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- CONSISTENCY OF TWO NONPARAMETRIC MAXIMUM PENALIZED
LIKELIHOOD ESTIMATORS OF THE PROBABILITY DENSITY
FUNCTION!

By V. K. KLONIAS
The Johns Hopkins University

We study the consistency properties of a nonparametric estimator f, of a
density function f on the real line, which is known as the “first MPLE of Good
and Gaskins,” and which is obtained by maximizing the likelihood functional
multiplied by the roughness penality exp{—a [ (f’/f)*f} with a > 0. Under
modest assumptions on the density function f, and letting « = a,, — o and
an/n — 0 as. as n — o we demonstrate the a.s. convergence of f, to f, with
rates, in the Hellinger, L), L,, suprand Sobolev norms, as well as in integrated
mean absolute deviation. Finally, the corresponding estimator for f supported
on the half-line, is derived and the computational feasibility as well as the
consistency properties of the estimator are indicated.

1. Introduction. Let X;, X,, ---, X, be independent observations from a distribution
function F with density function f, assumed to have finite Fisher information and such
that [ {F(1 — F)}” < + o for some p > ', and denote the likelihood functional by ¢(f) =

=1 f(X)). If the maximization of Z(f) is carried out over all possible density functions f,
then the supremum (infinity) is achieved at an average of Dirac delta functions, which is
not an acceptable estimator of the density function. To avoid this “Dirac catastrophe,”
Good and Gaskins (1971) introduced the maximum penalized likelihood method of density
estimation (MPLE), which consists of maximizing log Z(f) — ®(f), where ®(-) is a certain
“flamboyance functional.” The proposed functionals ®(f) were functions of f and its
derivatives, e.g. ®(f) = [ (f'/f)%, the Fisher information functional. The problem can be
stated as follows:

ProBLEM P1. max({log £(f) — a®(f)} subject to [ f=1, f=0, where a > 0.

However, to avoid having to deal with a nonnegativity constraint on f, Good and
Gaskins suggested an alternative formulation of the problem in terms of the square root of
the density function, v = f'/, i.e.:

PrOBLEM P2. max{2 log #(v) — a®(v)} subject to [ v?> =1, v(X) =0,i=1, ---, n,
where @ is a functional of the root-density function.

The solution ‘of this problem is then squared to obtain a density estimate. De Mon-
tricher, Tapia and Thompson (1975) showed that Problems P1 and P2 are not always
equivalent. This is the case, for example, if ®(f) = ®(v) = [ (v”)% but for the problem of
interest here, namely the case ®(f) = ®(v) = [ (v’)? they showed the two problems to be
equivalent and established the existence and uniqueness of the solution. The solution,
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812 V. K. KLONIAS

denoted throughout this paper for f, = u2, is an exponential spline with knots at the
sample points (see equation (2.2)) and is known as the “first estimator of Good and
Gaskins.”

A fundamental question is whether f; is consistent for the estimation of f, i.e., whether
| f. = fll = 0, n = o, in some stochastic sense for some suitable norm || - ||. This question
was first investigated by Good and Gaskins (1971) and they presented a heuristic proof of
the pointwise convergence in probability of the cumulative distribution function corre-
sponding to the solution of Problem P1, for a general penalty functional @ (see Good and
Gaskins, 1980). An estimator related to the MPLE and corresponding to a discretized
version of Problem P1 (DMPLE) on a finite interval (a, b), was investigated by Scott,
Tapia and Thompson (1980) and the DMPLE corresponding to a discretized version of a
penalty functional of the form ®(f) = [5 {f’(x)}® dx was shown to converge pointwise
w.p.1.; see also Tapia and Thompson (1978). For some other types of MPLE’s see de
Montricher (1981) and Silverman (1982). However, the question of the consistency of f,
the solution to the infinite dimensional Problems P1 and P2, for a penalty proportional to
the Fisher information (or any other of the original MPLE problems suggested by Good
and Gaskins, 1971) has not been treated, except for the investigation by Good and Gaskins
mentioned above. In the present paper the consistency of f, is established in the senses of
L,, L,, supg and Sobolev norms, and corresponding rates of convergence are provided.

Section 2 formulates the MPLE problem, with penalty proportional to the Fisher
information, in the context of the general MPLE problem over a Sobolev space of order m
= 1, following de Montricher et al. (1975), and discusses the consistency proofs that follow.
In Section 3 we present a Glivenko-Cantelli type theorem for the rate of convergence of
the empirical distribution with respect to a particular metric, a modification of a similar
result of Wellner (1977). This result enables us (in Section 5) to derive the a.s. convergence
of the log-likelihood functional evaluated at f,, which in turn implies the a.s. convergence
of f, in the Hellinger distance. In Section 4, it is indicated that the a.s. convergence of
f.—the MPLE of the density function—to the true density fin the L1, L, supg and Sobolev
norms (see Proposition 4.1), can be deduced, through the set of inequalities in Lemma 4.1,
from the a.s. L, supg and Sobolev norm convergence of u,—the MPLE of the root density
function—which are established in Section 5. The assumptions on fstated in the beginning
of this section are enough to secure the convergence of f, in L1, L, and supg norms. The
convergence of f, in the Sobolev norm is proved under the additional assumption of a
square integrable second derivative of f/%. Also in Sections 4 and 5, as corollaries to the
main propositions, the a.s. convergences of several functionals of f, are derived and f, is
shown to also converge in integrated mean absolute deviation. Rates of convergence are
provided for all types of convergences mentioned above.

In Section 6 we derive the “first MPLE of Good and Gaskins” in the case that f has
support only the half line, essentially by reflecting f around zero and invoking the results
for f having support R. The numerical evaluation and the consistency properties of the
estimator are deduced similarly.

2. Preliminaries. The natural setting for the solution of the MPLE problem in the
form P2, was shown by de Montricher, Tapia and Thompson (1975) to be provided by the
Sobolev subspaces of Ly(R), defined next.

Let R denote the real line and L, = L2(R) the space of all Lebesgue measurable square
integrable functions u: R — R. It is well known that (L, (-, - }2) is a Hilbert space for the
inner product (i, v)s = fr uv and the induced norm | u|: = (fr u*)"/*. By a Sobolev space
of order m on R, denoted by H™ = H™(R), where m is positive integer, is meant the space
of all functions. u: R — R such that u, u®, --., u™ € Lz(R), where u® denotes the
distributional derivative of order s of u (all derivatives in this paper are distributional
derivatives and the first two are also denoted by u’, u”). Endowed with the inner product

(u, V)yam = Yo wy (u®, v¥);,  w,=0 and wo, wn>0,
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and the induced norm
lwllan = ((u, u)um)'?,

H™ is a reproducing kernel Hilbert space (RKHS), i.e. there exists a unique real valued
function k(x, y) defined on R X R, called the kernel, such that

k() =k(.,y) EH™ forall y€ER,
and
(u, ky)gm = u(y) forall u€ H™

For example, for m = 1, the kernel of H'(R) (a space of special interest for this paper) is
given by

(2.1) k(x, y) = (dwowy) ™ %exp{—(wo/w1) | x — y|}.

For a treatment of the RKHS and Sobolev space the reader is referred to Aronszajn
(1950), Parzen (1967), Gel'fand and Shilov (1964) and Yosida (1974).

De Montricher et al. (1975) give the general form of the solution to the optimization
Problem P2 for penalty terms of the form ® (v) = || v||%, v € H™. The case of interest here
corresponds to m = 1 and can be stated as follows:

ProBLEM P3. max{2log #(v) — a||v’||3}, v € H', subject to | v]z: =1, v(X;) =0,i=1,
<« ,n, with a > 0. '

Notice that 4| v’||3 = [ (f'/f)*f, the Fisher information functional. The solution—the
MPLE of the square root of the density function—is an exponential spline with knots at
the sample points, given implicitly by

(2.2 Un(x) = (4Aa) 2 Y2t un(X) 'exp{—An/a)?|x - X[}, xER,

where A, is the Lagrange multiplier associated with the constraint on the Ls-norm of v and
satisfies (de Montricher et al., 1975, Proposition 3.3)

(2.3) n/2=<\<n.
The associated MPLE of the density function is then given by
(2.4) fo=ui.

Notice that the values of the estimator at the sample points u,(X;),i=1, ---, n, and
A, are the solutions to a system of n + 1 nonlinear equations, consisting of the condition
[ u% =1 and the n relations obtained from (2.2) after setting x = X;,j =1, - - - , n; see also
Ghorai and Rubin (1979). Hence both random variables A,, and each u,(X;) are complicated
functions of the sample, so that it does not seem promising to use equation (2.2) directly
for the study of the statistical properties of u, and f,. Instead we investigate the behavior
of f, through /(f,), the likelihood functional evaluated at f.. Then, through inequality
(5.4), it is shown that the convergence of the log-likelihood functional evaluated at f;,
implies the convergence of f, with respect to the Hellinger distance, which is at the core of
the other modes of convergence of f, and u, (see Section 5).

It can be shown (see inequality (5.2)) that the proof of the convergence of the log-
likelihood functional is reduced to that of the convergence of the empirical distribution
function with respect to a particular metric and with some rate, which we present in the
following section.

3. Rates of convergence for the empirical process w.r.t. a particular | «/q|-
metric. We modify a theorem of Wellner (1975) on almost sure “nearly linear” bounds
for the empirical d.f. to provide a rate for its convergence w.r.t. a metric defined below.
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The rate is utilized in Section 5 for the consistency results (see Lemma 5.2 and Proposition
5.1(ii)).

The lemma below is similar to the lemma on page 69 of Billingsley (1968), and its proof
is omitted.

LEMMA 3.1.  Suppose Z, Z,, - - - are independent random elements in a metric space,
with || X || denoting the distance of X from the zero element, and let S, = Z, + -+ + Z,.
For all X > ¢ and positive integers n = m for which 0 < 8, = Minp<i=. P(|| S, — Si|| < ¢),
we have

(3.1) P(maxn,<i=: || Si]| = A) < P(||Su|| > A — ¢)/mn.
The following theorem gives a rate of convergence for the uniform empirical distribution
using a particular || - /q ||-metric, defined by

I(f—&)/qll = supcon | f(2) — &) /q(?),
with ¢(¢) = [¢(1 — £)]°, p € (%, 1). It is an extension of Theorem 4 on page 29 of Wellner
(1975) (where the “s = 0” case appears).

THEOREM 3.1. Let &y, &, - -- beiid. U(0, 1) r.v.’s and T'x(-) the empirical distribution
function of &, &, « -+ , & Then, for s, p such that s> 0, % < p <1 and s + p < 1, we have
(3.2) R |(To = D/IIA-DP|—>0 as. as n— o,
where I denotes the identity function.

PrOOF. Let A, = {n°supo<:=s| [n(t) — t|/t* = €} for given 0 < § < 1 and & > 0. Also let
Yi=ho(&) — [ A—1 )"'hg dI, where hy(s) = s Iio1(s); Y1, Ys, - - - are iid. with mean

zero and E | Y| < +oo, for any 7 < 1/p.
Using an inequality from Wellner (1977, page 484), we have

(33) P(A,) =2 E | Yy |'n "0
for any 7 such that 1 < 7 <1/p < 2. If s <1 — 77, this implies
(3.4) Y1 P(Ap) < 400 whenever 7>1/(r—1—s7)>p/(1—s—p).

We hereafter assume 7> (r — 1 — s7) ' and also n = 1.
Next we handle the probabilities for % such that n" < k < (n + 1)". Write S, = Zﬁll Q:
where Qi(t) = Ion(£&) — ¢, and define

2/ 1§ = supo<e=o| 2(t)| /q(¢) with q(¢) = ¢".
Then
max || (Tx — I)/q||§ = maxs || Se/ql6/% < n""maxx || Se/q 5.
Hence
P(maxpn®||(Tx — I)/q|l§ > 27)
= P(maxe||Si/q |8 = 2An""*) = P(|| Sywsvm/q 1§ = An" ™) /er,n,
by Lemma 3.1 with
ean = ming P([| (Sym+nm — Se)/q I8 <An™™),
so that
P(max,n®[|(Tx — I)/q |4 = 27\) < P([(n + D" || Cisvy — D/ |I$
=An"/([(n + 1)"]" %) ean
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= P([(n+ )" Tiwrn — D/qI§ = X279 Jern
= P(Ag+1m)/Crns

for A = 2"9"%¢ since

1 7 (1-s)
AnT/[(n + )79 = Ans0D / (1 + Z) > A2 7109

since n = 1. Summing the probabilities in the above inequality we have
(3.5) ¥rn P(max,n®|| (T — I)/q "g = 2A) = Y. P(A{r+1n)/Cane

We next use inequality (3.3) again, to control the denominator in the RHS of (3.5), i.e.
to find for what values of 7 ¢, . stays bounded away from 0:

1 = &yn = maxe P(| (T qrry-n — D/qlls = 270"/ ([(n + 1)"] — &)
=max,2"" TR | Y T T ([(n + 1)1;] — k)
=27 TE | Y1 T (e + 1))~ [27] - 1)
< 2™ TR | Y1 |((n 4+ 1)" — ") /a0
< 21’+I—’!"r(l—s)£—fE| Y, I fn(n + l)n—l/n‘r(n—s)‘

For c\,» to be bounded away from zero, this last term must be strictly less than one for
large n, which means 7(n — s) > n — 1 or equivalently n > (st — 1)/(7 — 1) which is true
sincen=1> (st —1)/(r —1).

We then have that for n > 1 v/ (1/(tr — 1 — s7)), (3.4) is true and the series in (3.5)
converges and hence

n’supoci=e | Ln(t) — t|/t* > 0 as. as n— oo,

To handle the interval [, 1] we use Chung’s (1947) version of the Glivenko-Cantelli
theorem. [

A similar result (with a different proof) appeared in Mason (1981) while this paper was
being refereed.

4. Consistency of the density estimator. It is convenient to summarize here our
notation and label our assumptions. Let X;, X, -.. be iid. random variables with
distribution function F which is absolutely continuous with density function f, v = f*/2, and
make the following assumptions.

AssuMPTION Al. v E H=H'(R),ie. ||v’|2< 4o,
AssuMPTION A2. Ef| X|™ < 4o for some 7> 1.

The empirical distribution function of the sample X, = (X, - - - , X,.) is denoted by F, and
the MPLE of v is denoted by u, € B, = B(X,). We set f, = u2 and % (x) = [(wz fx(2) dz,
for the MPLE of f and the corresponding estimator of F, respectively. The ordered sample
is denoted by X, « -+, X(n).

It should be noted that Assumption Al is slightly less restrictive than assuming v.to be
absolutely continuous on R. The purpose of Assumption A2 is to guarantee that [ {F(1
— F)}* < +oo for some p € ((2 A 7)7%, 1) (see Remark 5.1), which may be a less intuitive
assumption to make. Also Assumptions Al and A2 guarantee that the entropy, as well as
[ |log f|” dF for every y > 1 (needed in Proposition 3.1(i) to secure the rates), are finite (see
Klonias, 1981a).

Before the development of the consistency results, the following remark concerning the
weight of the penalty term of Problem P3 is appropriate.
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REMARK 4.1. According to our method of proving the consistency of the MPLE u,
(and then f£,), it is necessary to let the weight « of the penalty term depend on the sample
size, i.e., @ = ay, in such a way that «, — » and a,/n — 0 as n — o (see Proposition 5.1(ii)
and e.g. Theorem 5.1, respectively). We then choose a, = c,n’ with ¢ € (0, 1) and ¢, > 0,
such that ¢, — c—some positive constant—as n — . In practice we may want to let c,
depend on the sample, in which case we note that our proofs remain valid as long as c,

—> cC a.s.
We summarize the results on the consistency of f, in the following theorem.

THEOREM 4.1. Under Al and A2, we have
(i) n|fi—flo—0as. as n— o, wherep=1,2, ford < ((1—¢8)/2) A (t/4 — (2@ A
)7 —1)/4),
(i) n%fu—flle— 0as. as n— o, ford < ((1 —t)/4) A (/2 — (2 A 7)7Y/2). Also
under the additional assumption ||[v” |2 < +o, and for d<((1-8t/4) N@Bt/4-(Q1
+ (2 A 7)7H/4), we have
(i) n?||f. —fllu— Oas. as n— o.

With the aid of Lemma 4.1 below, the theorem is seen to follow from Theorems 5.1
through 5.3 in the next section. The lemma reduces the study of the consistency properties
of f,—the MPLE of the density function—to that of the convergence properties of u,—the
MPLE of the root density function—in L,, supg and Sobolev norms and with the same
rates, pending proper behavior of | u;,||» (see Proposition 5.2 and Corollary 5.1). Corre-
sponding convergences of u, are established in Theorems 5.1-5.3.

LEMMA 4.1.
@ Nfe—Ffli=2[un — v,
(i) ||fo = Fllz= (unlls” + 10" 1372) | n = vll2,
(i) [|fo = fllo = 2[| 0" |13 tn = llw + [ 2n — V|2,
@) 1% = llz=2[llunllZ?urn — 0"l + |0 |2 |t = vl].

Proor. (i) For a proof, see e.g. LeCam (1970, page 803), or Pitman (1979, page 7).
(ii) Using, at the third stage below, the inequality

(4.1) lollz<llvllzllv’ll2
(see Klonias, 1981b), we have

Ifa— FI3 = f (U + V)2t — 0)* = | ttn + V]2 || 20 — 03

= (lunlls + Nvll)llun — vl = (lunllz” + 0713 | e — v,
(iii) Using (4.1} at the last stage below, we have
[fe—fl=ltn—v||20+ (Ur — V)| =2|0||tt — V| + | ttn — V|?
= 20017 un — v] + |un — v|*.
(iv) Using (4.1) at the last stage below, we have
2= F Nl = 2| unten — 00’ ||l2 < 2[ || tn(en = V)2 + [| 0" — V) [|2]
=2l unll= e = v'[l2 + V" [l2 | tin — V]
= 2 unll?lun — v'llz + 0 ll2 | tn — v]|]- u

As corollaries to Theorem 4.1 we can derive the integrated mean absolute deviation
convergence of f, as well as the convergence of some functionals of interest evaluated at f,.
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COROLLARY 4.1. Under Al and A2 and for the same values of d as in Theorem 4.1(i),
we have
@) nE|fi—flli=»0 as n— o,
(i) n?|% —F|-—0as. as n— o,
Gii)) n¢[||fallz = | fll2| > O as. as n— o.

Proor. (i) Notice that ||f. — fll: < ||fzll: + ||/l = 2; the result now follows from
Theorem 4.1(i) with p = 1, and the dominated convergence theorem.
(ii) The result is a consequence of Theorem 4.1(i) with p = 1, and the inequality: | %, (x)

—F@|=|f—fl.
(iii) The result follows from Theorem 4.1(i) with p=210

COROLLARY 4.2. Under Al, A2 and the additional assumption [v” ]2 < 4+, and for
the same value of d as in Theorem 4.1(iii), we have

N

nNfallz=I1f 2] =0 as. as n— .

In the following section we show that u. converges a.s. to v in L,, supe and Sobolev
norms, thus proving Theorem 4.1, in view of Lemma 4.1.

5. Consistency of the root density estimator. In this section we study the
consistency properties of the MPLE u,—the root density estimator. As indicated in the
previous section, the convergence of u, implies that of f, in each mode included in Theorem
4.1. Since the converse is not generally true, one could also view the convergence properties
of u, as additional consistency properties of f,.

Basic to the MPLE problem is inequality (5.1), to be derived next, which along with
inequality (5.3) reduces the problem of the L;-norm convergence of u, (i.e. Hellinger
distance convergence of f,) to that of the convergence of the log-likelihood which in turn
is shown (see inequality (5.2)) to be implied by the convergence of the empirical distribu-
tion, studied in Section 3.

LeEMMA 5.1. Under assumption Al, we have

(an/m)(lunll3 — v [13) + 2 f log vd(F, — F)
(5.1) =<2 f log u, dF, — 2 f log v dF
<2 f log u. d(F, — F).
Proor.
2 f log v dF — (an/n)||v" ||} + 2 f logvd(F, — F) = (2Y% log v(X;) — an | V' |3)/n

= (2 Y% log un(X:) — anlurl3)/n

=2flog Un dF+2flog un d(F, — F) — (an/n)| us |3

= 2jlog vdF + 2 f log u, d(F, — F) — (e /n) | us||3.

The first inequality above is true since u, is the MPLE, and the last one (which is also a
consequence of (5.4)) involves a well known inequality concerniug entropy; see, for example,
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(1€6.6) in Rao (1973). We then derive (5.1) by subtracting 2 [ log v dF — (/1) | u5 |3 from
all sides. [

The two most commonly occurring functionals in the consistency proofs that follow are

flog v d(F, — F) and [ log u, d(F, — F') which we prove, in Proposition 5.1 below, to
converge a.s. to zero; but first we give a bound on the latter.

LEmMA 5.2. IfEf| X| < 4o, then

(5.2) flog Un d(Fp — F)| = (A\n/a) 2| (T = I) /| f hoF,

where h is a positive measurable function on (0, 1) and T, is the uniform empirical
distribution function associated with the random variables F(X), «--, F(X.,).

Proor. Using equation (2.2) we have for x > x,),
log ua(x) = log [(dann)™* Tkt (exp{(An/an)"*x:} /tn(%:))] — (An/0tn)*x
and F,(x) = 1, and similarly for x < x,
log u,(x) = log[(4an),)"? Y21 (exp{—(An/n)"?%i} [t (x:))] + (An/ctn)*x
and F,(x) = 0, i.e. log u,(x) is linear in x, outside the range of observations. Then under
our assumption {F,(x) — F'(x)} log u.(x) vanishes at + (since F,(x) is respectively 0 or
1 as x < x( Or X > X(»)), and hence

—J’(Fn—F)(uI./u,.) SfIFn—FIIuL/u,.I

Iflogund(Fn——F)l =

= (An/an)"? J' |Fn — F|

= (}\,./an)l/zf (|Twe F—F|/hof)ho F

1
= (An/an) 2| (T = I)/hllj [A(®)/(fe FT) (&)1 dt,
0

where the second inequality above is a consequence of the inequality
(5.3) (uh)? = (An/an) ui,
appearing in de Montricher et al. (1975), page 1340. 0O

REMARK 5.1. In what follows we use A(t) = {¢(1 —¢)}*, ¢t € (0, 1) with p € (%, 1) and
assume [ {F(1 — F)}* < + or rather its sufficient condition E | X |™ < +o for some 7 >
1/p (this is Assumption A2). To see the sufficiency of the moment condition, notice that
it implies | x |"F(x){1 — F(x)} — 0 as | x| — o and hence there exist positive constants c,
m such that |x|"F(x){1 — F(x)} <cforallx € M = {x € R: | x| > m}, which implies

J' (F1-F)}f= {F(l-—F)}"+c"f |%|™™ dx < +oo.
M

M

In view of Remark 5.1, the assumptions of Theorem 3.1 on s and p and Assumption A2
on 7, we must have s <1 — (2 A7)}, whenever we invoke Theorem 3.1. It is this bound on
s that determines the rate of the types of convergence of the estimate that follow.
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PROPOSITION 5.1.  Under Assumptions Al and A2, we have
@) n"Jlogvd(Fn—F)—>0 as. as n— o,
for any d such that 0 < d < ', and
(ii) n"jlog u, d(F,—F)—0 as. as n— o

for any d such that d < (¢/2) — (2(r A 2)™' — 1)/2. (Here t is as in Remark 4.1 and 7 as
in A2; actually T > 0 is sufficient for (1).)

Proor. (i) Notice that
2n? J logvd(F, — F)=n"" Y2, [log f(Xi) T j log fdF],

and under Assumption A2 [ f|log f|? < +o for any y > 0 (see Klonias, 1981a). Taking y
= (1-d)™' € (1, 2), the result then follows from the Marcinkiewicz version of the S.L.L.N.
(see, e.g., Loéve, 1963, section 16.4, page 243).
(ii) From inequality (5.2) of Lemma 5.2, and inequality (2.3), we have

nd

flog u, d(F, — F) <nd(n/an)l/2||(1‘,;—I)/{I(l—I)}""f {F1-F)}

Notice that under Assumption A2, [ {F(1 — F)}* < 4o (see Remark 5.1); then the
convergence follows as a result of Theorem 3.1, with s =d + (1 —¢)/2. [

We derive next an inequality, to be used in the proof of the second part of Theorem 5.1,
involving the Kullback-Liebler information functionals and the Hellinger distance of two
probability density functions.

LEMMA 5.3. Let f, g be probability density functions. Then

(5.4 12— gt = j flog(f/e).

Proor. The inequality is trivial unless f vanishes whenever g vanishes, so assume the
latter and let v = f/2 and w = g'/. Since log (1 + 2z) < z for z > —1, we have

[v>0]

fflog(g/f) =2 flog(w/v)

= 2] flog[l + {(w/v) — 1}] = 2ff((w/v) -1
[v>0]

=—2(1—fvw)=—||w—v||§. O

We can now prove that the MPLE u,, of v, the root density, is L-strongly-consistent; we
write || « ||, p = 1, 2, for the L,(R) - norm, and || - ||~ for the supg-norm.

THEOREM 5.1. Under Al and A2, for 0 < d < (1 — t)/2 such that d < t/4 — 2(1 N\
2)"! — 1)/4 we have

(i) n?*{1 - (A./n)} > 0as. as n— o,
(i) n%|u, — v|2—>0as. as n— o,
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Proor. (i) Itis easy to check that A, || u. |5 + x| ©5 |3 = n (as in de Montricher et al.,
1975, page 1340) A, is chosen so that ||u, ||z = 1; hence 1 — (A./n) = (an/n)| u.|3. Then
from the inequality between the left and right-most side of (5.1) we obtain

(55) 0<1- ()\n/n)SZJ'log u, d(F,—F) — 2J’logvd(Fn — F) + (an /)| V' |13

The result now follows from Proposition 5.1.
(i) We have

2flogvdF-—2Jlogu,,dF
=2flogund(Fn—F)—{2Jlogunan—2J10gvdF}

SZflogund(Fn—F)—2flogvd(F,,—F)

= (an/n)(lunlli = [|v"|3)

stlogu,,d(F,,—F)—2jlogvd(F,,—F)

+ (an/n) " v’ "é’

where the first inequality above is a consequence of (5.1). This, along with (5.4) and
Proposition 5.1, gives the result. [

REMARK 5.2. Notice that setting r, = (A, /a,)"? the MPLE u, given by (2.2), has the
form

Un(x) = Ay Ykt un(x:) (1 /2) e xER,

and from Theorem 5.1(i) we have that A, is asymptotically equivalent to the sample size
n and r, to ¢ >n9792, We could then think of u, (at least asymptotically) as a kernel
estimator of f'/2, the kernel being the Laplace density and the bandwidth r;".

Notice also that Theorem 5.1(ii) and the fact that || u, — v||5 = 2 imply, through the use
of the dominated convergence theorem, the integrated mean square error convergence of
Un, ie. E|u, — v||3— 0asn— .

With the additional assumption || v” ||z < +%, we will show (see Corollary 5.2 at the end
of this section) that ||z, |z = ||v’||2 a.s. (note that 4| u.||5 is an estimate of the Fisher
information). Under our present assumptions however, it is not known whether || |2
converges. The weaker conclusions, though, of Proposition 5.2 below suffice for the result
of Theorem 5.2.

PropPoSITION 5.2. Under Al and A2, we have
@) lim sup,n?(Ju.|l3 = |v'[|3) =0 as.,

for d such that d < (3t — 1 — 2(r A 2)7')/2. Also for any t > (1 + 2(r A 2)")/3 and any
sequence a, such that a, — 0 (a.s.), we have

(i) an|llunld =I5 >0 as.
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Proor. Using the left and right-most side of inequality (5.1) we have
(6.6)  — v 3 <llunl— vl
= (n/an){Z J logu, d(F,— F)—2 f log vd(F, — F)},
which readily gives both results as a consequence of Proposition 5.1. 0O

We now establish the strong consistency of u, w.r.t. the supremum norm, including a
rate of convergence.

THEOREM 5.2. Under Al and A2 and for d such that d < (1 — t)/4 and d < t/2 —
(r A\ 2)71/2, we have

nu, — v]e— 0 as. as n— .

Proor. In Section 2 we presented the reproducing kernel
Brnan (% ¥) = (4hn0) ™2 exp{—(An/a)"? |2 — y|}

(see (2.1) of H = H'(R) corresponding to the inner product(-, « ), ., Which induces the
Sobolev norm

%l er = Anllwll + ol 32 u € H.
Notice that || Zaen (-, ) [3nan = @Anan) 2 forally € R.
We then have
| ua(2) = () |* = | (Rran(s ), Un = V)i |®
=< 1 Brnan(cs ) R, |28 = 03,0
= (4Mnn) [ Anftn = V|15 + anflun — v'|I3]
= (An/40n) [l ttn — V13 + (o /An) |t — V' ||3]
= (B[(An/a) | un = v
+ (an/Na) (||l + 0112 — 2 (un, v)2)]
= (BA[An/an)"? [|un — v]3
+ (an/Aa) 2([|un B = 10 13) + 2@ /M) 0" |13
+ 200 /An)"[(on /AR) P (Jur IF = 107 1B) + (a0 /M) 07 12 | 0" |21,

where both inequalities above are a consequence of the Cauchy-Schwarz inequality. The
result now follows from Theorem 5.1 (ii) and Proposition 5.2 (ii). O

It is not known whether under the present assumptions u, converges to v in the Sobolev
norm (we can only prove a result of the type of Proposition 5.2 (ii)), but under the
additional assumption: v” € L,, we can obtain this type of convergence. Recall that || v||%
=qlv|3+8|v’||3veE Handn, §>0.

THEOREM 5.3. Under Al and A2 and the additional assumption |v” ||3,< + o, for d
such that d < 3t/4 — (1 + 2(r AN 2)"")/4 and d < (1 — ¢t)/4, we have

n|u, —v|lg—0 as. as n— o,
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Proor. After an integration by parts and an application of the Cauchy-Schwarz
inequality, we have from (5.6),

||u'—v'||%=||uz||%—||v'||%+2fv'(v'—um
== 1+ 2 [ 00
s(n/a,,){ZJlog Uy d(Fn—F)—ZJlogvd(F,,—F)}

+2[v” |zl un = vl

and the result follows from Proposition 5.1 and Theorem 5.1 (ii).

As far as the rates are concerned, we must have 2d + 3(1 —¢)/2 <1 — (1 A 2)7! for the
first term on the right side of the inequality above to converge and for the second we need
4d+ (1 —-t)/2<1—(rA2)7'and 2d < (1 — ¢)/2, and notice that the first and third of
these relations imply the second. 0O

As an immediate corollary to Theorem 5.3, we obtain the convergence of the Fisher-
information functional evaluated at u,,—i.e., I (f») is a strongly consistent estimator of I( f).

COROLLARY 5.1.  Under the assumptions of Theorem 5.3 and for the same values of d,
we have

nunlla=v'[:] >0 as. as n— o

In all of the consistency results so far, the rate ¢ at which a, tends to infinity, and the rate
d of convergence of the estimator, are described through a set of inequalities relating ¢, d
and 7 (of the moment assumption, A2). In the remark that follows we give an idea of the
possible values of ¢ and of d.

REMARK 5.3. If we assume a finite second moment, i.e. = 2, then:

(i) for any ¢ € (0, 1), u, converges a.s. w.r.t. the Ly-norm (Theorem 5.1 (ii)) and the
highest rate of convergence (< 1/6; 2d < 1/3 in Theorem 5.1) is achieved for ¢ = (2/3)7;

(ii) for any ¢t € (%, 1), u, converges a.s. w.r.t. the supg-norm (Theorem 5.2) and the
highest rate of convergence (<%z2) is achieved for t = %;

(iii) for any ¢ € (%, 1), u, converges a.s. w.r.t. the Sobolev norm (Theorem 5.3) and the
highest rate of convergence (<%s) is achieved for ¢ = %.

Hence under the assumption of a finite second moment, a choice of ¢ = (35)* guarantees
the convergence of u, in all senses included in this section, and indeed the convergences in
Theorems 5.1 and 5.2 attain their maximum rate (that our proofs allow).

6. A MPLE with positive support. Let fbe the density function of a nonnegative
random variable, such that v = f/> & H'(R), e.g., f is an exponential density; then the
developments of the previous sections do not apply. However, we will show that if £, with
support R, = (0, +), is such that v € H' (R,), then the “first MPLE of Good and
Gaskins” f., (we suppress the subscript n), exists, is unique, and is also an exponential
spline with knots at the sample points, given by f. = u%, where u,—the MPLE of v—is
given by (6.1) below. Finally, we indicate the computational feasibility and the consistency
properties of the estimator.

Let || - ||z, || - ||2.+ denote the Ly(R) and Ly(R.) norms respectively, and consider the
MPLE problem:

PrOBLEM P4. max [[%: u’(Xi)exp{— a|u’[5+}, u € H'(R,) subject to ||u]s+ =1
and #(X,)=0,i=1,2, ..., n.
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PROPOSITION 6.1.  Problem P4 has a unique solution u., given implicitly by
(6.1) ui(x) = 4Aa)”2y2, ue (X)) '[exp{—(A/a) 2| x — Xi|}
+exp(—(A/0)"*| x + X; |}], x E R,

where A > 0 is the Lagrange multiplier corresponding to the constraint ]2+ =1.

ProoF. Leti(x) =u(|x|) forallx € R\{0}, Z(0) = lim,_,+u(x), and set X_; = X; for
alli=1, ..., n. Then Problem P4 is equivalent to

ProBLEM P5. max [[fi-1 @*(X:)exp{—a| &’ |3}, & € H, subject to Z]3 =2 and @(X;)
=0,|i|=1,---,n,where H,= (g€ H(R): g(x) = g(— x) forall x € R}.

Notice that for # € H'(R), i.e., for & not necessarily symmetric, there exists a unique
solution to Problem P5 given by .

Uo(x) = (4N &) Xfy=1 Go(X:) "exp {(— (A /)% |x — X;|}, x€ER,

where A is the Lagrange multiplier corresponding to the constraint lZl5 = 2. The
arguments leading to this result are identical to those in de Montricher et al (1975) leading
to (2.2). Hence to show that the spline function i, is also the unique solution to Problem
P5 and hence u.(x) = @i(x) for x € R,, the unique solution to Problem P4, we need only
prove that & is in H,—i.e., symmetric about zero. To this end notice that o is symmetric
everywhere if it is symmetric at the knots, i.e., if u(X;) =u(—X;)fori=1, ..., n. Butthis
is true since in system (6.2) below the variables u(Xi), a(-X;), i =1, ..., n are
interchangeable:

#(X)) = 4Aa)™2 Ty [@(X.) "exp{—(\/a) 2| X; — X; |}
+ @ (=X))"'exp{— (N /a)*| X; + X;|}],
(6.2) #(=X)) = (4Aa)™2 By [@(X,) "exp(—(A /a)?| X; + X; |}
+ u(=X)"exp{—(A/a)"*| X; — X;|}],
Jj=1, .-, n.

COROLLARY 6.1. The “first MPLE of Good and Gaskins” when f has its support on
R is given by f, = u?.

Proor. This is a consequence of the nonnegativity of u, and Lemma 3.1 in
de Montricher et al (1975).

REMARK 6.1. All the consistency results developed in the earlier sections for fo=1ul,
where u, is given by (2.2), are also valid for f, and very little has to be changed in the way
of proofs.

REMARK 6.2. Equation (6.1) gives u. only implicitly and the values of the estimate at
the sample points have to be determined, i.e., system (6.2) has to be solved and A to be
chosen so that || Z||5 = 2. In Chapter 4 of Klonias (1980) and in Hall and Klonias (1981),
utilizing the particular structure of the “first MPLE of Good and Gaskins,” an efficient
method is presented for the resolution of the spline fr, which can be easily adapted to
determine the values of £, at the knots. The reader is also referred to Good and Gaskins
(1971, 1980), Scott, Tapia and Thompson (1976), Tapia and Thompson (1978), and Ghorai
and Rubin (1979), where methods for the numerical evolution of f» are presented.
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