial Geometry.

Let us illustrate our remarks on uniqueness by an example. 15155 contains d*, a partial
Geometry of the symplectic type:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
d*: 3 8 11 1 15 9 14 12 4 2 183 5 10 6 7
6 3 65 7 10 15 11 13 2 14 9 4 1 12 8

Since the numerical condition is satisfied in this case, any E-optimal design in 5,153 must
be a Partial Geometry.
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