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NONPARAMETRIC ESTIMATION IN THE PRESENCE OF LENGTH
BIAS

By Y. VARDI

Bell Laboratories

We derive the nonparametric maximum likelihood estimate, F say, of a
lifetime distribution F on the basis of two independent samples, one a sample
of size m from F and the other a sample of size n from the length-biased
distribution of F, i.e. from Gr(x) = [§ u dF (w)/p, p = [¢ x dF (x). We further
show that (m + n)%(F — F) converges weakly to a pinned Gaussian process
with a simple covariance function, when m + n — o and m/n — constant.
Potential applications are described.

1. Introduction. If items’ lengths are distributed according to the cumulative distri-
bution function (cdf) F, and if the probability of selecting any particular item is proportional
to its length, then the lengths of sampled items are distributed according to the cdf

Y

(L.1) Gr(y) = G(y) =£J xdF(x), y=0.

0

Here p = [§ x dF(x), and we assume p < . Such a G is usually called the length-biased
distribution (of F) and it arises naturally in many fields. A good survey of real-life
applications of length biased (and other weighted) distributions, which includes many
references, is Patil and Rao (1977). Additional interesting applications are given by Patil
and Rao (1978) and Coleman (1979).

In this paper we consider the problem of finding a nonparametric maximum likelihood
estimate (NPMLE) for the cdf F on the basis of two independent samples: a sample {X;;
i=1,..-,m} from F and a sample {Y;;i=1, ..., n} from the length-biased distribution
G. There are two types of applications for such an estimator. As an illustration of the first
type, consider m independent identically distributed stationary renewal processes, with a
common underlying cdf F, and suppose that from each process we sample the inter-event
interval that happens to include a fixed time point ¢ (assumed to be independent of the
process itself), and subsequent inter-event intervals. This sampling scheme (cf. the
“inspection paradox” in Feller (1971) page 187) gives rise to a sample (of size m) from G
and a sample from F. Our estimate provides the NPMLE of F on the basis of these two
samples. To illustrate the second type of application, suppose that for each of the processes
above we know only the times of “events” in the renewal process between ¢t and ¢ + h
where ¢ and A > 0 are fixed and independent of the processes. The data will then be
affected by length-biasing coupled with censoring, and our estimator is then needed in
each iteration of an algorithm that derives the NPMLE for the common underlying cdf F
on the basis of this data. The details of the algorithm are given in Vardi (1982).

After describing the estimator F in Section 2, in Section 3 we give a summary of its
asymptotic properties, which are analogous to those of the empirical distribution function
in the case of ordinary sampling from a distribution. In particular we show that if (n + m)
— o and n/m — constant, then (n + m)/2(F — F) converges weakly to a pinned Gaussian
process with a simple covariance function. This convergence result should simplify the
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derivation of the asymptotic distribution of various statistics based on F‘, and is useful in
setting asymptotic confidence intervals for parameters of interest.

In order that this paper not suffer from a form of length-biasing, only outlines of proofs
are given (Section 4). Full details are given in Vardi (1981).

2. The estimate. Let X;, ..., X, (m = 1) be independent, identically distributed
random variables with a common cdf F which satisfies F(0) = 0 and p = [§ x dF (x) < oo,
and let Yy, - -+, Y, (n = 1) be independent, identically distributed random variables with
the common cdf G of (1.1). We denote the values taken by the pooled sample, {X;} U
{Y;}, ordered from smallest to largest, by ¢; < - - - <&, (h <n + m because of possible ties).
We further denote by ¢&; and by 7; the multiplicity of the X’s and the multiplicity of Y’s at
t;, respectively. Of course if F has a density with respect to the Lebesgue measure, then
with probability one A = n + m, & + 9, = 1, and our notation is somewhat redundant. In
practice, however, F, and hence G, might very well be discrete.

The probability of the data at hand is given by

Js u dF (u)

Clearly Pr = 0 if any ¢; is a point of continuity of F, while Pr > 0if dF'(t;)) > 0,1 <j < h.
It is easy to see that if F is such that dF'(s) > 0 for some s & {#, - - -, tx} then there exists
another cdf, say F;, which is discrete with strictly positive jumps at each of the points ¢,
«++, ty, and only there, and F satisfies

PF,{ti,'si,"li;i=1, "')h}>PF{ti’§i’ni;i=1’ e h}

@1) Pelts & mii=1, -+, h) =TTk {dF(t»)f'[ b (@) ,

Thus, in order to find a cdf that maximizes (2.1), we can restrict our search to the class of
discrete cdf’s which have positive jumps at each of the points ¢, - - -, t», and only there.
This reduces our task to finding the values of p; = dF(¢;),j =1, - - -, h, that

.. t; pi i
(2.2) maximize L(pi, ---,pn) = [[% pf(___>
' ITe Y- tip;
subject to Y pi=1, p;>0, j=1,---, h.
If we denote the solution of (2.2) by p = (pu, - - -, P») then our estimate for F is of course

(2.3) F(x) ==« b

and it satisfies Pa{t;, &, ni; i =1, -+, h} = Pr{t;, &, mi; 8= 1, -+ -, h} for all cdf’s Fi. We
therefore call F' a nonparametric maximum likelihood estimate (NPMLE) of F.

THEOREM 2.1 The unique solution of (2.2) is

5 = G+ ik E=1,..-,h,

(2.4) =
nt + mu

where [i is the unique solution for a in the equation

p Gt et _
25) Li-i nty + ma !

The proof is straightforward. It is instructive to look at some of the properties of { p}.
First we observe that multiplying (2.4) by ¢, and summing over & gives (using (2.5)) i =
Y% tePr, as to be expected. Since ¢ < fi < ¢, and since the left hand side of (2.5) is
monotone in the variable a, we can approximate i, numerically, with accuracy of at least
(t» — t1)2™™ in M evaluations and comparisons of the left hand side of (2.5). This, in turn,
gives approximately the same accuracy for the p;’s after substituting in (2.4). Thus very
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little computational effort is required in order to compute F to any reasonable accuracy.
To verify that the p’s of (2.4) sum to one, we multiply (2.4) by nt; + mji and sum over k.
This gives n + m = n + m Y1 Pr, so that indeed Y'%—; px = 1. The underlying assumption
in the theorem, and in the discussion so far, is that m = 1 and n = 1. Nevertheless, the
theorem is correct if either m or n is zero. If n = 0, so that the Y-sample does not exist,
then (2.5) implies that [i is the mean of the X-sample and (2.4) implies that F is the
empirical distribution function based on the X-sample. If m = 0 so that the X-sample does
not exist, then (2.5) is vacuous and for Y%-1 pr = 1 we get from (2.4) that jiis the harmonic
mean of the Y-sample, and that p, o< ni/¢:. This is the estimator proposed by Cox (1969)
for the problem of estimating F on the basis of a length-biased sample.
The NPMLE of the length-biased cdf G is, of course,

(2.6) G(x) = 1=: &1,
where
. Lo &+
(2.7) gi= Tp = 5—"]“ .
u nt; + mu

3. Asymptotic properties. Suppose F is absolutely continuous with respect to
Lebesgue measure, and let f and p < o be its density and mean, respectively. We write N
=m + n, A\ = m/N and we state the asymptotic properties of F' (also of G and i) under the
assumption that N — o and A > 0 remains fixed. Define

K(x) f(y) dy,

_ f oy
RYEXTER:
(3.1)
K = K().

Convergence in distribution, or weak convergence, for stochastic processes is denoted by
—>d.
THEOREM 3.1.

(3.2) i—p—0ae.

i 1-K

Let p; denote the ith moment of F, and suppose that u_; and p, exist. Then we have

. p’1—-K)  [p*(ups — 1) if Ao=0,
(3.4) lml)\—>)\o K}\(l — }\) = {Mz _ M2 = Var(X) if )\0 =1.

Note that (3.4) with A¢ = 0 combined with (3.3) is the result stated in Cox (1969, formula
(5.4)) for the corresponding problem on the basis of a sample from G alone, while (3.4)
with A = 1 combined with (3.3) is the standard result of the central limit theorem for the
corresponding problem on the basis of a single sample from F.

THEOREM 3.2. Suppose f, the density of F, is bounded. Then we have (i)
(3.5) VN(F — F) —q Vg,
where Vris a pinned Gaussian process with the covariance function

(3.6)  Cov{Vr(s), Vr(t)} =% [F(s){1-F@®)} — 1 -MK(s){1 - K(t)/K}], 0=s=t.

({i)VN(G — G) —q Vg,
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where Vg is a pinned Gaussian process with the covariance function
1
8.7 Cov{Vgl(s), Ve(t)} =1—x [G(s){1 — G@®)} —AK(s){1 — K(¢)/K}] O0=s=L

(iii) VN(F = F, G — G) —aq (Vr, Vo)
and

(3.8) Cov{Vr(s), Va(t)} = min{K(s), K(t)} — K(s)K(t)/K.

We note that (3.6) through (3.8) can be combined to give
Cov{AVr(s) + (1 — A) Va(s), AVr(t) + (1 —A)Ve(t))}
=AFG){(1—-F@®)}+ 1 -MNG6s){1—-G@®)), 0=s=1t,

as one would expect because of equation (2.4), which equates the empirical distribution
function of the t’s to A dF() + (1 — A) dG(w).

4. Outlines of proofs. Since F is absolutely continuous we have 2 = N and & + m
= 1 with probability one, so that we can replace (2.4) and (2.5) with

.1 i

(4.1) Pr= ﬁm,

where i is the solution of

ley B
(4.2) Q@) = 5 Sy = b

Now (3.2) follows from (4.2) and the strong law of large numbers, upon observing that

_1 [T [a=Nx+Ap -1 -
Qn(a) —ae. Qla) = “—LJ; {————(1 N T }\a}xf(x) dxZ1 iff a=yp.

To prove (3.3) we note that

Q( —%) + eN< ——i—,) = Qn(p) = Q(u +%> + EN(,U +]\l/)

where ex(a) = Qn(a) — Q(a), a > 0. We then apply the Taylor expansion

QF (Qu(@) + ) =a+ @%a—) + oY),

to get that
fiv = = s o) + Op(N 7.

The result now follows by approximating en(u) using the central limit theorem.

The proof of (3.4) is straightforward using the L’Hopital rule.

The difficulty in studying F, by comparison to the empirical distribution function in the
case of random sampling from a distribution function, is that F(s) is not a sum of
independent identically distributed random variables. This is, of course, because of the
dependence on fi, which is itself a nonlinear function of the observations. To overcome this
difficulty we introduce a pseudo-estimate of F, namely

~ 1 I

Fe&) =gleg g A
which is F with p in place of ji. Let

1 N ti )

RN =7_1-\—’ i=1m,
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then we have

VN{F(s) — F(s)} = VN{F(s) — F(s)} + (1 — A)% Ry + O,(N7'7)

= W(s) + O,(N~'3).
A standard application of the Cramér-Wold device then shows that, for n = 1 and 0 < s;

< .. < 8, < ® arbitrary, VN(F(s)) — F(s1), -+, F(s:) — F(sn)) has as its limiting
distribution the n dimensional .40, C) with covariance matrix C given by

Cij = COV{W(S,‘), W(Sj)}.
The covariance function of the process W(s) is

Cov{W(s), W(t)} = NCov{F(s), F(¢)} + VN1 — A)% Cov{F(s), Rn}
K(s) K(s)K(¢)
K K®

which equals the right hand side of (3.6). To complete the proof of Theorem 3.2(i) it
remains to show that VN (ﬁ — F) is tight. This follows by showing that VN (ﬁ — F) and
VN (F — F) are both tight. The actual tightness proof is somewhat long, however, and it
relies on various tightness criteria that can be found in Billingsley (1968). This completes
the outline of the proof of (3.5) and (3.6). The other parts of Theorem 3.2 are proved
similarly.

+ VN1 =N Cov{F(t), Rn} + 1 — A)? Var(R.),
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