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THE 1980 WALD MEMORIAL LECTURES
ON ADAPTIVE ESTIMATION

By P. J. BicKEL'
University of California, Berkeley

We simplify a general heuristic necessary condition of Stein’s for adaptive
estimation of a Euclidean parameter in the presence of an infinite dimensional
shape nuisance parameter and other Euclidean nuisance parameters. We
derive sufficient conditions and apply them in the construction of adaptive
estimates for the parameters of linear models and multivariate elliptic distri-
butions. We conclude with a review of issues in adaptive estimation.

1. Introduction. In 1956, C. Stein published a paper in the Third Berkeley Sympo-
sium which deserves to be as well known as its celebrated companion piece on the
inadmissibility of the normal mean. In this work Stein dealt with the problem of estimating
and testing hypotheses about a Euclidean parameter 6 or, more generally, a function g (6)
in the presence of an infinite dimensional “nuisance” shape parameter G. The question he
asked (framed in estimation terms) was, “When can one estimate 8 as well asymptotically
not knowing G as knowing G?” He gave a simple necessary condition, which he checked
in several important examples and, in one of these—testing that the center of symmetry
has a specified value—he indicated a procedure that should work.

In recent years there has been considerable interest in an important situation where
Stein’s condition is satisfied, estimating the center of symmetry of an unknown symmetric
distribution. Completely definitive results for this problem were obtained by Beran (1974)
and Stone (1975). In this paper we return to Stein’s original general formulation in the
ii.d. case. Motivated by his necessary condition for existence of adaptive estimates we
obtain a simple sufficient condition for adaptation and apply it to a variety of important
examples.

The paper is organized as follows. In Section 2 we define what we mean by adaptive
estimation of #; more precisely, we review some known results in the area and introduce
the examples with which we will deal. In Section 3 we recall Stein’s necessary condition for
adaptation, and introduce a condition which we prove is sufficient. In Section 4 we check
that our sufficient condition is satisfied in our examples. Section 5 contains a discussion of
the connections between our work and recent research of Lindsay (1978, 1980), Hammer-
strom (1978), Levitt (1974) and others, as well as a discussion of open questions. Finally,
in Section 6, we gather technical parts of the proofs of our results.

2. What is adaptation? For simplicity we restrict ourselves throughout to the i.i.d.
case. This is quite unnecessary for the heuristics of the paper. However, at least some of
our proofs employ the assumed independence of the observations quite heavily.

Let X, - - -, X,, be i.i.d. 2 dimensional vectors with common distribution F. Let us recall
the basic facts about the asymptotic theory of estimation when F ranges over a parametric
model as put into their most elegant form by Le Cam.

Suppose that F is of the form F, where 6 € O, an open subset of R”, and the F, have
densities which we denote by f(-, #) with respect to a sigma-finite measure . on R*. Write
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Ey, Py, &, respectively for expectations, probabilities, and laws when 8 holds. Let #(x, )
= log f(x, 8), and define the following regularity conditions.

ConpiTioNs R. For all € O,
() Z(-, 0) is differentiable in (the components of) 0 a.e. Py and = (84/36,, - - , 84/30,).
(ii) The Fisher information matrix 1(6) exists, I(6) = E,{¢7¢ (X1, 6)} < o,
(iii) Square root likelihood is differentiable in quadratic means, i.e. as t — 0,
2

X, 0+6)" tp 3 )
Ea[{w} —1—55 (X1, 8) —0(|t|)y

and
Py {f(X1,0) =0} =0( ¢t ],

where | - | denotes the Euclidean norm (cf. b, and b, on page 10 of Le Cam, 1969).
(iv) There exist n'”-consistent estimates of 0, ie. {#.(X\, ---, X,)} such that
nV2(8, — ) = Op, (1).

Under these conditions the following theorem holds (Le Cam, 1969; Fabian and Hannan,
1980). Call 6 a regular point if I(8) is nonsingular and if I(-) is continuous at 4.

THEOREM 2.1. Under Conditions R there exist estimates {9,,} such that

(a) For allregular, 8, % {(n 2@, — 6,)} — A0, I"()) whenever n'/? |6, — 0| = M for
alln, M < oo,

(b) The estimates {8} are asymptotically locally sufficient in the sense of Le Cam
(1969) and locally asymptotically minimax in the sense of Hdjek (1972) as modified
by Fabian and Hannan (1980).

Statement (a) says that {67,,} are efficient in the usual sense. Hajek (1972) also
establishes, for £ = 1, that any estimates satisfying (a) also are efficient in the sense of
Rao. That is, if we define A, (-) by

(2.1) 0, =0+n"'Yr 2(X:, O)I71(6) + A (6),
then
(2.2) n'?An(6) —p, 0,

for 6, as in the theorem. In Theorem 6.1 (Section 6.4) we extend this result to general &.
REMARK 1. The construction of 8, used by Le Cam will prove useful to us later.
Let R = {n""2(i1, -++, i), i1, - - -, ix are arbitrary integers}, and let
(2.3) f, = the point in R closest to .
If 7*(x, ) has the property that
VYA (X, 00) — £ (Xi, 0)) + 00, — 6)I(6) = op,(1)

whenever n'/?| 6, — 6| <= M, then Theorem 4 of Le Cam (1969) shows that
(2.4) 0= 0.+ 07 T 24X, 81 (B,)

is efficient in the sense of Theorem 2.1; where I~ is a generalized inverse of I. Of course,
this construction is not unique and has unpleasant aspects such as the “discretization” of
g, and its non-iterative character. However, the construction works in great generality, i.e.,
under the mild and natural Condjtions R({1)-R(iv).

We shall actually want to take #* = . To do so we need an inconsequential strengthening
of R(iii) which is valid in all our examples. We call UR (iii) the assumption that for all §
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€ 0, the differentiability condition of R (iii) holds uniformly in some neighbourhood of 6.
We show in Theorem 6.2 (Section 6.4) that R(i), R(ii) and UR(iii) enable us to take
£* =/1in (2.4).

REMARK 2. Condition R(iv), although clearly necessary, appears hard to verify. In
fact, Le Cam shows that if we assume identifiability of § and nonsingularity of I(8) for all
0 € O, R(i)-R(ii) imply R (iv). We have chosen to leave R(iv) in its present form for
reasons which will be apparent later.

In a preprint which we saw after our lectures were prepared, Fabian and Hannan (1980)
give a very careful treatment of estimation in locally asymptotically normal families. They
present, among other results, the “right” version of Hajek’s local asymptotic minimaxity,
as well as a rigorous discussion of Stein’s (1956) necessary conditions for adaptation. Their
notion of adaptation agrees with ours (in their more general framework).

The models for which we will discuss adaptation may be described as follows: The
common d.f. F of the X, ranges over a set which can be parametrized by a Euclidean
parameter # of interest, and a shape nuisance parameter G, i.e.,

(25) F = {F(,,,G):0€ 9, Ge (q}

where O is an open subset of R”, 4 is a set of distributions on some space, and the map
(0, G) —> I“m’(;) is known.
For each G € ¥, define

(2.6) Fe= {Fuc) :0€ O6}.

The models #; are parametric models. Suppose that %; satisfies R (i), R (ii) and UR (iii)
for each G € %. Define f (-, 0, G), / (-, 8, G), I(0, G) respectively as density, log likelihood,
and information in ;. Call (8, G) regular if 6 is regular in %;. Finally, in view of the Le
Cam theorem, we can state the following definition.

DEFINITION. A sequence of estimates {9n} is adaptive if and only if, for every regular
6, G),

(2.7) L (0@, — 0,)) - /0,70, G))

whenever n'”* |6, — 0| stays bounded. Thus adaptive estimates, if they exist, are efficient
for every %; even though knowledge of the true G may not be used in the construction of
the estimates.

Adaptive estimates of § have been constructed in the first of our examples.

ExaMpPLE 1. Estimation of the center of symmetry. Let k =p =1. Take © = R, ¥
= {All distributions symmetric about 0}, Fiy ¢)(x) = G(x — ).

The problem of adaptive estimation of 6 in this model began to be studied by van Eeden
(1970) and Takeuchi (1971), although the corresponding testing problem was earlier
considered by Stein (1956) and solved by Hajek (1962). The definitive theorem was
obtained by Beran (1974) and Stone (1975).

Let

(2.8) 1(G) = f {g'(x))*/g (x) dx
whenever g, the density of G, is absolutely continuous, and let I(G) = « otherwise.

THEOREM 2.2. There exist translation and scale equivariant estimates, {9”} such
that

(2.9) Lo (n*,) — 470, [T(G))
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for all G € G with 1(G) < .

Hajek (1962) has shown thgt for this model (6, G) is regular if (6, G) = I(G) < «. The
converse is also true. Thus {6,} are adaptive according to our general definition. In fact,
Stone (1975) shows that the estimates he constructs satisfy (2.9) with I"'(G) = 0 whenever
I(G) =x.0

We will construct adaptive estimates of 4 in the following generalization of Example 1.

EXAMPLE 2. Estimation of regression with symmetric errors. We describe the model
structurally in terms of a variable X ~ Fy¢). Here 2 = p + 1 and © = R”. Let

(2.10) X=(CY)
where C is a p dimensional random vector and Y a scalar. Further,
(2.11) Y=0C0"+¢
where ¢ ~ G, and ¢ and C are independent. We again take
% = {All distributions G on R symmetric about 0}.
Finally, we suppose
(2.12) E(C7C) is nonsingular.
This is just a stochastic version of the usual multiple regression model,
X, =CoO" +¢, i=1-..,n,

where Cy, ---, C, are p dimensional vectors of constants such that C7 = (C{, ..., CI)
and C”C is nonsingular.

We deliberately do not specify that the distribution of C is known. The adaptive
estimates we construct depend only on the data and work for any distribution of C
satisfying (2.12). 0

In many interesting situations a parameter 6 for which efficient estimates exist in every
model % cannot be consistently estimated in % because the parameter becomes un-
identifiable. This is true in the next two examples. However, in both, natural functions
q(0) can be so estimated. In fact, adaptive estimation of these functions is possible. The
definition of adaptive estimation of q is straightforward:

DEFINITION. Suppose q:0 — R, d <p, has a total differential ¢ (6), a d X p matrix.
A sequence of estimates {G.} of q is adaptive if and only if, for every regular (6, G),

(2.13) Zo,{n""(qn — ¢ (6.)} = N (0, (O, G)g(9))

whenever n'’? | 6, — 0| stays bounded.

EXAMPLE 3. Regression with a constant and arbitrary errors. In Example 2, let C
=(C°, 1), C° a p — 1 dimensional vector. Define X, Y, ¢ as before and suppose ¢ and C are
independent. However, let ¢ = {all distributions on R}, and replace (2.12) by

(2.14) E(C° — EC°)T(C° — EC°) nonsingular.

Evidently 6 is not identifiable in # since a change in the constant §, could equally well be
a change in G. However, g(8) = (0, - - - , 6,—1) can be adaptively estimated, as we shall see.
A special case of this model, where p = 2 and

co = 1 with probability A
0 with probability 1 — A,
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can be thought of as a two-sample model with random sample sizes, i.e., we observe N
observations with distribution G(x — 6, — 6;) and n — N observations with distribution
G(x — 0;), where N has a binomial (n, A) distribution.

Adaptation in the two-sample model with fixed sample sizes (and unknown scale) was
studied by Stein (1956), Weiss and Wolfowitz (1970), and Wolfowitz (1974). A definitive
result was obtained by Beran (1974). Weiss and Wolfowitz (1971) considered the fixed
sample size multiple regression model and obtained partial results. 0

ExXAMPLE 4. Parameters of elliptic distributions. The following multivariate gener-
alization of the symmetric one-sample location and scale model has been considered by
Huber (1977) and others. Let

X=u+eV 12

where p is an unknown 1 X % vector, V'is a positive definite 2 X 2 symmetric matrix, and
V™12 is the unique positive definite symmetric square root of V~'. We suppose ¢ ~ G,
where

%= {G: G absolutely continuous, spherically symmetric on R*}.

Take 6 = (u, [V]) where for any symmetric 2 X k matrix M = || m;; ||, we define [M] to
be the lexicographically written row vector of the lower k(% + 1)/2 entries of M. Thus, p
=k(k + 3)/2 and

O = {(u, [V]): V symmetric positive definite}

is an open subset of R”.

Here 6 is efficiently estimable at regular points of % but is not identifiable in # A
common scale change in all coordinates is ascribable to either V or G, yet (g, V/tr V) can
be estimated consistently, in fact, adaptively, as we shall see.

3. Stein’s considerations and a sufficient condition for adaptation. We begin
by recalling Stein’s necessary condition for adaptation. Define a parametric subfamily of
Y as a set {%,}, n € T, where T is an open set in R’ and the map n — G, is smooth. The
parametric submodel of # corresponding to the parametric subfamily {G,} is naturally
defined by {Fg,c, :0 € ©, n € T}. Here is Stein’s necessary condition.

CoNDITION S. For every parametric submodel obeying R (i)-R (iv) with G, = Go

7] 7]
(3~1) v f(xa 0) G’I,) o /(x9 09 GT]) f(x) 00) GU)’-"(dx) =0
a6; an,
8=00,n=n0
i=19 Y ) .1=1a "'9t'
Stein (1956) shows that if an adaptive estimate of 4 exists and (6,, Go) is regular, then
Condition S must hold. The argument is simple. Let

Ill Il2
I= ,
(IZI IZZ)
where I;; is p X p and I, is ¢ X ¢, be the (p + t) X (p + t)-dimensional Fisher information
matrix of the parametric submodel Fi4 ¢, evaluated at (6o, 70), and write

B Ill I12
I'= ( 2 rz2)
Now, by definition, if {5,, },\ is adaptive, then I1' = I"'(6, G,) is the asymptotic variance
covariance matrix of n'*@, — 6,) whenever n'/?| 6, — 8| stays bounded. But, by Hajek’s

(1972) theorem, I'"' is the smallest variance covariance matrix achievable in this way. Thus
I = I'" which is equivalent to I, = 0, which is Condition S.

ot
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Condition S suffers from two defects: (i) it can be awkward to verify, (ii) it is unclear
how to proceed from it to the construction of adaptive procedures. We now proceed to
derive a simpler condition which is at least heuristically necessary and which in turn leads
to a verifiable sufficient condition.

All the examples we have studied exhibit the following simple convexity structure:

ConprTiON C. % is convex and Gy, G1 € ¥ implies that for 0 < a <1

Fioucrrt-man = aFpcy + (1 — a)Fo,c,.

This structure suggests that we examine Condition S for the following {G,}. Fix Gy and G,
take T = (0, 1), and let

G,, = nGo +(1- 7I)Gl~

Then Condition S becomes forn>0,i=1, ..., p,

f 5% 4(x, 0, G){f(x, 0, Gi) — f(x,0, Go)}u(dx) = 0.

Letting n — 0 formally we get for “all” Go, Gi € % that the following holds.

CONDITION S*,
f f(x9 0a GO)f(xa 0a Gl).u'(dx) =0.

It may be shown formally that if Condition S* holds, so does Condition S (Bickel, 1979).
Condition S* has a simple heuristic interpretation. If Gy is a fixed shape in %let * be the
M-estimate corresponding to G, i.e., solving

S b(x, 0, Go) = 0.

We know that, under regularity conditions (Huber, 1967), if Condition S* holds, then
n'?(6% — 6) is asymptotically normal under Fs¢ with mean 0 and variance covariance
matrix A7'B(AT)™}, where

’

62
4s ” - f 005,15 & Gof (5,0, Gl

(3.2) .
B= f ZT(xa 0’ GO)Z(xa 0a GO)f(xa 0v G)nu‘(dx)

A heuristic summary of this is as follows. Firstly, M-estimates corresponding to a fixed
shape Go should be n™'? consistent for § under every shape G,. Secondly, suppose we can
estimate the true G by data-dependent {G,} so that the score functions ¢(-, -, G,,) converge
to £(-,-, G) and so that the matrices A,,'B, obtained by replacing Gy by G, in (3.2)
converge to I(6, G). It then seems plausible that the sequence of M-estimates corresponding
to G, is adaptive.

Motivated by these considerations we now formulate two conditions, GR(iv) and H.

ConprtioN GR(iv). There exist estimates {0,} such that n'/*(8, — ) = Op,,, (1) at all
regular points (8, G).

Let

A={h:h maps R*xXO to R* and
(3.3)
f h(x, 0)F4e(dx) =0 forall §€6,GE ¥}.

g;!
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In view of Condition S*, # includes the space of possible score functions. For convenience
we introduce

(3.4) l(x, 0,G) =4(x,0,G) 6, G),

where I” is any generalized inverse. (In fact we oply need /7 for @ such that I @, G) is
nonsingular.) Note that ¢ can be substituted for / in Condition S*. Here is our main
condition:

ConbpITION H. Appropriate consistent estimation of score functions is possible. That
is, there exists a sequence of maps Cm: (R > #m=1,2, ---, taking (xi, -+ -, xn) into
l(+, +; X1, + -+, Xn) such that for all regular (6, G) and any |8, — 8| = O(m™"?),

(3-5) f I Zm(xa 0’"; Xl) Tty Xm) - Z(x9 oma G)IZF(ﬁ/n,G)(dx) -0
in Py, probability.

Note that GR(iv) is evidently a necessary condition for adaptive estimation and is the
natural generalization of R(iv). Under Condition S*, M-estimates corresponding to a fixed
shape are natural candidates for §,. In view of Stein’s necessary Condition S*, we
conjecture that Condition H is necessary for adaptation. W. R. van Zwet pointed out a
suggestive inequality bolstering this conjecture (Klaassen, 1980, Theorem 3.2.1). In any
case these conditions are sufficient.

THEOREM 3.1. If Conditions GR(iv) and H hold, then adaptive estimates exist.

NotE. The construction is closely related to that given for adaptive rank tests in the
linear model by Hajek (1962). A related construction for Example 1 has been given by
Bretagnolle (private communication). See also Hasminskii and Ibragimov (1978).

Proor. Define 4, as in (2.3). Let {m(n)} be a sequence of subsample sizes with m(n)
= o(n). Write m for m(n) and let 7 = n — m.
Define

(3.6) By = By + T Yl £(X,, B3 X, -+, X,
We claim {8,} is adaptive. By Theorem 6.2,
O + A7 Siemar £(X,, 62, G)

is efficient for every regular (6, G). Write P, for Pyc). Then to prove the theorem it is
enough to show

‘

3.7) AV s (Enl Xy s X, -+, X) — £(Xe, B, G)) = 05, (1).

Now we use a trick of Le Cam’s and note that we need only establish (3.7) with b, re-
placed by 6, = 6 + t,n""/% where t, is an arbitrary convergent deterministic sequence. This
follows since 8, is Vn — consistent and the intersection of its range with any sphere of
radius Mn "2 about § is finite with cardinality bounded independent of n. Having made
the replacement, we prove (3.7). Note that R(i) — R(iii) imply that the 7z dimensional
product measures of X+, -+, X, under Py and under P, are contiguous. Therefore, it
suffices to prove (3.7) in Py probability. Condition on Xj, -.-, X,, for this probability.

Since £ (-, -; X1, -+, Xn) € H,

(3.8) f bl On; X1, +++, X f(x, O, G)uldx) =0
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and by R(i) — R(iii),
(3.9) f £(x, 0n, G)f(x, 0, G)p(dx) = 0.

Therefore

Eﬂn[l ﬁ—1/2 Z?=m+1 {ZM(XH 0'1; Xl, Tty Xm) - Z(Xn 0n9 G)} |2|X1v Tty Xm]
(3.10) N B
= f |fm(x’ 0n; le Tty Xm) - [(x’ 0}1, G)|2f(x’ 0n, G)#(dx) -0

in P, probability by Condition H and hence, by contiguity again, in Py probability. Claim
(3.7) is proved, and the theorem follows. [

Notes. It is possible to rep}ace Condition H by the following condition H’ which
permits separate estimation of ¢ and I

ConbpITION H’'. (a) There exist maps 2,,,(Rk)’" — # such that for all regular (0, G),
|6, — 8] = O(m™"7?)

(3.11) J’ Iém(x, Om; X1, ++ o, Xn) = £(x, Om, G)*f(x, Om, G)p(dx) = 0p,(1).
(b) There exist estimates fm(Xl, .+, Xi») of I(8, G) consistent for all regular (0, G).

It is easy to show that if GR(iv) and H’ both hold, and if we define

(3.12) 0:‘: = 0_;: + ﬁ_l Z?=m+l 2(XU gn; le ] Xm)jjt
then
(3.13) 0% =0, + 77" Piemnt £ Xy B X, -+, Xu) 60, G) + op,(n”1?)

and 0% is adaptive. .
A natural choice of I, is provided by

(3.14) Bo= 7 S 670X, O3 X, -+, X)

We show in Section 6.2 that this choice of I, is consistent for regular (6, G) provided that
GR(iv) and (3.11) hold, and if

(3.15) m™ YR T (X, Omy G) — 16, G)

in P, probability for all regular (4, G).

These are the results we will apply to Example 2 and which are applicable to other
situations where all of § is estimable. To deal with Examples 3 and 4 we need an extension
of our theory. First we study the analogue of Condition S* when we only ask that g(4),
rather than all of §, be estimated adaptively. Stein considers this question in a slightly
different formulation. He writes 6 = (g, t) with ¢ = ¢(@) and ¢, the rest of 6, is a nuisance
parameter, and he introduces the model {F,}. He notes that adaptive estimation of ¢
is possible only if the upper left-hand corner of the inverse of the information matrix for
(q, t) with n = n, fixed is the same as the upper left-hand corner of the inverse of the
information matrix for (q, ¢, n) evaluated at no. We do not pursue further his matrix
formulation of this condition, but only note that in the presence of convexity Condition C,
Stein’s condition is heuristically equivalent to the d equations

CONDITION S* (generalized).

J 4(x, 0, Go)I (8, Go)gT (@) f(x, 8, G1)u(dx) =0

gL
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for every shape Go, G: € %. For q(6) = 0, ¢ is the identity and our more general formulation
of S* agrees with our old one.

New difficulties are introduced by the possible lack of identifiability of . Of course we
need to have ¢ identifiable. That is, if

(3.16) Fo,c)=Fuoc)=F
then

But adaptation requires more. If F' can be embedded in both %; and %, as in (3.16), then
the information bound for estimation of ¢ must be the same in both parametric families.
That is, (3.16) implies

(3.17) G(60) I (8o, Go)g " (8o) = G(8:)I (61, G)g"(8y).

This condition is satisfied in all our examples because if %, and % have a member in
common then they are the same, or, rather, one is a smooth relabelling of the other. For
instance, in Example 3, (3.16) holds if and only if G, is obtained from G, by a translation.
We shall use this structural feature in a stronger way to reduce % and make 6 identifiable.
Here is a formal statement of our structural assumptions. They are obviously satisfied in
Examples 3 and 4.

AssuMPTION Al. Either g, = J¢, or Fo,N Fo, =D, for all Go, G1 € %.

ASSUMPTION A2. There exists T C R?™® and a smoothly invertible map from © to
Q X T where @ = q(0) which carries 0 into (q(8), t(8)). That is, we can identify q with a
piece of 6.

AssUMPTION A3. Ifwereplace 0 by (q,t) and Fs, = F., there exists a unique smoothly
invertible mapping 7(q, -) of T into itself defined by F416,) = Fic,).

Assumption Al implies that there exists an “identifying subset” % C % such that (i) &
= {Fue:GE %, § € 6}, and (ii) 6 is identifiable when G is restricted to %, provided that
it is identifiable in each %;. We can select % as a set of representatives of the equivalence
classes generated by the relation Gi = G: © %, = %,. For instance, in Example 3 we can
take % = {G:u(G) = 0} where u is a location parameter. As we noted, Assumptions A2
and A3 imply that if (a) %6 = F,, Go € %, and (b) F.¢) = Fiy,c,), then q(0) = q(6) and
(3.16) holds. That is, it does not matter in which parametric model %; we embed a
distribution F. The value of ¢ and the ease with which ¢ can be estimated remain the
same. Since we can talk about estimation of 8 for (6, G) € ® X %, it is natural to propose
the following extensions of the conditions for \/r—t-consistency and appropriate consistent
estimation of score functions.

GENERAI;IZED ConDITION GR(iv). There exists % satisfying (i) and (ii) above and
estimates {6, } such that

n'*@, — 8) = Op, (1)
forall (6, G), GE %.

We now redefine 7, # for given q. Our definitions agree with the old ones when ¢ is the
identity. Let

H = {h:h maps R* X © into R? so that

J' h(x, 0)f(x, 8, G)u(dx) =0 forall (6, G)}.

(3.18) (x,0,G) = ¢x, 0, G0, G)gT®).
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Condition H is now generalized as was condition GR(iv), merely by substituting % for %.
The easy extension of Theorem 3.1 is as follows.

THEOREM 3.2. If Assumptions A1-A3 and the generalized conditions GR(iv) and H
hold, then adaptive estimates {G.)} of q(6) exist.

The proof is the same as for Theorem 3.1 when we propose as estimate

(3.19) én = q(e_n) + ﬁ‘l Z'il=m+l ;m(Xz, 0_11; Xl) MR} Xm)

4. Adaptation in Examples 1-4. For the examples we leave verification of the
trivial structural Assumptions Al through A3 to the reader. In each example we shall
proceed through the following steps:

Step A. Formally verify Stein’s orthogonality Condition S* and in the process con-
struct what we can think of as the “space of possible score functions” # or a suitable
subset #4.

Step B. Find a suitable identifying subset %, and construct Vn-consistent estimates
{8.) so as to satisfy GR(iv).

Step C. Construct score function estimates ¢ satisfying (3.5) and taking values in /%
i.e. satisfy Condition H for the appropriate consistent estimation of score functions, or
satisfy its modification H’ providing for separate estimation of ¢ and I.

Since Example 1 is a special case of Example 2 and has already been dealt with
satisfactorily, we begin with Example 2. For convenience from now on we write P for P,.

ExAMPLE 2. Step A. If the distribution of C has density r with respect to some », and
if G has density g, then X = (C, Y) has density (with respect to the product measure)

(4~1) f(ca Y, 0; G) = "(C)g(y - C0T))
and

42) £, 7,6,G) = c%' (y - cb”).
Then

&(e) ()

since g’/g is antisymmetric and G, is symmetric about 0. Thus, Condition S* is satisfied
and by our argument, # D #;, where h € #; if and only if

Ew’GO)Z(C’ Y’ 0’ G) = E(G.G()){Cg—(*s)} ( ) Gﬂ{g (8)} = O’

(4.3) hic, y,0) = c¥(y — c87)
for ¢ bounded and antisymmetric, i.e.
(4.4) U3 = —9(=).

So we will use score function estimates of the form (4.3).

Step B. Let :R — R be such that  is twice continuously differentiable, with 1 and
its derivatives bounded. Suppose, moreover, that ¥’ > 0 and that y is antisymmetric. Let
{0 } be the M-estimates corresponding to v, i.e., the unique solutions of

(4~5) Zl=l Czj\l/(Y,’ - C,e,Tl‘) = 0, ] = ]_, ceo, D,

where X, = (C,, Y,), Ci = (Ca, - - -, C;p). Then by Huber’s theorem (Huber, 1973), {5,,} are
Vn-consistent. (This is just the construction suggested in the previous section.)

Step C. By modifying the arguments of Hajek (1972) it is easy to see that (6, G) is
regular if g is absolutely continuous with derivative g’ and if I(G), the Fisher information
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for location given in Section 2, is finite. The converse is also true (proof available from
author).
By (4.2) we calculate

’

(4.6) Z(c, 5, 6,G) = cf—’;; (y — cdT){E(CTC(G)}™,

where the last term is just 17'(f, G). To apply Condition H or H’ we need to estimate
g’/g and I(G). This is achieved by the following lemma whose proof is given in Section 6.1.

LEMMA 4.1. Let €, &, --- be 1.id. random variables. There exists a sequence of
function estimates g,:R X R™"— R,m =1, 2, - - -, such that q,, is bounded for each m and
such that as m — o

. gy : -
(4-7) j{Qm()’,fh ,€m) g(y)}g(y) dy 0

in probability whenever the common d.f. of the ¢, is G with density g and I(G) < o.

We proceed to show how to estimate ¢ and I(G) separately and verify Condition H’.
Let

(4.8) £ = Yl_Cza_z(Xl» "’7Xm)7 i= 1L,..-,m,

be the residuals with respect to the “discretized” estimate based on the first m observations.
Define

(49) tl/m(y, le "'me) = I/Z{qm(y, é\ly Tty é‘m) - q"z(_y;gl, ""é\m)}
and
(4.10) Emle, 3, 0; X0, oy Xo) = clml(y — 873 X1, -+, Xo).

Clearly{? (; X1, -+, Xn) € #and

J ’2m(cy Y, am;le Tty Xm) - Z(C, Y, 0m, G)|2 f(C, Y 0m’ G) dyV(dC)

aw =
Il

Now let 6, = 0 + t,., where ¢, and ci, - - -, ¢, are p-dimensional vectors such that | ¢, | =
O(m™*) and Y7, c,titnc’ is bounded independent of m. Then the sequence of
m-dimensional product measures induced by 1, - -+, e and &, — c1£L, -+ -, & — Cnl}h are
contiguous if I(G) < « (Hajek and Sidak, 1967, page 211). Since ECC” is finite, if | .| =
O(m™"%), Y, e,tEtnel = Op,(1). Thus, by Lemma 4.1,

(4.12) J

But, as usual, by the structure of ,, and its m'/*-consistency, this result is enough to
establish

2

c"g(y — c87) dy v(dc)

Unly — 0L X1, oo, Xo) — % (y— ch)

’

R
qm(Y; €1y ooy Em) — Eg_ (| &) dy}ECCT].

2

g(y) dy —p, 0.
/

m(y; & — Cith, + oo, &n — Cuth) — % (5

(4.13) J'{qm(y; &1, ---,ém)—%(y)} &(y) dy —p, 0.

Substituting in (4.11), we see that £, is a consistent estimate of # in the sense of part (a)
of Condition H’, in (3.11).
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There are various ways to construct I,. For instance, we can verify (3.15) in this case as
follows:
7\ 2
m! S 2708, 0, 6) = 70 L) (v, oD
(4.14)

—p, E(CTC)I(G) = I, G)
by the weak law of large numbers. By contiguity we can replace 6,, by 8 in Py . This yields
as the consistent estimate of (3.14),

(415) ) ii;l) =n! :‘=m+1 CJTCJ‘[/?n(YJ - Cza_rjz‘; gl, MY €M)'
A more familiar alternative, which may similarly be shown to work, is
(4.16) I9 = (n7' $iy CTCHA™ Tiamsr Vi Yi = Cilin; &1, ++, én).

We have proved the following result.

THEOREM 4.1. Let 0, be defined as in (4.5), Ym as in (4.9). Let
(4.17) b, = 6, +nr! Sieme1 Cfm(Yi — COLé, vy ém)
where I, is given by (4.15) or (4.16). Then {9n} is adaptive in Example 2.

EXAMPLE 3. .
Step A. Ifc = (c° 1), q(d) = (6, ---, 6,-1) and ¢ is defined by (3.18), we get

(4.18) 7(c,y,6,G) = (c° — EC°)(Var cw-l% (y — c8T)I(G).
Thus, formally
Ewen? (X, 0,G) = E(C° — EC°)(Var C°)-1E%(s)rl(a) =0

and Condition S* is satisfied. In view of (4.18) it is natural to choose
(4.19) M= {h:h(c, y,8) = (c° — EC°)(Var C°)_1¢(_y — ¢87), ¥ bounded} .
Step B. Let ¢ be as in Step B of Example 2 and define

(4.20) % = {G: f Y(y)G(dy) = 0} .

Evidently % is an identifying subset and, by Huber’s theorem, {5n} corresponding to y are
Vn-consistent when G is restricted to %.

Step C. A possible definition of £ is just
4.21)  nle,y, 8, X1, -+, Xn) = (c° — EC°)(Var C°) ' gu(y — T34y, - -+, én) i,
where

(4.22) i = n—‘l E?=m+l q%n(Yl - Czo_r’ll‘; ély Tt ém)’

g is given in Lemma 4.1 and the & are defined by (4.8). That / works is evident by the
same argument as we gave for Theorem 4.1, since regular (6, G) again correspond to I(G)
< oo, This is not satisfactory, however, because the resultant estimates depend on the first
and second moments of the unknown distribution of C°. We claim that estimating these
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does just as well. Here is one way of proceeding. Define
(4.23) CR=n"'3r C?
Var C° =n~' Y2, (C? — C9)T(C? - C3).
Let
424) G =07+ A7 S (€2 — C2)(Var C2) gn(Y, — CfT; 61, -+, én) ]

where 577" is the vector of the initial p — 1 elements of §,.

THEOREM 4.2. The estimates §, defined by (4.24) adaptively estimate (6,, - -+ , 0,_1)
in Example 3.

Proor. We know that

(4.25) 7' Ymi1 (C3 — EC®)gum(Yi — CiBL; &1, -+, ém)(Var C°)~ = op(n2)
and
(4.26) Var C° = Var C° + op(1).

Therefore, replacing Var C° by Var C° in (4.21) will still lead to adaptive estimates. Thus
to establish that the estimates given by (4.24) are adaptive it suffices to prove that

(427) AT (C2 — EC°)(Var C°) gm(Y, — COL &y, -+, én) = op(n?)
or, since C2 — EC° = Op(n?), that
(4.28) A Y emi1 qn(Y = CO%s &1y« -+, ) = 0p(1).

To prove (4.28) we show that we can replace ¢, by g'/g and Y, — ¢,8 by ¢, and then apply
the law of large numbers. Details are given in Section 6.2. [

ExAMPLE 4. Step A. In this case if § = (u, [V]), then
(4.29) f(x, 6, G) = {det(V)}'"*y({(x — p)V(x — w)"}""?)

where det denotes determinant, and y maps R* into itself. Of course, y(| x| ) is the density
of G. We want to estimate

where go is any homogeneous function of [V]. A “most general” choice is go([V]) =
[V]/tr(V). We can write, for (8, Go) regular,

Ax, 1, G)I'(6, Go) = W°(x, b, V), [X°(x, g, V)])

where y° is 1 X k, x° is £ X k symmetric, and [x] denotes the k(% + 1)/2 dimensional
vector of the lower half of x. It is shown in Section 6.3 that

(4.31) Vo, V) =y¢°((x — V2,0, J) V12
(4-32) Xo(x’ s V) = V1/2Xo((x - ‘u')Vl/Z’ Oy J)Vl/zy

where JJ is the & X k identity matrix. We further show in Section 6.3 that, if | - | is the
Euclidean norm and yo(| x|) is the density of Gy, then

(4.33) Vo, 0, J) = — L2 (| x| )RIT(Go)
[x] Yo



660 P. J. BICKEL

and
X5(x,0,J) = [N (Goyk(k +2) 22 X0 (| x|), i#J,
(4.34) lx| Yo
2{1 (Go) —> 1}_1{"_’2V_6(|x|) +1b, 0=
2 T kT 2 %] 70 S
where
o 72
(4.35) L(G) = ckJ k! 'y (r) dr
o Y
7 el 112
(4.36) L(G) = e f P 0T
Y
0

and c; is the surface area of the unit sphere in R*. Then by (4.31) and (4.32),
(437) E(H,G) {‘PO(X) My V)’ [Xo(Xy My V)]}qT(o)
= E(O»[J],G) {‘PO(X’ 0’ J)Vfl/za [VI/QXO(X’ O» J)Vl/z]}qT(0)~

Moreover, if ¢ # j, X, changes sign if all the coordinates of x other than x, are left
unchanged while x, — —x,. Since if § = (0, [J]), all the X, are identically distributed and
the distributions of (X, - -, X%) and (* Xi, ..., = X) are the same, we conclude that

(4.38) Eoiney°(X,0,J)=0

(4.39) Epnex® (X, 0,J) = cd,
where ¢ depends on G and G,. Therefore

(4.40) EomnalV'7x°(X, 0, J) V] = c[V].

Substituting (4.38) and (4.40) back into (4.37) we find that all components of (4.37) vanish
either by (4.38) or by Euler’s equation Y=, U, dgo/dvr, = 0.

The orthogonality Condition S* follows and our argument makes it clear that s#’defined
in (3.3), contains the set # of h(x, ) defined by

(4.41) h(x, 0) = W((x — VAV [V ((x — p VA V2)GT6),
where ¥ is 1 X k and x is symmetric 2 X £ with forms
(4.42) V() = w(|x]) ﬁ—l a
W) @, it
E4
(4.43) xi, (%) = 2
{w(|x|)i~3€—|+ 1} as, L=],

where w is bounded and a,, a:, a; are constant. Clearly 5 is much bigger than /%, but #%
is the space of natural estimates of 7.

Step B. Thanks to Maronna (1976) we can find an identifying subset % and corre-
sponding Vn — consistent 8, as follows. Let u; and u, be functions on R*. Define the M-
estimate (fi., V,) corresponding to u; and u, to be any solution of

(4.44) Y (X = i) V(X = ) T} =0
7Y w ({((X = i) Vi (X = i) DX = ) (X = ) = [V]7!

if one exists, and arbitrarily otherwise.

e

ot
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It is easy to see that the maximum likelihood estimates for a particular G are of this
type. Let u,, u, satisfy conditions (A) — (D) on page 53 of Maronna (1976). In addition, if
Y. (s) = su.(s), i = 1, 2, suppose that sy/;(s) are bounded, j = 1, 2, and ¥} > 0. By Theorem
5.6 of Maronna, under these conditions n"*(ji, — i, V. — V) = Op(1) for all F € Fwhere
nw, V, G), V(,u, V, G) satisfy uniquely

(4.45) J wi({(x = ) V(x — 1)} (x — j)f (%, 0, G) dx =0

(4.46) f w({(x = PV (x =)D - 1) "(x - Wf(x, 6, G) dx = [V]™".

It is clear by the unicity of ji, V that
(4.47) Blu, V, G) = p,
(4.48) Vi, V,G) =c(@)V,

where ¢ (G) is that measure of scale which is the unique solution of the equation
1
E{ug(c € BT)} = z;

existence is guaranteed by the monotonicity of u,. Clearly we can take as an identifying
subset

(4.49) % ={G:c(G) =1}

and 8, = (in, V) defined by (4.44).

Step C. It may be shown that regularity of (6, G) is equivalent to absolute continuity
of y on (0, ») and finiteness of I,(G) and I;(G). (Proof available from author.) We will
show how to construct adaptive estimates of g, (V) in a simple fashion and then discuss
the simultaneous adaptive estimation of u.

Note that if X has density given by (4.29), then log | (X — ) V'/?| has density j given by

(4.50) J(2) = cre*y(ed).
Thus
(4.51) Zy—(y) =y“{]Jf (log ¥) —k}, y>0,

and this leads to the following construction of an estimate of y'/v.
Let ji., be obtained by discretizing fi,. as usual while [V,,] is the closest member of the
m~*/* lattice to V,, which itself corresponds to a positive definite matrix. Let

zZm=log | (X — @) V2|, i=1, .-+, m,
and define
(4.52) wm(y;le )Xm) =y41{q'm(10gy; Zimy * s Zmm) — k}
We claim that
’ 2
(4.53) flxl2 wm(IxI;Xn,-~,Xm)—y7(|x|) y(|x|) dx— 0

in P, probability if (f, G) is regular. The proof follows the usual lines. By construction
of fim, Vo it is possible to treat them as deterministic sequences such that | — p| and
| Ve — V| = O(m~""). Since (6, G) is regular the m-dimensional product measures induced
by e, -+, emand (Xy — ) Vil% -+, (X — fim) V/? are contiguous. If we also use (4.51)
we can conclude that (4.53) is equivalent to

2
(4.54) J

y(|x|) dx— 0

gn(log | x|;log | e ], --- ,log|em]|)) —jj—. (log | x|)

3
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in probability whenever ¢, - - -, &u, are ii.d. with common distribution G such that I, (G)
and I, (G) are finite. But the integral in (4.54) equals

®© “r 2
(4.55) f an(z;log |&1], -+, 1og | en]) —’]—, )| g(2) dz
Moreover,
o 2 o ’ 2
(4.56) J’ %(z) dz=f {e”;(eﬂ +k} 2(2) dz = L(G) — &

using integration by parts. Thus the integral in (4.55) tends to 0 whenever I,(G) < « by
Lemma 4.1 and (4.54) and hence (4.53) holds. Now that we have an estimate w,,(:; X,
..+, X») of y'/y we can estimate I,(G) by, for instance, splitting our preliminary sample
of m, taking m = 2/and letting

(4.57) f2 =/ Z?;Ml qgn(zzm; Zimy 0y Zem) + k.
Evidently I, depends only on X, ---, X,,. Moreover, we can argue as for (4.28) that,
whenever (6, G) is regular,
(4.58) I, — L,(G) in probability.

Now define xo (-, O, J) by substituting I for I, (Go) and wn(+; X1, + -+ , Xn) for Y0/v0 in
(4.34) and let
(4.59) ;m(x, 0; X1, -0, X)) = [V Xo((x =) V2, 0, ) V3145 (V).

This is the natural estimate of /corresponding to go([V']). Now after some algebra, if 6,
= (m, [Va]),

(4.60) J’ |;m(x, Om; X1, o, X)) = A&, O, GV B, G)(O, go ([V]) [Pf(x, 0, G) dx

= OP(f I(x - /vLm)Vrln/zlz wm((x - Hm)Vrln/z, Xl) R sXm)

Y ;
- - mVrln/Z
Y(I(x thm) [)

2
f(x, 0, G) dx> + Op(l, — I).

Butzthe right-hancL side of (4.60) is 0,,(1) by (4.53) and (4.58). From (4.60) and the structure
of ¢ we see that ¢ falls in # given by (4.41) and is appropriately consistent. We have
proved the following result.

THEOREM 4.3. In Example 4, if we define
(4.61) Gon = qo([Va]) + 27" Bimsr n(Xs, O X, -+, Xin),
then {Go.} is an adaptive estimate of qo([V]).

To estimate p simultaneously and adaptively using the estimate of y’/y we need to
show that

(4.62) f

in probability, or equivalently that

(4.63) f e

2

y(|x|) dx— 0

wm(|x]; X1,y -+ ,Xm)_y?”xl)

2

qm(z;loglell,-~~,log|em|)—j]—.(2) g(z) dz
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in probability. Unfortunately, to show (4.63) we need

© \2 ® ’ 2
(4.64) J e‘zz(l—j)— (z)dz=cp J' yk_l{l;- () + ky‘l} v(y) dy < oo
—c0 0

and this happens if I; (G) < o and
(4.65) f Y7 (y) dy < o,
0

a superfluous condition.

To get rid of (4.65) we need to estimate y’/y differently by smoothing the multivariate
empirical distribution of (X; — tm) V /% and constructing an estimate of y’/y out of the first
partial derivatives of the smoothed empirical distribution. This can be done but we omit
the tedious and rather technical definition of the estimate and the necessary argument.

5. Questions raised by this work and other issues in adaptive estimation.

5.1 When is adaptation not possible? We have seen heuristically the necessity of the
«/ﬁ-consistency condition GR (iv) and the orthogonality Condition S when there are no
nuisance parameters. In parametric models Vn -consistency is available under mild smooth-
ness and identifiability conditions while orthogonality is special. Orthogonality seems
special in these nonparametric nuisance parameter models as well. We illustrate with a
famous example of Neyman and Scott. The failure of adaptation in this case was already
noted by Wolfowitz (1953).

ExaMPLE 5. Estimation in Model II. Suppose X; = (X1, Xi2), i =1, - - - , n, such that
(51) Xij = W + &y, ] = 1’ 2’

where the ¢;, are independent identically distributed 4#1(0, ), and the p, are independent
and identically distributed with common distribution G. Let © = R™, ¥ = {all distributions
on R}. It is easy to see that all (6, G) are regular, and there is a natural Vn -consistent
estimate, the best unbiased estimate when the y; are treated as constants,

~ 1
5.2 0, =—Yr (Xa— Xin)%
(5.2) 2n2 1 (X — Xi)

Thus Condition GR (iv) holds. But Condition H does not. For instance, take Gy to be point
mass at 0. Then

. 1 2 4 y2
(5.3) Ax1, x2, 0, Go) = 5 {¥— 1}
and
. 1
(5.4) EyedX, 0, Go) = 7 J ledG(H) >0

unless G = Gy. Thus adaptation in the sense we have discussed is not possible. Note that
the natural estimate 8, has asymptotic variance 26%/n in this case while I7'(8, Go) = 8*/n.
Lindsay (1978, 1980) and Hammerstrom (1978) have independently studied situations such
as this one (which are the rule rather than the exception) where adaptation is not possible.
They have obtained what may be viewed as a minimax optimality property of 8, in
Example 5 and analogous results in other problems of this type. We are investigating the
natural extension of adaptation in this context.

5.2 Better estimates. 'The estimates we construct in Examples 2-4 have some serious
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failings: (i) the estimate of Z is based on a small subsample rather than all the data; (ii) the
estimates do not have natural invariance properties possessed by reasonable estimates in
these problems, primarily because of the discretization of 8,; and (iii) the behavior of the
estimates when I(6, G) is singular is not analyzed.

We believe that analogues of Stone’s procedures in the location problem (which meet
all these criticisms) can be constructed using the special structures of our examples. We
have not pursued this since our interest lies primarily in illustrating the applicability of the
general Condition H.

5.3 Extensions to other asymptotic structures. The theory we have developed extends
naturally to cases where the observations are independent but not identically distributed,
e.g., the usual linear model context. It can be applied, we believe, to the linear model and,
as Stein’s calculations and Wolfowitz (1974) indicate, to multiple regression models where
both the location and the scale of the dependent variable are functions (possibly nonlinear)
of the independent variables. Other extensions to non-independent situations, such as that
treated in part in Beran (1976), should also be possible.

5.4 Efficient estimation of functionals. Levitt (followed by Ibragimov and Khazminski
and others), in a series of papers starting with Levitt (1974), has studied how best to
estimate functions (F) in nonparametric models, basing this work in part on Stein (1956).
In some sense our problem can be viewed as the estimation of the solution 6(F) of
I ¢ (x, 0, G) dF, 0,c(x) = 0 which is meaningful (though possibly nonexistent) for F € %
Beyond this formal connection there seems to be no real link between our studies.

5.5 Uniformity of adaptation. Beran (1978) notes in the location problem (Example 1)
that adaptive estimates converge to their limiting distributions uniformly on (shrinking n-
dependent) “contiguous” neighborhoods of each G. This property can, we believe, be
suitably re-expressed to apply generally. However, the weakness of this property is pointed
out by Klaassen (1980) who shows (in Example 1, his Theorems 3.2.1 and 3.3.2) that for
reasonable fixed neighborhoods the convergence is far from uniform. Thus from a practical
point of view adaptive estimates may not work nearly as well for moderate samples as we
might expect.

5.6 Practical questions. The difficulty of nonparametric estimation of score functions
suggests that a more practical goal is partial adaptation, the construction of estimates
which are (i) always \}r);-consistent, and (ii) efficient over a large parametric subfamily of
& Our results indicate that when the orthogonality Condition S* and ﬁ-consistency
Condition GR(iv) hold, this goal should be achievable by using a one-step Newton
approximation to the maximum likelihood estimate for the parametric subfamily by
starting with an estimate which is vn-consistent for all of % Partial adaptation in
Example 2 is discussed in Hogg (1980). This highlights an important practical and
theoretical question in problems of this type, how to construct vz -consistent estimates.
When there are no nuisance parameters present and adaptation is possible, maximum
likelihood estimates for fixed shapes are natural candidates. In general, this question
deserves further study. The constructions of Birgé (1980) may prove useful.

6. Theoretical Details.

6.1 Proof of Lemma 4.1. We use Stone’s (1975) approach. Let ¢, be the .#(0, 0%
density, g be any density, and define the convolution of g and ¢,

(6.1) 8o = 8*¢o
and the convolution of the empirical d.f. and ¢,

(6.2) E:(y) =mT' T do(y —&).

S
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We suppress dependence on ¢, - - -, &, in what follows.
For given o,,, ¢, dm, en > 0 define
Er0) i D zdn YIS en and [£,0)]= cudon()),

(6.3) gmly) =
0 otherwise.

We claim that if ¢,, — =, e,, = =, 6, — 0 and d,, — 0 in such a way that

(6.4) OmCm — 0,

(6.5) emon = o(m),

then g, satisfies the conclusions of Lemma 4.1. The argument proceeds by

LEMmMA 6.1.  If the conditions of Lemma 4.1 hold and q,, satisfies (6.3)-(6.5), then

OIII

, 2
(6.6) f {qm(y) — & (y)} &o,,(y) dy —p 0.
[&>0] &

Proor. We use the elementary estimates noted in Stone. For «, universal constants
and all y,

(6.7) Var 89(y) = kio " ® Pm g, (y), i=0,1,....
Denote the conditions in (6.3) by A, B, C and the left-hand side of (6.6) by I, + I, where

” , 2
gﬂm gﬂm
(6.8) I =J {A— (y) —=— (y)} &on(y) dy
ABC gﬂm gﬂm
r 72
6.9) L= J Eonl’ () ay,
[ABC]( om

Bound E(I;) by
(6.10) 2[[ g NE{E,.(y) — 80 ()} dy + f cmBon(VE{8o,(y)
ABC ABC
— &)}’ dy} =o(1)
by (6.7), (6.4) and (6.5). Bound

lgon]’ 5 s
Eb) = | === (NP &on(N) | > CmBon ()}

(6.11)
+ P{£:,(¥) < dm,g(y) >0} + I(| y| > en)] dy.

We claim that

(6.12) 8Bon(y) = g(y) in probability for ally if mo, — o,
(6.13) &+(y) = g'(y) in probability ae.y if mod — oo,
r 2 2
8o g
(6.14) g—(y) dy < ? (y) dy for all m.

Evidently (6.12) and (6.13) imply that if ¢,, — « and d,, — 0, then the two probabilities in
(6.11) tend to O a.e. y, while (6.12)-(6.14) imply uniform integrability of gf,mz/gqm( y) and
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hence that
(6.15) EI, — 0.

Together (6.10) and (6.15) will establish Lemma 6.1. It remains to prove (6.12)-(6.14).
Now by (6.7), for all y,

(6.16) Bon(y) — &n(y) > 0 in probability if me,, — oo,
(6.17) &6n(y) — &4u(y) > 0 in probability if med, — co.

Continuity of g and (6.16) imply (6.12). To prove (6.13) write (using the absolute continuity
of g),

j | gom(y) — &'(¥)| dy =

J (&'(y —omx) — 8'(¥)¢ (x) dx
(6.18) -

Sf f | &'(y — omx) — g'(y)| dys (x) dx.

Note that I(G) < o implies [*.|g’(y)| dy < . Thus we can apply the L, continuity
theorem and the dominated convergence theorem to conclude that the right-hand side of
(6.18) tends to 0 as 0,, — 0 and (6.13) follows from (6.17) and (6.18). Finally, (6.14) is a well
known inequality (see Hajek and Sidak, 1967, page 17). The lemma is proved. O

Next we need

LEMMA 6.2. If6— 0,

(6.19) J:PO] {JE - -\/__ (y)} dy — 0.
Proor. Apply (6.12)-(6.14).
LEMMA 6.3. If omem — 0,
(6.20) f[ | 7 () (VEu(y) — V() )* dy > 0.
£>0

ProOF. Write, using Cauchy’s form of Taylor’s theorem,

1
v&.(y) —Vvg(») =0 { gax(y)/2g‘/2(y)} dA
(6.21) 0

1 o
=— %f g% (y) f 28 (y —Ao2)¢p(2) dz dA.
o —o0
Thus we can bound the square in the integrand of (6.20) by

2
f o, (y){f 28 (y — Aonz2)¢(2) dz} d\
(6.22)

2 g I(n) — 2
<on j (28 —dom2))” ) gz ain
0 —oo

T4 &y — Aon2)

by convexity of (z, v) — u?/v. Substitute (6.22) in (6.20) and use | gm | = cm to bound (6.20)
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by

c2 02 1 © °°g12
il S (v) 2%(z) dz dv dA.
SRR

Since the integrals stay bounded independent of m, the result follows. [

Lemma 4.1 follows from Lemmas 6.1 and 6.3 since

, 2
f {qmm —gE (y)} g(y) dy

1/2 2
sa[ j {qm(y) —qm(é"’—m) <y>} g(y) dy
(6.23) e>0] &

f { g 1/2 g, g 1/2 2

+ qm<-ﬂ) 0 - (—“)(-—”) (y)} &) dy
(&>0) g Eon/\ &

g5\ (8" g 1

+ 2= (y) — = (y)} g dy],

J;g>o]{<g"m)< g ) g

and the first term tends to 0 by Lemma 6.3, the second by Lemma 6.1, and the last by
Lemma 6.2.0

6.2 Consistency Proofs. _
(i) Consistency of I, in (3.14). As usual, we can take 6, to be deterministic, and in view
of (3.15) we need only check that

(6.24) Bp= A7 Tlamss (LTUX,, On; X, -+, Xn) = £7UX,, 6,, G)} >p, O
whenever |6, — 8| = O(n""/?). But by (3.11),
Eo {|An] | Xy, -+, X}
(6.25) < E{|8"H Xmes, 003 Xi; X, -+, X)) = E KXo, 0, G)| Xa, -+, X
= op,(1)

and the result follows. ~
(ii) Consistency in Theorem 4.2. Again we can treat 6, as deterministic. Define
measures {Q,} on (R”*')" with densities

M2 r(c)g(yi — ci0) T [[iams1 r(c) g (yi — c(6 — 8,) 7).

We can argue as in the proof of (4.12) that the measures {@,.} are contiguous to the
product measures specifying the distribution of the observations when 4 is true. It follows
that (4.28) is equivalent to

(6.26) A7 Yt @mleis €1, « -+, Em) = op(1).

By the usual calculation, conditioning on the first m observations,

, 2
E([ﬁ‘l Yiem+1 {qm(Ei;él, ooy €m) —é;— (ei)}] €1, em)

, 2
= j{qm(y; €1, o0y Em) — g? (y)} g(y) dy = op(1)

by (4.13) and we can substitute g’/g for g, in (6.26). With this final substitution, (4.28)
follows from the WLLN. O

Ty
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6.3 Identities of Example 4.

Verification of (4.31) and (4.32). Write £= (4, 4) where
. a7 a7 . a7
b=—, .., —|, b =12
1 (3“1 B,uk> ’ {avu ‘= j}

4(x, 0, Go) = — |(x _“)le_l% (=W V) (x—p)V

Evidently

(6.27)
=4((x —p) V2 0,[J], G) V72,

. = ) — ) v 2|y _ ot _%
(6.28) fz(x,e,Go)—{(Wy (J(x—pwV D] U’)(l 2)},

where V™' = ||v¥ | and x = (x4, - - -, X).
Define a linear operator L on R***"/?, corresponding to a k& X k matrix B = || b,,||, by
kR(E+1) k(k+1)

% .
the 5 5 matrix

Lg =

s r=s,i=j,

(buby, + b,,b,s)<1 - %)

where (7, s) indexes rows and (i, j) columns. It is easy to verify that
(6.29) 4(x, 0, Go) = &((x — p) V2,0, [J], Go) L2,
By (6.27) and (6.29) we have

V1/2 0 Vl /2 0

(6.30) 100, Gy) = ( 0 LV_W) (0, [J], Go)< LV_,N)

and, finally,
. ) V1/2 0 -1
Ax, 8, Go) I7(6, Go) = £((x — p) V2,0, [I], Go) I (0, [J ], Go) X < 0 La-w)

Since V' is symmetric, (4.31) follows. To get (4.32) it is enough to verify that

(6.31) Lg'=Lg forany B,

and that if x is a triangular array

(6.32) xLf=[BQ(x)BT],

where @ (x) is the symmetric matrix whose ij-th entry is x,, if i = j, or x, if i <. The

verifications of (6.31) and (6.32) are straightforward exercises in matrix multiplication.

Verification of (4.33) and (4.34). In this case V'/* = J. For convenience suppress
(0, [J], Go) in the arguments of functions for this discussion. We have

(6.33) Alx) = —x—l (1=,
- _ 1 [y
(6.34) ET4(X) = ( )(le)IXIZ 7{E<W) (IXI)}J
by symmetry. Next, note that
(6.35) 4(x) = {(f—y— 8u> a- 8,,~/2)}

1=y

A

P



ON ADAPTIVE ESTIMATION 669

and by symmetry

(6.36) EZ4(X) =0

(6.37) EZHX) = || arossllrmsizrs
where X = (X, - -+, Xz)

s,y =0, unlessr =1, s =],

(6.38) @rsrs=E {)I{XJI(;Z (Y °> (X |)} r#s,

Xi vy, 2
arr,rr=E 0(|X|)+1}
{|X|

X2X3 o [xix3 . v:))? }
639 B{128 (1) x| - mEE e e () 0

by spherical symmetry of G,. The second term in (6.39) is just I,(Gy), while the first term
is independent of G, and may be shown to equal 27'(k + 2)”! by taking Go to be the
spherical normal distribution. Thus

(6.40) Qrsrs = kvl(k + 2)_IIZ(GO)’ r # S.

A similar computation gives

1 1
(6.41) Qrrpr = E{I§|2 (YO) (IXl)} -1 ='I 3k_1(k + 2)_112((;0) -1

We see from (6.37) that 1(0, [J], Go) is a diagonal matrix with eptries given by (6.40) and
(6.41). Upon inverting it and substituting (6.40) and (6.41) in £(x, 0,[ J], Go), we obtain
(4.33) and (4.34).

6.4 Two Theorems on efficient estimates.

THEOREM 6.1. Under R suppose {6,} are such that, for a given 8, %,, {(n"*(6, — 6,)}
— (0, I7'(8)) whenever n'?| 8, — 8| = M for all n, M < . Then,

(6.42) n"%(6, — 0) = n 2 Y, (X, 0)I71(8) + 0,,(1).

Note. This claim is in fact valid in great generality if the local asymptotic normality
(LAN) condition of Hajek (1972) holds with A,(#) replacing n™'/2 Y2, A X,, #). Moreover
it is clear that everything is local so that the condition and conclusion need only hold at a
point 6 on which 6, can depend.

PrOOF. Since the sequence of joint laws %, of n/%(8, — ) and n ™2 Y7, A X,, 0) I '(6)
is tight under Py it is enough to show that if £, is any subsequence weakly convergent to
Z* (say) then #* must concentrate on the diagonal. by a contiguity and analyticity
argument, see Roussas (1972, pages 136-141), we can show that the joint characteristic
function ¢*(u, v) of ¥ * satisfies the equation

o*(u, v) = ¢*(u, 0)exp{—ul () v Yexp{—YovI 1 (§)v"}
(Substitute I = I(8), h = vI '(#) in (3.11) of Roussas.) But, by hypothesis,
¢*(u, 0) = exp{—Y%ul (8)uT}
so that
o*(u, v) = exp{—Y%(u+v)I ' (6)(u+0v)"},
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and the theorem follows. 0

THEOREM 6.2. IfR(i), R(ii) and UR(iii) hold and if 8, is Vn-consistent and discre-
tized as in (2.3) and

én = 0-;1 +n! Zf=1 f(an, 9_")1_(0-”),

then 8, is efficient in the usual sense.

Proor. In view of the arguments leading to Theorem 4 of Le Cam (1968), it is enough
to show that for 4 regular and any sequence 6, such that n'/? |6, — 8| = M for all n

(6.43) nTV2 S {AX,, 0,) — (X, 0)) + n'2(8, — 0)1(8) = o,,(1).
We claim that (6.43) is implied by the fact that
(6.44) YA (4(X,, 0, + hn™?) — ¢(X,, 0,))}
=hn"2 YL AX, 6,) — %hI(6,) AT + 0p,(1)

for all 4. To see this, note that from the usual LAN condition

S {AX, 0, + hn?) — £(X, 0)} = nV4(0, — 0) + hn" 2 Y%, £(X,, 0)
(6.45)
~%{n"*(8, — 0) + A} I(0){n"*(6, — 0) + h}T + 0p,(1);

646) T {AX., 8,) — (X, 0)) = nV* (8, — O)n 2 ¥, £(X,, 0)
— 5 (6. = O)1(0)(6, = )7} + op,(1).

Subtracting (6.46) from (6.45) and matching the coefficient of 4 in (6.44) yields (6.43).
Finally, (6.44) is just the usual statement of LAN with 6 replaced by §,. It is argued in

exactly the same way as the usual equivalence,—see pages 54-63 of Roussas (1972) for

example,—but, of course, we use the uniformity in UR (iii). The theorem follows. 0O
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