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Let X = (X, .-+, X,)' be an observation from a p-variate normal
distribution with unknown mean 6 = (6., .- -, 6,)’ and identity covariance
matrix. We consider a control problem which, in canonical form, is the problem
of estimating @ under the loss L(#, 8) = (6'8 — 1), where §(x) = (8:(x), - - -,
8p(x))’ is the estimate of @ for a given x. General theorems are given for
establishing admissibility or inadmissibility of estimators in this problem. As
an application, it is shown that estimators of the form 8(x) = (|x|?> + ¢)'x
+ | x| ™w(| x|)x, where w(| x|) tends to zero as | x| — ®, are inadmissible if ¢
> 5 — p, but are admissible if ¢ = 5 — p and § is generalized Bayes for an
appropriate prior measure. Also, an approximation to generalized Bayes
estimators for large | x| is developed.

1. Introduction. The control problem deals with a situation in which it is desired to
choose the levels of certain factors in a system so that the “output” of the system is at the
desired control level. The system could be an economic system, a production system, or a
biological system. (As an example of the latter, it might be desired to achieve and maintain
certain normal levels of certain chemical concentrations in a patient.)

Zaman (1981) considers a standard normal model of the control problem, in which the
output, 2, occurs as

(1.1) z2=0'y +¢

where @ is a p-vector of unknown coefficients of the system, ¢ is a normally distributed
error, and y is a p-vector of nonstochastic control variables to be chosen so as to achieve
some desired output z*. Suppose that the loss in achieving output z is (z — z*)? and that
an estimate 8(x) = (81(x), - -+, 8,(x))° of 8 is available, from, say, past normal data, x, on
the system. Zaman (1981) (see also Basu, 1974 and Zellner, 1971) then shows that the
problem can be reduced (with suitable redefinitions of variables) to the following problem.
Suppose X = (X, -, X,)' is a p-variate normal random variable with unknown mean 6
= (6., -+, 6,)" and identity covariance matrix, and that it is desired to estimate  under
loss

L(9,8) = (6% - 1)~

The estimator § is allowed to assume any value in R”, but the parameter space is restricted
to be ® = R” — {0}. Zero is excluded from the parameter space, because § = 0 corresponds
to a control system in which the inputs have no effect. (From a decision theoretic viewpoint,
it is necessary to exclude zero to prevent every estimator from being a Bayes estimator
with respect to the prior distribution which puts mass one at zero.)

As usual, an estimator will be evaluated in terms of its risk function R(@, 8), which is
simply the expected loss Es[L (0, §(X))]. A basic decision theoretic goal in any problem is
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ADMISSIBILITY IN A CONTROL PROBLEM 839

to classify the inadmissible estimators (those which can be improved upon in terms of risk)
and the admissible estimators (those which cannot be improved upon). This is of particular
interest in the above control problem because there is no “natural” estimator which can be
recommended without significant reservations. The natural estimators (the MLE and
uniform prior generalized Bayes rule) can be inadmissible. In such a situation it is desirable
to carefully pinpoint the “boundary” between admissible and inadmissible estimators,
since estimators on this boundary will typically be the most “objective” admissible rules
available. To see this, note that at the one extreme lie the admissible but highly subjective
proper Bayes rules, while at the other extreme lie the objective rules, which are typically
generalized Bayes with respect to very flat prior densities and are often inadmissible. If
one wishes to be as objective as possible (i.e., to use as little subjective prior information
as possible) while maintaining admissibility, the “boundary” is the right place to look for
an estimator. (This boundary is also of interest to Bayesians, in that estimators on this
boundary can incorporate prior information, but tend to be robust with respect to possible
misspecification of the prior distribution. Hence, to a robust*Bayesian, this boundary is a
natural place from which to select an estimator.)

A complete classification of estimators according to admissibility has previously been
done only for the case of estimating a multivariate normal mean under quadratic loss
(Brown, 1971). Recently, a number of powerful techniques have been developed, based on
work in Stein (1974), Brown (1979), and Brown (1980), which give hope of obtaining such
a classification in other problems. A major purpose in writing this paper is to provide a
relatively simple and thorough example of the implementation of these techniques. As
such, we will not consider in depth the practical issue of selecting an estimator for use in
this control problem. This question is considered further in Berliner (1981). Also, it should
be noted that the control problem treated here is probably too simplified for many
applications. The major limitations of the model (1.1) are that the control variables are
only allowed to enter linearly into the model, and that the model lacks a constant term.
Nevertheless, the results obtained should provide guidance in selecting control procedures
in more general situations.

In this paper, attention will be restricted to nonrandomized, spherically symmetric
estimators. The restriction to nonrandomized estimators is made since an argument
parallel to the proof of the Rao-Blackwell theorem shows that the nonrandomized
estimators form a complete class (i.e., any randomized estimator can be improved upon by
some nonrandomized estimator). The restriction to spherically symmetric estimators,
though natural for an orthogonally invariant problem, may not always be appropriate.
Unfortunately, results for nonsymmetric estimators appear to be very difficult to obtain.
Note that since the problem is invariant under the orthogonal group (which is compact),
admissibility within the class of spherically symmetric estimators implies overall admissi-

bility.
It will prove convenient to write a spherically symmetric estimator & as
(1.2) 3(x) = o(|x|) x| 'x,
where | x |?> = Y%, x?. Conditions will be derived under which § is admissible or inadmis-

sible. For example, it will be shown that an estimator of the form
(1.3) 8x) = (|x|*+ o) 'x + | x| "w(| x])x,

where w(|x|) = o(1) as | x| — o, is inadmissible if ¢ > 5 — p. On the other hand, if 8" is
generalized Bayes with respect to a generalized prior distribution 7(d@) = g(|8|?) d#, for
which g(v) = Kv“®72 then (under certain technical conditions) it will be shown that 8" is
admissible. It will also be shown that

(1.4) 8"(x) = (|x|2+ 1+ 2|x|%"(|x|®)/g(|x|*)'x + | x| w(| x|)x,

(where w is as in (1.3) and g’(v) = dg(v)/dv), so that if 2vg’(v)/g(v) = (¢ — 1) as v — oo,
then 87 will be as in (1.3) and will be admissible if ¢ = 5 — p. Hence: the “boundary of
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admissibility” can be alternatively viewed as being ¢ = 5 — p in (1.3) or as being those
generalized Bayes rules for which

lim, .. 2vg’(v)/g(v) = 4 — p.

Previous results for this control problem have dealt only with the case w(|x|) =0in
(1.3). Takeuchi (unpublished) established the inadmissibility of 8 for ¢ > 0 and p = 6.
Stein and Zaman (1980) established inadmissibility of & for ¢ = 1 and p = 5. Zaman (1981)
proved that & is admissible for ¢ = 1 and p < 3, while Stein and Zaman (1980) proved
admissibility for ¢ = 1 and p = 4. Note that the estimator corresponding to ¢ = 1, namely
8(x) = (| x|% + 1)7'x, is the uniform prior generalized Bayes rule (Zellner, 1971).

Section 2 presents several needed preliminary results, including a crucial representation
for the Bayes risk of a spherically symmetric estimator. Section 3 derives the approximation
(1.4) for a generalized Bayes estimator, and Section 4 establishes the admissibility result.
The analysis in these sections is based on the techniques discussed in Brown (1979).
Section 5 presents the inadmissibility results. The method of proof here is based on the
techniques in Brown (1980) and Berger (1980), and is one of the first examples of
application of these techniques. Finally, some illustrations of the theory are given in
Section 6.

2. Preliminaries. We will make considerable use of the complete class theorm in
Zaman (1981). This theorem states that if an estimator of the form (1.2) is admissible,
then, for some probability measure p on I" = [0, ),

§5 v~ ' sinh(yo)u(dy)

(2.1) (V) = —
¢ 15 cosh(yo)u(dy)

where y~! sinh(yv) is defined to be v when y = 0. Since

y sinh(y) < cosh(y), lim, o cosh(yv) = 1, lim,_o[y ™" sinh(yv)]/v = 1,
it is easy to see from (2.1) that, if § is admissible, then
(2.2) 0=¢(v)/v=1 and lim.[¢(v)/v] =1
It is convenient to define the functions
(2.3) (0, r) = exp{—%(6, — r)*} exp(—% | 6* |*)

where 8* = (0;, - - -, 6,)", and, for a (generalized) spherically symmetric prior distriution 7,
(2.4) N(r) = J’ 6,10, r)m(de), D) = J 02f(0, r)=(db).
® o

Zaman (1981) has shown that if 8 is (generalized) Bayes with respect to 7 then 8 is unique
and ¢, as defined in (1.2), is given by

(2.5) ¢(Ix|) = N(|x|)/D(|x|).

We conclude this section with the development of a representation for the Bayes risk
r(m, 8) = J R(6, 8)7(d)
)

of an estimator of the form (1.2) with respect to a (generalized) prior # € ®*, where 0* is
the set of all spherically symmetric, o-finite measures on ©. It is convenient to define the
measure 7 on (—o, ©) by

(2.6) m(A) = j J Sp(27r)_"/2exp(— % | 0|2>7r(d0),
A JRO-D
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where S, is the surface area of the unit p-sphere.
THEOREM 2.1. Suppose m € ©* and 8 is an estimator of the form (1.2). Then

r(m, 8) = (2m)~""2 j j r{s(r)8, — 1270, r) drn(d6)
2.7 e -0

= J J r'? ™ (¢(r)6, — 1} 2exp(— % rz)exp(r&) dri(de,).

Furthermore, if 7 is a finite measure and ¢ is continuous and piecewise differentiable on
[0, ) and satisfies

(i) 0=¢(r)/r=Ko<o,
(i) lim,_o[7"" {¢(r)}?] =0, and

(iii) f r”exp(— % r“’) exp(ré)o’(r) dr < o,
0

where ¢'(r) = do(r)/dr, then

(2.8) r(m 8) = 7(®) + 2 f J g(r)y sinh(yr) dra(dy).
0 0
where
(2.9) g(r) = r'"Vexp{-%r’}¢(r)[-2 + {r — (p — Dr '}¢(r) — 2¢'(r)].

Proor. Clearly
r(m, 8) = J’ J’ {0°6(x) — 1}2(217)_”/2exp<— % |x — 0|2> dxn(d)
eJr

= J’ J’ {o(|x]) |x|'0x — 1}2(27r)_”/2exp(— —;— |x - 0|2)7r(d0) dx.
4 J0

Transforming to polar coordinates and using spherical symmetry easily yields (2.7). We
next need the following lemma.

LEMMA 2.1. Suppose h(r) is a continuous, piecewise differentiable function on (0,
) which satisfies, for all s € R" (letting W (r) = dh(r)/dr),

@) J | A’ (r) | exp(rs)dr < oo,
0

(ii) lim,_oh(r) =0, and
(iii) lim, .. [A(r)exp(rs)] = 0.
Then

0

(2.10) j h(r)s exp(rs) dr = —J h'(r)exp(rs) dr.
0

0



842 J. BERGER, M. BERLINER AND A. ZAMAN

The proof of this lemma is a simple integration by parts, and will be omitted. Setting
h(r) = r'*" {¢(r)}*exp(—14r?),

it is easy to check that the conditions of Theorem 2.1 imply that A(r) satisfies the conditions
of Lemma 2.1. Hence, (2.10) implies that

j ro-y {¢(r)}2eXp<— 5 r?)elexptrbh) dr
0

= j r"’“’qb(r)exp(— % rQ)[—(p = Dr7'o(r) — 2¢/(r) + ro(r)lexp(ré,) dr.
0

Expanding {¢(r); — 1}* in (2.7), and using the above result, shows that

r(m, &) =J’ J r""”exp(—lrz)
—o JO 2

(2.11)
[1=26:16(r) + 0:0(r) {—(p — Vr7'¢(r) — 26'(r) + ro(r)} Jexp(réh) dri(de,).

Now, if ¢(r) = 0, then clearly
r(m, &) =j (1);r(d0) = 7(0).
)
Setting ¢(r) = 0 in (2.11), this gives that
jm er r""”exp(— % rZ)exp(rﬂl) dri(df,) = 7(©).
- Jo
Using this and (2.9) in (2.11) shows that
(2.12) r(m, 8) = n(©) + f*’ Jm 0,g(r)exp(rd,) dr7(db,).

Now, since zero was excluded from the parameter space and 7 is symmetric, 7 cannot give
positive mass to §; = 0. Also, 7 is symmetric, so that (2.12) can be written

0 © 0 o
r(m 8) = n(®) + f J’ 0,g(r)exp(r6,) dra(df;) + J’ J 0.g(r)exp(rf,) dra(db,)
—o0 0 0

=7(0) + 2 J’ J g(r)y sinh(yr) dra(dy),
0 0

completing the proof. O

3. Asymptotic approximation of generalized Bayes rules. In this section the
asymptotic approximation of generalized Bayes rules discussed in Section 1 is derived. Let
0 denote the generalized Bayes rule with respect to the prior measure 7 defined by

(3.1) 7(d0) = g(|8]%) de.

The approximation of §(x) given below is valid (locally at x) for | x | large.
For notational convenience, define

g'(r’) = dg(r*)/dr*
throughout this section and the next.
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AssuMpTION 1. (i) There exist positive constants Ky, < 1, B, and ¢ such that
(a) g(r®’) =r“? for r*=K,,
(b) g(r*)<B for r’> K.

(ii) There exists a constant T > 0 such that if > = T, the following conditions hold:
(a) g has a continuous second derivative;
(b) There exists positive constants ¢; and c; such that

(1) [g(r*) | =er’gr?), @) g0 =crgr?);
(c) There exists positive constants ¢; and g such that
g(r*) = car'™;
(d) For some positive constant cs,
SUp (y:1yi=r/2 &y + 1) = cg(r’).
For technical reasons it is convenient to consider the function ¢* defined by ¢ *(r) =
r¢(r) — 1 where ¢ is defined in (1.2).
THEOREM 3.1. Under Assumption 1, if r* > T then
(3.2) o*(r) = —r*(1 + 2r°g'(r*) /g(r®) + O(™")}.
Before proceeding with the proof of this result, some comments are in order. First, the
implied approximation of 8, for | x | sufficiently large, is
8(x) =[1— {|x|7+2g'(|x[")/g(|x]*)} + o(|x[*)] x| *x.

(This is clearly equivalent to (1.4).) Second, the proof is based on a Taylor’s series
approximation of g. This accounts for the flatness and smoothness requirements (specifi-
cally, Conditions (ii)(a) and (b)) on g(r®) for large r>. Sharp tailed priors, such as
exponentially decreasing priors, are eliminated from consideration. However, such priors
are proper and therefore yield admissible rules. Conditions (ii)(c) and (d) are technical,
but not very restrictive. Condition (i)(a) guarantees the existence of &.

The proof requires additional notation and some preliminary lemmas. Let K; = (27) /2
throughout this discussion, K (or K’, etc.) denotes a generic constant. Regions of integra-
tions for @ are ©, unless otherwise indicated.

LeEMMA 3.1.

(i) j 0./, r) dé = Kr,

(ii) J 0:{|0|>—r*}f@,r) d0 = K,(p + 2)r,

(iii) J 03f(0, r) df = K\(1 + r?),

(iv) f 03¢|10|*—r®}f@,r) dd =K(p + 9r* + K.

Proor. Simple calculation. O

Next, define the quantity N* by

N*(r) = f (6, — 637)£(0, rg(|0]*) de.
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(Hence, ¢* = N*D™")) Also, define the set o/ = {0:||0|* — r*| < r?/2}.

LEmMMA 3.2. For any positive constant M,

(3.3) j (r6, — 63)£(0, g(|0]*) db < Kr*"(1 + r™*V),

(3.4) f 036, Ng(|8]%) db < Kr—2M(1 + r*+2),

Proor. Let o= N {0:]|0|* <Ko} and /5= #°N {0:]|0|*> > K,}. First, it is easy
to show that, by Assumption 1 (i)(a),

f (r6, — 09) £, rg(|08|*) dé < K(r + l)exp{—% (r— IQ))Q} = K'r ™M1 + )

for all M = 0. Next, since # € .o/ implies || 8|*> — r*|™ = Kr* and g is bounded for fc €
/%, a simple Chebyshev argument yields

f (r6, — 6%) f(8, Ng(|8]%) dﬂSKBr‘zMJ’ [r — 03((|6|% — r*|Mf(@, r) db.
o/

Simple computation then gives the result. (3.4) is established similarly. O

Proor oF THEOREM 3.1. The first step is to approximate N*. Recall that
N* =j (r6, — 03)f(0, rg(|0|*)do +f (r6; — 03)f@, r)g(|6]%) db.
o ¢

Call these two integrals I; and I, respectively. I, can be bounded by applying Lemma 3.2.
In particular, choose M to be equal to ¢ + 1. Then for r large (i.e., r > 1), it is clear that

(3.5) I, = Kr9.
Next, consider I,. By Taylor’s Theorem, g can be written as
g(101°) =g(r®) + (10> = r’)g'(r*) + %(|0|* — r*)’g"(rf),

where rj is some point contained in the interval [%.r? 3%r?]. Now, substitute this expression
for g into I, and integrate term by term. Denote the resulting three integrals I, I, and I,
respectively. Rewrite I, as

I =g(r2){ J (r6: — 63)f (0, r) dO —f (r6: — 67)1(0, r)d0}.
¢
The first integral is computed using Lemma 4.1; the second is bounded as above. Therefore,
1, is given by
(3.6) I,=-K g(r?) + BKr™°.
Essentially the same argument, ignoring lower order terms, implies that
(3.7) I, = K, 2%’ (r?).
Finally, consider I... Clearly,

1 : ;
L.SEJ’ [r6, — 67| (|10]% — r*)*|g”(r3)| (O, r) d6.
'
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Applying Conditions (ii)(b), (d) and Lemma 3.2, and performing a calculation as in Lemma
3.1, we have

(3.8) I.= K'O(r ')g(r?).
Condition (ii)(c) and (3.5), (3.6), (3.7), and (3.8) yield
N*(r) = —Kig(r*){1 + 2r°g'(r*)/g(r*) + O(r™")}.
By similar arguments it can be shown that
D(r) = Kir’g(r®){1 + O(r™")}.

The desired result follows. 0

4. Admissibility. The proof of admissibility employed is basically a verification of
Stein’s sufficient condition for admissibility (Stein, 1955). Brown (1979) has presented a
general methodology for carrying out such proofs; see also Berger (1976b).

The admissibility proof given below employs the results of Section 3 and, hence, applies
only to generalized priors which satisfy the technical conditions of Assumption 1. The
following additional requirement identifies the boundary of admissibility discussed in
Section 1.

AssuMPTION 2. There exists a constant ¢ such that
4.1) g(r?) = cr >
for all 72 = T.

THEOREM 4.1. Let & be the generalized Bayes rule with respect to the prior measure
a defined in (3.1). Under Assumptions 1 and 2, 8 is admissible.

The proof is an application of Stein’s condition in the following form, essentially due to
Farrell (1968b).

PROPOSITION 4.1. Let 8 be defined as in Theorem 4.1. Suppose there exists a sequence
of finite, non-negative functions h,(| 0|?) such that

) Jg(|0|2)hn(|0|2) di<w, Va=12
(ii) limy e ha(|01%) = 1; and
(iii) : limn_mj {R(0,8) — R0, 8,))£(10|*)h(10|*) dO = O,

where 8, is the Bayes rule with respect to the prior defined by m,(d8) = g(|0|*)h.(]8]%)
d@. Then 8 is admissible.

The heuristic proof of admissibility given in Brown (1979) suggests choices for the
functions 4,(| 8|*) and proposes methods for approximating the integrals appearing in
Condition (iii) of Proposition 4.1. The choice of A.(| #|?) used below is

1 if 0<|0)2=<1
(101 = { Ho(10]%) if 1=<|0|>°<n?
0 if [6]>=n?

where

H,(|0|*) = {1- (In]6|%)/(nn)}".



846 J. BERGER, M. BERLINER AND A. ZAMAN

The key to the analysis below is the approximation of both & and 8,. As in Section 3,
Taylor series approximations for both g(| #|) and g(| @|%)H..(| |?) (at appropriate values
of | 8]) are used.

Recall the definitions of ¢, ¢ *, N, etc. Let the analogous quantities corresponding to &,
be denoted ¢,, ¢, N,, etc.

Proor oF THEOREM 4.1. Clearly, the functions A, defined above satisfy Conditions
(i) and (ii) of Proposition 4.1. To verify Condition (iii), define

8, = f {R(0, 8) — R(8, 8,)}7.(d0).

By formula (2.7), &, can be written as

&= (277)"’“] [j r'"D((0,:6(r) — 1)* — (b1a(r) — 1)2}‘f(0, rg(|0|>)h.(]8]% dr] dé.
0

The interchange of order of integration (by Fubini’s Theorem, since the Bayes risk is
finite) and simplification yield

En = (27r)_”/zf r“"’“{fb(r) — én(r))2D, (1) dr.
0

Next, &, is partitioned into the following three integrals (ignoring the constant):

(Inlnn?'?
& = f r' P {e(r) — ¢u(r)}2D,(r) dr,
o

IL—ILH/ 9

& = J r?7{¢(r) — ¢.(r)}°Dn(r) dr,
(

In In n2)1/2

and
8= f rw-”( f [{8:16(r) — 1} = (616u(r) — 1)21£(6, g (101 (|01 do) dr.
—n8/9

The proof is completed by showing that these quantities vanish as n — .
(@) &L — 0. Define the sets: A= {#:|8|?<1},B=(0:1=<|0|*<n%,and C= {0:|0|*
> n?%}. Also, let

An.=J 6:7(6,r)g(|0]){1 — Ha(|0]%) d0+f01f<0,r>g<|0|2> do
B C

and

Yo = f 0if(0,rg(|0|1H{1 — H.(|0|))} db + j 0370, rg(|0]°) do.
B ¢
Simple algebra then implies that ¢ — ¢, = D™ (A, — ¢ny»). Hence, & can be written as
(Inlnn?)'?
&= j FPDONE + G242 — 2Mndnyn) DD, dr.
0
Since D, D' = 1, it is clearly sufficient to show that

(Inlnn?'?

(Inlnn?'?
(4.2) J r?AZD ' dr + J r' " (¢p,v,)? D7  dr
0

0



ADMISSIBILITY IN A CONTROL PROBLEM 847

goes to zero. Let I, denote the second integral of (4.2). We next show that I,, — 0; the proof
for the first integral is essentially the same.
First, since 1 — H,(| #|? is non-decreasing in | 8|2, y, is bounded by

¥» = (1 — Hy(Inn?) 0if(8,rg(101*) db + J 0118, r)g(|0[) d.

1=|0|%<lnn? Inn?<|9|?
Applying Lemma 3.1 and the bound (for large n)
1 — H,(In n% < K (In n?~**

on the first term above, together with a Chebyshev argument on the second term, it follows
that

o = K(1 + r*)(In n?)=34,

Next, since exp(— %r? = (In n%)~"2 on the region of integration of I, it follows that D™
=< K(In n%"2 Finally, since the §, are admissible (7, is proper), (2.2) implies ¢2 < r2.
Combining the above bounds then yields

(Inlnn?'?
I, < Kf r®*(n n?2{(1 + r*)(In n?~¥*2 dr
0

= K'(In n®7'{1 + (In In n®P*19/2} _; ,

(b) &2 — 0. The heart of the proof here is the approximation of both ¢* and ¢ . The
arguments used for ¢; are essentially the same, though more delicate, as those used in
Theorem 3.1. The key result is given in the following proposition. First, however, define
the function s by

s(y) =Inn?—1Iny?
so that H,(y?) = {s(y%)/In n*}"".
PROPOSITION 4.2. Assume (InIn n%"2 < r < n — n¥° For n sufficiently large

(4.3) |o*(r) — 2 (r)| = K[r* + {r*s(r?)}7'].
The proof of Proposition 4.2 requires the following lemmas.
LEMMA 4.1. If1<y®<n? then

() |Hn(y*)|=17{s(y*)}**/{y*(n n®)'"} and
() [H7(y)] = K{s(y}"*{1 + s(y*)}/{»*(ln n*)""}.
Proor. Simple computation. [
LEMMA 4.2. Assume that (In In n%)'? < r < n — n®° Then uniformly in r,
(i) limpo{H.(r)r*}"'=0 and
(ii) imu_o{s(r¥)r}™' =0.
Proor. The proof is identical to that given in Berger (1976b), Lemma 3.2.8. [0
PROOF OF PROPOSITION 4.2. Define the sets .o, and % by
s =1{0:|0*—r*|<%r? and |0|*=n?

and
oly={0:|0>—r*|>%r* and |0|*=n?}.
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Since A, (] 8|% = 0if | 8|® > n? it is clear that

Ni = J (6 — 69 £(6, Ng (101 ha(|6]%) B + f (vl — 69 1(0, ) (18]) (|0 %) d.
/1 o

Call these two integrals I, and I, respectively. By noting that 4,(]#|%) < 1 and then
applying Lemmas 3.2 and 4.2, I can be bounded by

(4.4) I < Kr °H,(r?

for sufficiently large n.
The analysis of I, is a Taylor’s series argument (expanding g (| @|?) H,(| 8|%) similar to
that of Theorem 3.1. This argument and (4.4) imply that
28 (r 2)
g(r’)

+ O(r‘l)} + K{s(r’} {1+ 0(1)}].

S

(45) Ny=- Klg(r2)Hn(r2)[{1 +2r

It can also be shown that
(4.6) D, = Kir’g (ry Hy(r)[1 + (rs(r’)} ™' + O(r )]

Recalling that ¢} = N,*/D, and using (4.5), (4.6), Lemma 4.2, and Theorem 3.1, yields the
desired result. 0

To complete the argument that &% — 0, note that
¢(r) — ¢u(r) = {*(r) — da(r)}/r.

Applying Proposition 4.2 and the approximation of D, given in (4.6), it is clearly sufficient
to show that

—_nB/9
&n = J rP V@3 + (s(rY)) ) orig (rY) Ho(r?) dr
(

Inlnn2)1/2

vanishes as n — «. Computation and Assumption 2 imply that

n—nb/?

&y < Kj [r=® + r {s(r®} 2H,(r)] dr
(Inlnn2)1/2

=K'{(Inlnn%»"' + (Inn)~? j r7tdr}

(Inlnn2)1/2
= K'{Inln )™ + (In ) (nn - % In In In n%)} - 0.
(c) & — 0. Clearly

[ &2l Sf rtey (f [(6:6(r) = 1)* + {6:16a(r) — 1)°1£(0, 1)&(10]")hn(]0]%) d0> dr.

n—n®/9

Since 8, is Bayes with respect to m, = gh,, the inner integral above can only be increased
if ¢, is replaced by r~'. Also, Theorem 3.1 implies that ¢ is of the form ¢(r) =
r {1 + o(r™")}. It can be shown that the o(r~") term is negligible in the analysis, so that
the problem reduces to showing that

&= f riry {J (r™'0: — (0, r)g(|0 ") ha(|0]*) d0} dr— 0.
n—n8/®

Define the sets Ty = {0:|0| <n —2n*°} and Ty = (#:n — 2n*° <| 0| < n}. Since h.(| 0|?)
=0 for | @| = n, it is clear that
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“.7) 5’55f r<P—3’U (0, — r)°F (8, ) g(|0]D) k(01D d0} dr
I

n—n8/9
+ J rw-f”{ j (6: — r)*f(, r)g(|0|2)hn(|0I2)d0} dr.
—n8/9 T2

Noting that since r = n — n®?, § € T, implies that r — 6; = n*°, Chebyshev arguments
can be used to show that the first integral in (4.7) tends to zero as n — o.
Let J denote the second term in (4.7). For n large enough and 6 € I';, we have that

7a(]0]%) = Ha(|0]%) < Hu((n — 20*)?) < K(n"°In n)™"".

Hence, it can be concluded that

0

J=Kn"lnn)™" J

n—n8/9

r‘”‘a’{f (6, — ) (8, r)g(|0]% d0} dr.
T2

CaSE1l. p < 4.Since r=n — n®® implies that r'#~¥ <1 (n large), interchange of order
of integration yields

J=K(n"Inn)™" f

Ty

exp( —% |g* |2>g(|0|2) do,

and so, since g is bounded on I'; for n large,

J=K'(n"’Inn)"'n—0.
CASE 2. p = 4. Clearly, we have

J=K(nInn)™" J

Ir2

{ f 7|8, — 1) (6, ) dr}g(|0|2> do

=K' (nY°lnn)™" J

Ty

(1+]6, |“"‘3’)exp< —%|0* |2>g(|0|2) deé.

Then, using Assumption 2, it follows that

1
J =< K'(n"In n)_"f 1+ 6 I)eXp< —510" I2) de
Iy

1
=K"”(n"°In n)_"[n + f {(n?>— (n-— n8/9)2}exp< -3 |0* |2> d0*}
=K”"(Inn)"—o0.0

5. Inadmissibility. To prove that an estimator 8° is inadmissible, we will make use
of the technique developed in Brown (1980) and Berger (1980). The heuristic basis of this
technique was given in Brown (1979). The technique is to find an estimator §* which has
smaller risk than 8° for large | @, and then to argue that this leads to a violation of Stein’s
necessary condition for admissibility (Stein, 1955).

For use in the analysis, define, for any estimator § which satisfies the conditions of
Theorem 2.1, the function, on I'" = [0, ©),

00

R*(y,08) =2 f g(r)y sinh(yr) dr,

0

where g(r) is defined in (2.9). Furthermore, if 8° and &* both satisfy the conditions of
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Theorem 2.1, define

(5.1) A(y) = R*(y,8% — R*(y, 8*) = 2J' r“’_”exp(— % r2>A*(r)y sinh(yr) dr,

0
where

(6.2)  A*(r) = —2{¢%r) — ¢* (N} + {r— (p — Dr}{s°(r)* — $*(r)*}

+ 2{¢*(r)*"(r)— ¢°(r) o (r)).

Note that, for any finite measure 7 € ®* for which either r (w7, 8° or r(m, 8%*) is finite, it
follows from Theorem 2.1 that

00

r(m 8° —r(m, 8*%) = f A(y)#(dy)

0

(5.3)

=9 j J rP Vexp(— % r?)A*(r)y sinh(yr) dr#(dy).
0 0

THEOREM 5.1. Suppose that 8° is of the form (1.2), with ¢°(r) continuous and
piecewise differentiable, and that 8* is another estimator of the form (1.2) with ¢*(r)
satisfying the conditions of Theorem 2.1 and the further conditions

(i) there exists a constant Ky = 0 such that $*(r) = $°(r) for r < Ki;
(ii) there exist e >0, a > 0, and 0 < K, < » such that A*(r) = er ™ for r > Ky; and

L r

(iii) r“’_”exp(—% r3)A*(r)exp{y(r)} dr > 0, where (r) =j {6°(v)} " dv.

K, K,/2
Then 8° is inadmissible.

ProoF. The proof will be by contradiction. Assume that 8° is admissible, and is hence
of the form (2.1), with ¢° satisfying (2.2). It is easy to check that the conditions of Theorem
2.1 are satisfied by 8°.

Now let @ be the class of all spherically symmetric estimators such that 0 < ¢(| x|)/| x|
< 1. As stated in Section 2, 9 is a complete class of estimators. The problem has now been
put in the framework of Berger (1980), and so, to prove inadmissibility of 8°, it is only
necessary to verify that the conditions of the theorem in Berger (1980) are satisfied. These
conditions are that there exists a sequence {,} of finite measures in ® *, with corresponding
Bayes rules 8" such that r(m,, ") <, and a nonnegative function 4 (y), which is strictly
positive on the interior of I, such that

(a) 7(C)=1(n=1,2, -..), for some compact set C in the interior of T}

(b) lim,— fo{R (0, 8° — R(0, 8")} m.(d8) = 0;

(c) the measures u.(dy) =k (y)7.(dy)/ [rh(y)7.(dy) converge weakly to a probability
measure g on I'; and

(d) the function g(y) = {h(y)}'A(y) (see (3.1)) is continuous on I and is positive
outside some compact set B C T'.

The theorem in Berger (1980) states that, if these conditions hold, then
(5.4) j g(y)uldy) = 0.
r

The existence of finite measures 7, € ®* which satisfy conditions (a) and (b) follows
from Stein’s necessary condition for admissibility (Stein, 1955). It can be verified that
Stein’s necessary condition applies here, using Theorem 3.5 of Farrell (1968a). The



ADMISSIBILITY IN A CONTROL PROBLEM 851

verification that the risk set is weakly subcompact can be carried out by checking the
conditions in LeCam (1955).
Zaman (1981) showed that if A (y) = y?, then the measures

Y *7(dy)

J’ Y27 (dy)
0

are probability measures on I, and that a subsequence of these measures converges weakly
to a probability measure u on I'. Since this subsequence still satisfies conditions (a) and
(b), we can assume that (a), (b), and (c) all hold.

P-n(dY) =

Verification of condition (d). Itis clear from (5.1) that A(y), and hence g (y) =y ?A(y),
is continuous on (0, ). Also, it is possible to show that

.
0

lim,_oy ?A(y) = f 2rPexp(— %r?)A*(r) dr = B,

0

which is easily seen to be finite for 8* and 8° satisfying the conditions of Theorem 2.1.
Hence, g(y) is continuous at y = 0 if we define g(0) = 8.
The remaining part of condition (d) is verified in the following lemma.

LEMMA 5.1. There exists a K3 < « such that g(y) > 0 for y> Ks. Thus g(y) is positive
outside the compact set B = [0, K3].

Proor. From (5.1), it clearly suffices to prove that, for y > K,
(5.5) I= f r“’_”exp(— % rZ)A*(r)'y sinh(yr) dr > 0.
0
Note first that, from Condition (ii) of the theorem,

” 1 ” 1
L= j r“"”exp(— 3 r2>A*(r)y sinh(yr) dr=¢ j r“’_l_"’exp<— 3 r2>y sinh(yr) dr.

K, K,

Hence, for large enough v, say y > K.,

” 1
L= g j r“"l“"exp(— 3 r2>y exp(yr) dr

5.6) K
1 1
= z Y exp<§ yz)‘Y(p_l_a) = 2 exp<§ Y2> yp_a’

the last inequality following from a standard Taylors series argument.
An integration by parts, as in the proof of Theorem 2.1, shows that

K,
I, = J r“””exp(— % rZ)A*(r)y sinh(yr) dr
0

= — K§PV (¢°(Kn)? — ¢*(K2)2}exp(— 1 K%)y sinh(yKz)
(5.7) 2

K,
+ f r"’-“exp<_ % r2> {°(r)* — ¢*(r)*}y” cosh(yr) dr
0o

K
- f 2{¢%r) — ¢*(r)}r“"’”exp<— % rz)y sinh(yr) dr.
0
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Since 0 < ¢*(r)/r = Ky < » and 0 < ¢°(r)/r < 1, it follows that

1
|| = (K§+ l)Ké”“)exp(— 3 K%)y exp(Kzy)
K 1

+ (K§+1) f r“’“’exp(— 3 r2> y2exp(yr) dr

0

K, 1
+ (Ko + 1) J r”exp(— 3 rz)y exp(yr) dr

0

= (K3+ 2)(K: + 1)”“exp<% yz>y[exp{— % (K; — y)2}

K, 1
+(y+1) f exp{— 3 (r— y)2} dr].
0 N

o 1 2 1 2
exp —§(r—y) dr = Ksexp —§(K2—y) ,
(1]

it can be concluded that, for y > K,

Since, for y > Ko,

1 1
(5.8) | 2] = (K& + 2)(Ky + 1) ”+2exp< 5 72)y(y + l)exp{— 3 (K2 — y)z}.
Choosing K; > max(K,, K,) so that
1
eXP{_ 3 (K — Ks)z} = g y P Dy + 1)THKE + 27K, + 1))
it follows from (5.5), (5.6), and (5.8) that, for y > K,
1
I=L+1,= £ exp(— y2>y“’_"‘) >0,
8 2
completing the proof of the lemma. [

We have thus verified all the conditions of the theorem in Berger (1980), and so can
conclude that (5.4) must be satisfied. Note, however, from (5.1), that

0

fg(v).u(dy) =f YA (y)p(dy)
r

= j j r“"”exp(— % r2>A*(r)y_1sinh(yr) dr du(y).
0 0
Since ¢*(r) = ¢°(r) for r = K, (Condition (i) of the theorem), it is clear from (5.2) that

j g(y)u(dy) =2 J f r“’_”exp(— 1 rz)A*(r)y_lsinh(yr) dr dp(y).
r 0 JK, 2

Because A*(r) is positive for r > K, orders of integration can be interchanged above to
give

(5.9) J g(y)uldy) = 2J r“”“exp(— % rZ)A*(r) f v Isinh(yr) du(y) dr.
r 0

K,
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Since we are assuming that 8° is admissible, ¢° must satisfy (2.1), which can be rewritten
d 00 -1
¢°(v) = {3_0 logj v 'sinh(yv) d,u(y)} .
0
Hence, for r > K, /2,

Y(r) = J' {¢°(v)) " dv = log{f y~'sinh(yr) du(v)} - P

K, /2 0

where
p= F y~'sinh(Ki1v/2) dp(y).
o
It follows that
r y~'sinh(yr) dp(y) = exp{y(r) + p},
o
which, when used in (5.9), gives

* 1

J g(y)u(dy) = 2¢* f r“"“exp(— 3 r2>A*(r)exp{¢(r)} dr.
r K,

By Condition (iii) of the theorem, this is positive, contradicting (5.4). The conclusion is

that 8° cannot be admissible, completing the proof of the theorem. O

As mentioned in the Introduction, virtually all estimators studied have been of the form
(1.3). We can obtain the following inadmissibility result for estimators of this form.

THEOREM 5.2. Assume that 8° is of the form (1.2) with

r w(r)

—_ =,

0 —
(5.10) 9°(r) = ————

where w(r) = o(1) (as r — x). Then 8° is inadmissible if c > 5 — p.

Proor. For convenience, define e = ¢ — (5 — p) and 8 = — ¢2/8. Assume that ¢ > 5
— p, so that e > 0. Define, for K; > 0 to be chosen later,
¢"(r) if r<K,
r w(r) € B
o*(r) = r+5—p r { r+c r2(r2+c)} if r=2K,

r

Assuming ¢° is as in (2.1) and (2.2) (which, if not true, makes 8° trivally inadmissible), it
is easy to see that ¢* satisfies the conditions of Theorem 2.1 and Condition (i) of Theorem
5.1. (In particular, w’(r) = dw(r)/dr must be well behaved.)
To verify Condition (ii) of Theorem 5.1, a lengthy calculation for r = 2K,, ignoring
terms of order o(r~") and recalling that w(r) = o(1), yields
2

N (r) [€ 5
(5.11) A*(r) = % + wrgr {% + 0(1)} +o(r ).




854 J. BERGER, M. BERLINER AND A. ZAMAN

Solving for w in (5.10) and differentiating gives
4r® 2r®

(5.12) w'(r) = ——

—_— 2,0 Y
rr+c (rP+c)? 3rgir) —r'e7(r).

Defining
h(r) =J’ vy~ 'sinh(yr) du(y),
0

it follows from (2.1) that, if ¢° is admissible, then ¢°(r) = A(r)/h’(r). This implies that
(5.13) ¢%(r) =1 — h(r)h"(r)/{R'(r))
Observing that 2 and A” are positive, it follows from (5.12) and (5.13) that
w'(r) = —3r°r) — r®
From (5.10), it is clear that if K is chosen large enough, then ¢°(r) < 2/r for r = 2K;. Thus
w'(ry=—6r-—r°

for r = 2K;. From this and (5.11) it can be concluded that, for large enough K; and r =
2K17
e /4 e

(5.14) MR =5 =+ o) = o

Thus Condition (ii) of Theorem 5.1 is satisfied.
To verify Condition (iii) of Theorem 5.1, note that for large enough K; and r = K; /2,

B r wr))™ ¢ h(r)
"’°‘”‘={m‘ } Tt

where | A(r)| < ¢/2. Hence, for r = K;/2,

(1,0(,-)—1 >r+ c—_e/2’
r

_ i 0/, y—1 l 2__12%_ _ ¢t r
¢(r)—LI/2¢(v) dvz2(r 4)+<c §>log<Kl/2>.

It follows that, for r = K, /2,
exp{y(r)} = Kzexp(Yer®)re/,

so that

where the constant K, depends on K; and is positive. Together with (5.14), this implies
that

" 1
r»expl — = r* |A*(r)exp{y(r)} dr = 1 K,¢? plpmizsteme/d) gy
2K 2 2 2

1 Kl

o
K,e? f r1*/2 dr = oo,
2K,

1

N =

It is easy to check that

2K, 1
f r“"”exp(— 3 rz)A*(r)exp{\lf(r)} dr

K,

is finite, so that Condition (iii) of the theorem is clearly satisfied. Hence §° is inadmissible. O
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6. Applications and examples. In Section 1 we noted that the main goal of the
theoretical analysis above is the identification of the boundary of admissibility. To that
end the results of Sections 3 and 5 can be applied to obtain the following theorem
concerning the inadmissibility of generalized Bayes rules.

THEOREM 6.1. Suppose 8 is generalized Bayes with respect to the prior measure m
defined in (3.1). Furthermore, assume that the prior kernel g satisfies the conditions of
Assumption 1 (Section 3) and that

6.1) lim,>_,.2r’g’(r?)/g(r®) = c — 1,
where g'(r?) = dg(r?)/dr®. If c > 5 — p, then 8 is inadmissible.

ProoF. The approximation result of Theorem 3.1 together with (6.1) imply that & is
of the form (1.2) with ¢(r) of the form (5.10). Hence, the proof is an immediate consequence
of Theorem 5.2. 00

A natural class of prior measures for the control problem is the class of priors of the
form

7(d0) = |0]de.

(To guarantee the existence of the generalized Bayes rule 87, assume ¢ > 1 — p.) This class
includes the uniform prior, for which the generalized Bayes estimator is d.(x) =
(1 + |x|»x(c = 1). For ¢ # 1 the generalized Bayes rules are difficult to explicitly
calculate, at least in closed form. For example, Zaman (1977) considered 7o(d@) = | 8|**d@
(c =5 — p) and found the corresponding rules 8™ to be

L JU+DG=1) =

J=2 T (|X|2/2)1_2
8"’0(X)= 1+IXI2 F(p/2+.]) x.

J+1) 2 ron j—
= (| x|?/2)’"
(Zaman’s derivation could be reproduced for arbitrary c, leading to analogous results.)
To apply our results to 87, it is required that ¢ < 1, thus insuring that | #|°”" is bounded
for | | large, as required in Condition (i)(b) of Assumption 1. Note that since

g(rZ) = (r2)(c—l)/2 and g/(r2) — 1/2(0 _ 1)(,.2)(0—3)/2’

we have
(6.2) 2rig’(r)/grh) =c — 1.
Therefore, by Theorem 3.1, 8" is given by

0"x) = (| x P+ ) x + | x|w( x|)x,

where w is as in (1.3). Theorem 6.1 implies that 8" is inadmissible if ¢ > 5 — p. On the other
hand, Theorem 4.1 implies that 8" is admissible if ¢ < 5 — p. For example, § ™is admissible
when p = 4. Also, 8, is admissible when p =< 4.

Another application of our theory can be found in Berliner (1981).
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