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RANK TESTS GENERATED BY CONTINUOUS
PIECEWISE LINE AR FUNCTIONS

By W. J. R. EPLETT
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The two-sample problem of testing against location shift is fundamental
to much of the theory of rank tests. Generally testing and estimation is carried
out with a fixed (non-random) set of scores for the ranks. However Beran
(1974), following ideas of Stein and Hajek, developed a notable class of
adaptive estimators. When used in testing, these give asymptotically efficient
tests, regardless of the underlying distribution. These ideas are used here to
focus attention upon tests generated by continuous, piecewise linear functions
(called PLRT’s) which provide a practically useful class of asymptotically
efficient adaptive rank tests. Under suitable conditions the rate of convergence
of the consistent estimators of the score generating function is O (N /%) which
suggests they are quite suitable for practical application when N is large. A
Riesz representation theorem for the asymptotic power of linear rank tests is
obtained which amongst other things permits the derivation of optimal
PLRT’s under weaker conditions than are required for optimal linear rank
tests. Further useful properties of PLRT’s are noted.

1. Introduction. One of the most interesting possibilities for linear rank tests in the
two-sample location-shift problem is that they can be guaranteed to have efficiency one
asymptotically against any underlying distribution (subject to certain conditions) by
choosing the score generating function defining the test statistic adaptively. The first class
of tests constructed in this way is contained in Hajek and Sidak (1967), following Hajek
(1962), but these are complicated and apparently the adaptive estimator constructed there
converges very slowly even though it is consistent. Beran (1974) proposes.a quite different
adaptive estimator of the score generating function. This is a much more elegant and
useable estimator; no rate of convergence result is obtained however. Since these estimators
depend upon the Fourier expansion of the score generating function, their convergence
properties are influenced by the slow convergence of Fourier series to functions which are
not continuous (when regarded as periodic).

The present paper obtains a new adaptive estimator of the score generating function
using the basic ideas of Beran's paper. This estimator is not only mean-square consistent,
but a rate of convergence result may also be obtained. The resulting adaptive test belongs
to the class of rank tests generated by continuous, piecewise linear functions over [0, 1]
and for convenience these are called PLRT’s. There are several advantages to restricting
attention to tests within this class rather than using the greater generality of tests obtained
from L2([0, 1]). These are outlined in Section 3.

2. Optimal and adaptive PLRT’s. Suppose 0 =Ao<A; < .-+ <A, = 1 are fixed real
numbers. The score generating function of a PLRT is defined by

(2.1) ¢(0) =0, o) = ai(\i — Aim1) + S (i), l1=i=r,

and is linear over [Ai—1, A;]. We require to find the asymptotically most powerful PLRT
against location shift for two samples from a distribution F with absolutely continuous
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density f and such that ¢r(u) = f/(F '(u))/f(F'(u)) € Ly([0, 1]). This is obtained by
projecting ¢ onto PL()), the functions defined by (2.1). The following discussions are
simplified by taking \; = i/r.

Let 7 = r + 1 and define A = (&;;) as the 7 X 7 symmetric tridiagonal matrix with
entries given by

(2.2) ap = (37‘)_1 = (i,?, a; = 2(3")_1, 2=i< r,

Gy =(6r)"", 1=i=r, a;=0 j>i+1
Define e" = (ey, ---,ex) byei=e-= 2r) L e;=r,2=<i=<r Let A=A — ee”. Define
2.3) Q1) =1,
QG) = (6r) " (K, — Kiv1), 2=<i=r+2
where .
Ki=0,K;=[2+3)'— (2-+3)'1/(2V3), 2=i=r+2

It is easy to verify that @ (i) is the determinant of the submatrix of A obtained by taking
rows 1, - .., i — i together with the corresponding columns. Furthermore

|A| = (6r)" YK,z — 2K 11 + K,).

Then by applying the formula given on page 114 of Karlin (1968), one can obtain B = (b,;)
=A"as

(2.4) by = (1) (6r) Q) Q(r+2—-)|A|™, i=<j
the rest of the entries being obtained by symmetry. Also B = A" = B — (Be)(Be)7/(1 +
eTBe).

Let ¢ denote the 7 X 1 vector with entries
1

cl=—f f(F(u)) du, cf=—f f(F7'(w) du
0 1-r-1

(2.5)

@—1r-! ir
ci=—f f(F(u)) du—f f(F Y (u)du, 2=<i=r.
¢

i—2)r-1 @—1r-!

Define d = Be.

LEMMA 2.1. The asymptotically most powerful PLRT against location shift is ob-
tained by taking

(2.6) . a,=(dis1—d), 1=i=r,

in (2.1). The ARE of this test relative to the asymptotically most powerful rank test equals
IF' I (c"Bc)? where Ir = [} ¢r(u)? du and I = c¢"Be.

Proor. The standard techniques for obtaining a projection are used. For 1 =i <rF
define ‘tent’ functions
1

5 _J1-rx O=sx=r,
Bilx) = {0 elsewhere;

Fr(x) = ri—r+1 1-rl=x=1,
7700 elsewhere
andfor2=<i=<r,

. (rx—i+2) i—-2=rx=i-—1,
ﬂi(x)={(i—rx) i—1l=srx=<i
0 elsewhere.
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Hence, take B; = fB; — e; so that {6 Bi(x) dx = 0. Then the asymptotically most powerful
PLRT is generated by fi8: + .- + f=87 where fi, - --, f~ minimize |¢r — fif1 — -++ —
f~B7| and standard arguments (see Luenberger, 1969) imply f; = d;, 1 < i < 7, giving (2.6)
and the ARE.

Lemma 2.1 is of interest in its own right and is discussed further in Section 3. Here the
interest lies in using the combined sample Xj, - .., Xy of independent random variables
with distribution F to furnish a mean-square consistent estimator of ¢r. Write

b
T(a, b) =f f(F'(u)) du

and estimate this by
@ Tu(a, b) = @2NON) T (YN = 1) ¥, 8(X: — X, + 0n)

' — YN =) Y 8(X: — X; — 6)))
where

Y(u) = ulpe(u),  6(u) = I, (1)

(I10,5 denotes the indicator function for [a, b]) and 8y = N~'/%4 for fixed § > 0. This is the
estimator proposed by Beran (1974) and from this an estimator ¢" M is obtained using
(2.5), (2.6) and (2.1) for A; = ir™". It remains to study the rate of convergence of || ¢" n
¢r||as N — o and this is made possible by the following lemma which marks an important
difference between qs" N and Beran’s Fourier-based estimators.

LEMMA 22 Let ¢ denote the minimum norm approximation to ¢r given by Lemma
2.1. Assume ¢F exists and is continuous on [0, 1]. Then

(2.8) ¢ = ¢rl* = o(r™").
Proor. Use the mean-value theorem applied to the polygonal approximation of ¢r.
THEOREM 2.3 Assume (i) ¢F exists and is continuous on [0, 1], (ii) r(N)/N —> x as N
— . Then
29)  limyo. E{N[|$"MN — ¢p||%} =% {fd u(l — u)¢7(u)® du — ¢r(0)%).
Proor. The ideas used in this proof are rather similar to the ones used by Beran
(1974) although the form of ™) permits some strengthening of the results for the rate
of convergence. These details are omitted for lack of space and only the calculation in (2.9)

is described in detail.
By the definition of ¢, o5 — ¢ L PL(r™, 2r7%, ..., 1) and so

(2.10) 6™ = ¢l =167 = 6> + 6 — ¢r|>
From assumption (ii) and (2.8) it therefore remains to show that
limy—NE {|| 6" = ¢ 1%}

is given by (2.9). By Lemma 2.1, with ¢ = (é{?, ..., é©) denoting the estimator of ¢
obtained using (2.7), one obtains

@1)  E(l$"V= |} = E{(@" - o)"B(&" ~ ¢))
=j f €1+ [fx], 1 + [Y]) de, 8Q + [Fx], 1 + [7y])
0 Jo

where for 1 < i,j <,

B, J) = 17 Yie1 o1 brs, €, j) = r"E{(& — ¢)(&— ¢)}.
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In order to prove (2.9) we shall show that
(212) lim,..2(1+ [7x], 1+ [7¥]) = (x A y — xy/3)/2(x A y = min(x, y)), and
(2.13) limy_N€ (1 + [Fx], 1 + [Y]) = ér(x, ¥),
where £ is the left-derivative of
§(x, y) =[x Ay — xylor (x)or (y),
and
(2.14) N&Q+[rx],1+[rv]) =K,

where K does not depend upon x, y or N. Although not explicitly indicated here, remember
that r is a function of N. Assuming (2.12) — (2.14), the extended Helly-Bray theorem
applied to (2.11) gives

. 1 1 1
limyo. NE{||¢"™ — 6P|} = 5 J' J £n(x,y) dlx Ay — xy/3]
0 0

1 1 1
=if j £2(x, y) d[xAy]=ij £2(x, x) dx
2 0 0 2 0

as required. :
The proofs of (2.13), (2.14) are based on Beran’s paper and only (2.12) will be considered
here. Define B(i, j) = Y k-1 bxj and observe that from (2.4)

B +[rx], 1+ [7y]) ~ r/2 Ljo.x)(y)
since
T (=) IQ (k) Q(F — [Fy]) ~ ()P +P(6r) (2 + V3)™HER1/(1248) (x < y)
~ (6r)7(2 + V3)™/(12V3) + o[27(6r) " ](x > y)
and
|A| ~ (6r)" 12 + V3)™*1/V/3.
It follows by dominated convergence that

r’#(1+[Fx], 1+ [fy]) =3Py 1™ g,
Y
= r_‘j BA + [Fx], 1+ [Fu]) du + o(1) ~ r’(x A y)/2.
0

Since for 1 = k&, /=,
bre=bre— () (Thm1 b)) (Xf=1 b4) /(1 + () B(F, 7)),
(2.12) now follows.

REMARKsS (i) Mean square consistency of ¢6“™¥ only requires r, N — .
(ii) The rate at which r(N) — o« is only restricted by (2.8). Existence of higher
derivatives permits progressively slower rates of growth. This is of some interest since r
determines how complicated the estimator/test statistic is going to be (see (2.1)).
(iii) Results about the efficiency of different adaptive estimators may be obtained from
Theorem 2.3. In terms of Pitman efficiency of a sequence of tests, Theorem 2.3 translates
to (efficiency of adaptive test) = 1 — O(N~"?). Different adaptive tests (for the same F)

may be compared by taking the ratio of the term in (2.9).
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3. The case for PLRT’s The theme of this paper is that PLRT’s provide an
extremely useful class of tests for location-shift (more generally regression) and also
provide a natural class of R-estimators. In this section the points in their favour are
summarized; some of these observations are relatively obvious but seem helpful in a
practical sense.

(a) PLRT’s used as adaptive tests mean that the theory of fixed score generating
functions may be abandoned with some confidence in view of the O(N~"/?) convergence
result of Theorem 2.3. Adaptive testing is therefore a practical proposition.

(b) The exact null distribution of a PLRT may be calculated. This distribution may be
obtained in terms of the Mann-Whitney probabilities and computed for reasonably small
r(r = 4, for instance).

(c) Even if fixed (non-random) score generating functions are used in preference to an
adaptive estimate, little is lost by taking the optimal PLRT instead of ¢r.

EXAMPLE. Assume F is normal, r = 4, \; = ir~". The-asymptotically most powerful
PLRT is defined by a; = a4 = 1.43, a3 = a2 = .58, and the ARE (against normal scores test)
is .98; when r = 8, this ARE is .994. Throughout the discussion it has been assumed that
Ay, -+, A, are fixed. In approximating ¢ by (2.1) one may try to choose an optimal
segmentation of [0, 1]; the dynamic programming techniques of Bellman and Roth (1969)
or Hawkins (1972) provide a method for obtaining near optimal segmentations.

(d) PLRT’s possess a certain amount of robustness; details omitted—see Eplett (1980)
for the basic ideas. '

(e) An asymptotically most powerful PLRT may exist when there is no asymptotically
most powerful rank test. This observation is obtained as a corollary to Theorem 3.1 which
provides a new insight into theorems of Hajek (1962) and van Eeden (1963). Assume S, »
is a simple linear rank statistic based on the samples X3, - - -, X, Y3, - - -, Y,, and generated
by ¢(u) € L2([0, 1]), all definitions as in Hijek and Sidak (1967). Write T, = m ™' Sy, » and
assume that this is used to test H:0 = 6, against the sequence of alternatives that 6, » =
6o + RN F fixed, N = m + n. Assume m/N — y, 0 < y < 1. Under H the ranks of the
combined sample are randomly distributed.

THEOREM. 3.1. Suppose & C L([0, 1]) is restricted so that ¢ € & implies [i¢(u) du
= 0 (no generality is lost by this) and that conditions A-E of van Eeden (1963) (the
standard assumptions used for computing ARE) hold for { Ty .(¢)}. In addition assume
that

(1) ifﬂm,n (0m,n) = E(Tm,n(¢)| 0m,n)a then ﬂm,n(om,n) hd g(d’) where {g(¢)¢ €Y, "¢" =
1} is bounded,

(ii) there exists at least one ¢ € & for which g(¢) > 0. Then there exists a unique § €
Ffor which the ARE of the sequence { T, .(¢)} relative to { Tm,.(£)} equals p* where

p=<¢¢>/{llollI}
provided g(¢) > 0.
PROOF. Let 0%,, = Var(Tm,.|60), then NoZ,, = y'(1 — y)||¢||> as N — . Let e(¢)

denote the efficacy of the sequence { T, ()}, that is

e(¢) = imnow N7’ n(Om,n)/Om,n-
It follows that e(¢) = {y/(1 — y)}’2(¢$)/||¢|l. Now g is in fact a (bounded) linear
functional on % For consider g (¢: + ¢2). The value of g(¢) is independent of the particular
sequence { T, .(¢)} used in its definition and so given ¢(u) € & the scores

N
anv(i) = Nf o(u) du
(

i—1)N-!
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can be used to define the test statistics T, (). Clearly with this choice of scores Tm,»($1
+ ¢2) = Tm,n(¢’1) + Tm,n(@) and so E(Tm,n(¢l + ¢2)) = E(Tm,n(¢l)) + E(Tm,n(¢’2))
Differentiating and taking limits yields g (¢1 + ¢2) = g(¢1) + (o). Similarly g(c¢) = cg()
for real c.

The Riesz representation theorem can now be applied to A(¢) = {v/(1 — v)}%g(¢) to
obtain A(¢) = < ¢, £ > for some unique ¢ € & The theorem follows upon squaring the ratio
of the efficacies to obtain the ARE. It follows that ¢ generates the asymptotically most
powerful test within &

In order to apply Theorem 3.1 to PLRT’s, assume f( F'(u)) € L([0, 1]) but ¢r & L2([0,
1]) so that the approach of Lemma 2.1 does not suffice. Apply the theorem, noting that of
van Eeden’s conditions only asymptotic normality requires verification. This may be
obtained from Theorem 2.4 of Hajek (1968) since if ¢ € PL(A), then ¢ = ¢1 — ¢2 where
¢1, 2 are non-decreasing absolutely continuous functions over (0, 1) obtained by taking

1(A;) = Vher Sar) ar(Ar — Ap—r), 1 si=sr

and ¢, linear over [A;_1, A;], 1 =i < r. Assumption (i) of Theorem 3.1 is satisfied with
1

g(d) = CJ’ ¢'(w) f(F~(u)) du
1]

(C is a constant determined by ¢ and y). Theorem 3.1 now implies that an asymptotically
most powerful PLRT exists and there is a Riesz representation for the asymptotic power
of PLRT’s against this sequence of location-shift alternatives. The score generating
function of this optimal test is given by (2.5), (2.6) appropriately generalized to arbitrary
A1, - -+, A, if necessary.

Finally it may be worth noting that the results of Gastwirth (1965, 1966) also follow
from Theorem 3.1. In these cases one takes & as given by step-functions which jump at
fixed Ay, -« -, A, or Las the subspace of Ly([0, 1]) functions which are constant over (p, 1]
for some fixed p € (0, 1). The conditions required by Gastwirth may of course be weakened
in the way just demonstrated for PLRT"s.
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