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ROBUST ESTIMATION IN MODELS FOR INDEPENDENT
NON-IDENTICALLY DISTRIBUTED DATA!

By RupoLr BERAN

University of California, Berkeley

This paper concerns robust estimation of the parameter 6 which indexes
a parametric model for independent non-identically distributed data. For
reasonable choices of contamination neighborhood and of what is to be
estimated when the parametric model does not hold, we characterize asymp-
totically minimax robust estimates of §. When applied to the normal regression
model, the theory yields recipes for the influence curves of optimal robust
regression and scale estimates. The contamination neighborhood does not
assume regression plus error structure, the regression and scale parameters
are estimated simultaneously, and the theory establishes rbles for estimates
with redescending influence curves as well as for those with monotone influ-
ence curves. When applied to the logit and probit models, the theory recom-
mends influence curves which differ markedly from those of the maximum
likelihood estimates except in the ii.d. case.

1. Introduction. A major advance in statistical analysis has been the development
of robust procedures for fitting linear regression models. Despite considerable interest in
this development (review papers include Huber, 1973; Hogg, 1974; Bickel, 1976), the
available theory for robust regression remains unsatisfactory in the following important
respects:

(i) The contamination neighborhoods considered are too restricted. Regression plus
error structure is assumed, complete knowledge of the regressors is often assumed, and
.symmetry (or a requirement nearly as strong) is often imposed upon the possible error
distributions.

(i) Unresolved by available theory is the role of regression estimates with redescending
influence curves versus those with monotone influence curves.

(iii) Theoretical results concerning robust estimation of the scale parameter are less
complete than those regarding the regression parameters.

(iv) Available robust regression theory does not extend very helpfully to exponential
linear models or to other models for independent non-identically distributed (i.n.i.d.)
observations.

It has become increasingly evident that the basic questions for any robustness study
are:

(a) What are rich, technically workable, contamination neighborhoods about the pos-
tulated model?

(b) What is being estimated (or tested) when the postulated model holds and when it
does not hold?

(c) What are the criteria for assessing performance of a robust procedure?

The importance of questions (a) and (c) was recognized early in robustness investiga-
tions. Question (b) has come to prominence more gradually. It has frequently been replaced
by the simpler question (b’) What procedures are being considered? Cf. Bickel’s (1976)
review and the literature on M, L, or R estimates. Reluctance to tackle question (b) head-
on has contributed, no doubt, to the over-emphasis on symmetric error distributions in
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robust regression and to the vague dissatisfaction with robust methods which is felt by
some statisticians.

Two very different approaches to question (b) have been attempted:

Idealism. There exists a true value of § which is to be estimated. Whether or not a
postulated parametric model involving @ fits the experimental data does not affect this
goal (Bickel, 1976, page 147; Rieder, 1980).

Empiricism. What is to be estimated is a particular functional of the distribution of
the data; the value of the functional at the postulated parametric model is the parameter
0. Question (b) becomes: which functional? See Hampel (1974), Holm (1976), Beran
(1981a), Millar (1981), and, for a related variant, Bickel and Lehmann (1975).

Although both points of view can be criticized, the second reflects the appealing idea
that basic concepts in science should be defined operationally.

Robust estimation in general parametric models for in.i.d. data is the theme of this
paper. For such models, the paper will propose specific reasonable answers to questions
(a), (b), (c), and will then develop the associated robustness theory. Optimal robust
estimates will be characterized essentially through their influence curves. It is one of the
merits of the principles adopted here that they yield quantitative answers to the problem
of robust estimation in general parametric models for i.n.i.d. data.

Suppose that the parametric model for the sample {X;:1 < i < n} asserts that the
distribution of X, is Ps,,, where § € ©® C R*, and that the joint distribution of the sample
is P§ = Py X Pg3 X «-- X Py,. Suppose that the actual distribution of the data is Q" =
Q1 X Q3 X --- X @,. Technicalities aside, we might define the aim of robust estimation of
6 to be the estimation of that value ¢ € ® which minimizes %, | P;; — @;||% where |-|| is
distance on probabilities. This operational minimum distance answer to question (b) rests
on the idea that, in fitting the parametric model Pj to the sample, we seek to estimate the
actual distribution @” by a member of the parametric family. For i.i.d. models, various
forms of the idea have been considered by Holm (1976), Beran (1977, 1981), Millar (1981),
and Parr and Schucany (1980).

Certain technical difficulties arise with a minimum distance definition of what is to be
estimated. Does the object in question exist? Is it unique? What does it look like? A
modified definition which partly avoids these problems will be given in Section 2.1. Section
2.2 will describe the contamination neighborhoods used in this paper. Salient features of
these neighborhoods are their richness and their local character. For example, the contam-
ination neighborhood about a standard linear model does not only contain distributions
having regression plus error structure. However, the “diameter” of the contamination
neighborhood is limited.

Good local asymptotic performance is essential in robust estimation because local
departures from the parametric model cannot be detected reliably by any test. While local
asymptotic robustness need not ensure global robustness (cf. Beran, 1981), it often does.
The examples in Section 4 illustrate this phenomenon. For the normal linear model, our
local optimality theory recommends (as natural special cases) two influence curves whose
empirical value has been demonstrated by recent Monte Carlo studies.

A less justifiable aspect of the contamination neighborhoods is the assumption that the
observations are independent. Weakening this would certainly be desirable.

Performance of an estimate of # will be measured by its minimax risk over contamination
neighborhoods of the parametric model. The pessimism inherent in the minimax approach
is desirable here because the contamination neighborhoods are local; no test can distinguish
between distributions in these neighborhoods with asymptotic power one. Asymptotically
minimax estimates, which are the goal of the theory, will be characterized in Section 2.3.

In the past, robustness studies have sometimes emphasized the efficiency of a robust
estimate at the ideal parametric model. However, efficiency at the parametric model is
logically important only if one believes that the parametric model holds strictly for most
samples observed. Our assumption is weaker: that the actual distribution of the sample is
near a member of the parametric family but is not otherwise specified. It is this realistic
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lack of knowledge which makes maximum risk over neighborhoods of the parametric
model the preferred measure of performance.

Assumptions and the main robust estimation results are presented in Section 2. Section
3 pursues the implications for robust estimation in the normal regression model, both
linear and nonlinear. The robust estimation of scale is linked to the estimation of the
regression parameters, the roles of monotone and redescending influence curves are
clarified, and certain influence curves are recommended on asymptotic minimax grounds.
Also treated in Section 3 is robust estimation in the logit and probit models. Interestingly,
the theory recommends influence curves which differ, in a conservative direction, from
those of the maximum likelihood estimates. Section 4 defines and studies Hellinger
differentiable functionals of product measures, then draws on this material to prove the
theorems in Section 2.

It has been suggested by some that robust procedures should adapt themselves to the
sample, treating “good” samples less cautiously than clearly “contaminated” samples; cf.
Hogg’s (1974) review paper. The robust estimates developed in this paper do not have this
property. For the i.i.d. case, it is known (Beran, 1981a, 1981b) that suitably constructed
adaptive robust estimates and tests are, in fact, asymptotically minimax over contamination
neighborhoods smaller than those considered in this paper. We expect that an analogous
result holds for general i.n.i.d. models. Considerable care is needed in constructing adaptive
robust procedures, precisely because local departures from the parametric model cannot
be reliably detected by any test.

2. Main results.

2.1. What is being estimated? Let % be a finite dimensional Euclidean space with Borel
sets /. Suppose that the parametric model for the sample {X;:1 < i < n} postulates that
the distribution of X; is Py, and that the {X;} are independent. Each Py; is a probability
on ( %, /) and 6 € ©, an open subset of R*. Suppose that the actual distribution of the
sample is @" = @; X @2 X .-+ X @,, each factor being a probability on ( Z, &).

Choose a, b in Z such that a < b (component-wise) and set w(x) = 1if a < x < b, w(x)
= 0 otherwise. Let Fy ;, G; be the cdf’s of Py,;, @: respectively and let

(2.1) foi(x) = f w(x —t) dFy;(t), g(x)= j w(x —t) dG;(¢).
The distance between P;,; and @; will be defined by

1/2
(2.2) Qi — Poilli = [j{gi(x) = foi(x))? duo,,] )

where pg; is a probability on ( &, «/) which is allowed to vary with # and i.

This distance compares probabilities assigned to rectangles by @; with the corresponding
probabilities assigned by P, ;. When a = 0 and b = o, | @; — Py,;||; is the L2(us,;) distance
between the cdf’s G;, Fy,;. Millar (1981) has made extensive use of this distance between
cdf’s in an analysis of robust estimation for i.i.d. parametric models. When a = —¢ and b
= ¢, with ¢ small and positive, || Q; — Py,;||; is effectively the L*(uy,;) distance between the
Lebesgue densities, should they exist in smooth versions. Whatever the choice of a < b,
the ball {Q: | @ — Ps,:||; = ¢} contains the Kolmogorov-Smirnov ball {G: sup.|G(x) —
Fo,i(x)l = 0/2}

As was suggested in the Introduction, we might reasonably define the aim of robust
estimation of @ to be the estimation of that value ¢ € ® which minimizes Y%, || @: — P.:||}.
The values of a, b, us; determine the metric ||-||; and hence, the minimum distance
functional of @" to be estimated when the actual distribution @" of the sample does not
belong to the parametric model {P7: 8 € ©}. Choosing a, b, jus,; requires the statistician to
clarify her or his goals in fitting an approximately correct parametric model to data. For
instance, is the fitted parametric distribution to best approximate the center, one tail, or
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both tails of the actual distribution? Are the two distributions to be compared through
their cdf’s or densities? For a more concrete discussion of these issues, see the linear model
example of Section 3.1.

Unfortunately, minimizing values of £ need not exist or be unique. One way out of the
theoretical difficulty is to adopt local definitions of what is to be estimated: for every 8 €
©, we give a definition, valid for all distributions in a small neighborhood of P’ The
existence of a global definition matching the local definitions in each of the small
neighborhoods becomes a separate issue.

The following smoothness assumption will be made on the parametric model Pj.

AssumpTION Al. There exist column vector functions {ys; € L%(us,:)} such that, for
every § € O, the matrices

(2.3) Va(0) = Y i j ¥6,i(%) v6,:(x) dpo,i, n= 1
are non-singular and
(2.4) limn e Y i1 f {forviiomi(x) — foi(x) — V2 (0) h'v6,:(x))? dugi = 0

for every column vector 2 € R*.

Fix § € © and suppose that Y1 || @; — Py,;||? is small, Q" being the actual distribution
of the sample. Keeping the linearization (2.4) in mind, define the local functional to be
estimated as

(2.5) T.(6, Q") =60 + V;'(0)hy,

where Ay is the value of A € R* which minimizes the quantity

(2.6) Y f {gi(x) = foi(x) — V' (0) W'ye,i (%)} dpo,:.

Here f5; + V. (8)h'ys,; serves as a local approximation to forvivoni, and T,(6, Q") is

simply a local version of the minimum distance functional proposed earlier and shares the
same intuitive statistical rationale as that functional. It is easily checked that

2.7) T.(0,Q") =0+ V,'(0) ¥ f vo,i(x)[gi(x) — fo,:(x)] dpe,:.
Alternatively, if

(2.8) 8,i(t) = f w(x — t)ye,i(x) dpe,, po,i(t) = 84,:(t) — f 89,i(x) dPy,;,
then

(2.9) T.(6,Q") =0+ V,;'(6) T f p0,:(x) dG:.

As expected, T, (0, Pj) = 6 for every § € @. It is not immediately clear, of course, that
the local functionals { T.(8, @") : 8 € ©} can be matched with a global functional 7, (Q")
which, for every § € O, approximates T, (6, Q") whenever Q" is clo§e to Pj. We will not
tackle this question here. Instead, we will seek global estimates 7', (depending on the
sample but not on ) which are asymptotically minimax estimates of T,(6, @") in a

neighborhood of Pj, whatever the choice of § € 0.

2.2. The contamination neighborhoods and the risk. The performance of any esti-
mate T, will be examined for every distribution @” in the contamination neighborhoods
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{B.(0, c):0 € 0, c >0}, where
(2.10) B,.(6,¢) = {@™: 3%, j [Gi(x) — Foi(x)? dpgi(x + h) < % h=a, h=b}.

The constants a, b are those appearing in the definition of w. Chosen in part for its
mathematical tractability, B,(0, c¢) contains a rich variety of distributions @" near Pg.
Whatever the choice of @ < b, B,(6, c) contains {@": ¥ %1 sup: | Gi(x) — Fo,:(x) |2=c%}).In
particular, B, (0, c) allows mixture contamination of the form

(2.11) Gi(x) = (1 — &) Foi(x) + e:Hi(x),

where {H;:1 < i < n} are arbitrary cdf’s on # and Y%, & < %
Let

(2.12) C.(0) =% f p6,:(x)pg,: (x) dPg,;~

and assume the following.

AssuMPTION A2. For every 0 € 0, the matrices {C.(#):n = 1} are non-singular and
(2.13) limy_,.SUP1<i=nSUPx | C5'/2() pg,:(x)| = 0.

Let A.(8) = C;%(8) V,.(8). We define the risk of any estimate T, to be
(2.14) Ru(T., Q") = Equul| An(8){ T — Tu(8, @)} ],

where u is any monotone increasing bounded function mapping R* — R* and |-| is any
metric on R*. The matrix A (8)A.(8) plays the role of a generalized information matrix.
The performance of T, will be measured by supg-es, 6,c) Bn( T, @), calculated for every
8 € ©. The underlying idea is that T, should estimate T, (0, ") wherever Q" is near Pj,
whatever the choice of § € ©.

REMARKS. In defining the risk, {A.(6)} might be replaced by other sequences of
matrices {D,}. Under some assumptions on { D,.}, a more complicated version of Theorem
1 (Section 2.3) remains valid and the identification of asymptotically minimax estimates in

Theorem 2 is unaffected.

The contamination described by B.(6, c¢) is asymptotically local. For fixed ¢ > 0,
increasing n forces most of the cdf’s G: to approach the corresponding Fj,;. Important for
the asymptotics, this feature of the contamination model is tolerable because ¢ can be
taken arbitrarily large and because even a small amount of contamination can be dangerous
(e.g., one sufficiently extreme outlier in a million observations destroys the usefulness of
the sample mean). See also the discussion in the Introduction.

2.3. Asymptotically minimax estimates. Let ¢x be the standard k-dimensional normal
density and let

(2.15) ro(u) = f u(|z|?) dr(2) dz.

The following result, a consequence of the Hajek-LeCam asymptotic minimax theorem,
indicates how well we may robustly estimate 7,.(6, @"). The infimum on the left side of
(2.16) is taken over all possible estimates 7.

THEOREM 1. Suppose Assumptions Al and A2 are satisfied. Then, for every § € ©,
(2.16) lim._..lim inf, infs, supq e, 6,0 Ra( Tn, @™) = ro(w).



420 RUDOLF BERAN

Attainability of this lower bound is not immediately evident. Under the following
additional assumption, sufficient conditions can be given for an estimator sequence
{T :n = 1} to be asymptotically minimax.

AssuMPTION A3. The vector functions {ys,;} are such that, for every 6 € 0,

(2.17) lim,_,.sup1<i<. Cr"/%(9) f v6,:(x) ¥6,:(x) dpe,:Cr*(8) =0
and
(2.18) sup, C7"2(0) V,.(6) C:'/2(8) < oo.

THEOREM 2. Suppose Assumptions Al, A2, A3 are satisfied. Let {T,:n =1} be any
sequence of estimates which has the property that, for every § € © and every ¢ > 0,

(2.19) VYAHONT. — 0) — V22(8) Sk poi(X:) =1 0.
under every sequence of product measures { @ € B,(0, c):n = 1}. Then
(2.20) limy—Supqres, 6,0 Ral Tny @) = ro(u),

for every 6§ € © and every ¢ > 0.

Of course, (2.20) implies that equality holds in (2.16) and that estimates satisfying (2.19)
are asymptotically minimax robust estimates. From the expression (2.9) for T,,(6, "), it
is evident that (2.19) is equivalent to requiring

221) VO (T. — Tu(6, Q")) — V2%(6) T {06,:(X:) — I po,i(t) dGr,i(t)} —q;0

for every sequence {Q7 € B.(f,c):n=1}. Here @7 = Q.1 X Qn2 X +++ X @, and G,
is the cdf of @,,,;.

A plausible one-step construction of estimates (T, .} that satisfy (2.19) runs as follows.
First, find initial estimates {#,} such that { V¥%(8)(6, — 6) :n = 1} is tight under every
sequence { @7 € B, (6, c) :n = 1}, whatever the choice of § € © and ¢ > 0. In other words,
{0 } should have the right rate of convergence to § and should not misbehave over the
contamination neighborhoods; the tightness requirement is an expression of qualitative
robustness under local contamination. Then, define

(2.22) T =6, + Vi (6,) Y pi(X;, 6,),

where p;(x, 8) is another notation for pg,;(x).
To see why this construction should work, under regularity conditions, observe that

223)  ViAONT.— 0) = VII(0)(6, — 6) + VY*O) Vi'(6.) VI*(8) L1 Am,

where
Ain=V7(8) T {pi(Xi, 6,) — f o(x, 6.) dGyi}
(2.24) Az = ViV%(0) Y2 J pi(%, 8,) d(Gri — Fy)
Asn=V3"(0) i f pi(x, 6,) d(Fo: — Fi, ).

We expect that, under every sequence {@r € B, (6, c)},

Avn = V2%(0) T {pi( X, 0) — fp(x,ﬂ) dGni} + 0p(1)
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(2.25) Az, = Vi2(0) T f p(x, 8) dGr,; + 0,(1)

Az, = VY2(0) (6, — 8) + 0,(1)

and V,(6)V, 1(67,,) converges in probability to the identity matrix. From this, (2.19) would
follow.

The argument can be made rigorous by assuming that (a) the {vys:} and {us:} are
sufficiently smooth as functions of #; (b) the {67,. :n = 1} are discretized estimates,
constructed as follows. Suppose the {#*:n = 1} are estimates such that { V%(8)(8x —
8)} is tight under every sequence { @ € B, (6, c)}, whatever the choice of § € ® and ¢ >
0. Pave © with parallelepipeds centered at the points { V™/%(8¥)h:h a k X 1 vector with
integer components}. Set 8, equal to the center of the parallelepiped which contains ;.

A related argument appears in Beran (1981a); also noted in that paper are the similarities
with LeCam’s classical study of one-step maximum likelihood estimates.

3. Examples. This section describes implications of the preceding theory for robust
estimation in the normal regression model, both linear and nonlinear, and in the logit and
probit models. The aim is to illustrate the fruitfulness of the general approach which we
have followed.

3.1. Normal linear model. The parametric model specifies that the X; are independent
N(XY 71 ci;B;, 6%), where r < n. Let 8 = (B, B2, -+ +, B-)’, let C,. be the n X r matrix with
components {¢;:1 <i <n, 1 <j < r} and assume that rank (C,) = r. Let G, =
C.(C,C,)"'C}, and write G, = {gi;»}. The vector parameter to be estimated robustly is §
= (Bly BZ’ Ctcy Br, 62),-

For this example, we suppose that
(3.1) dpe,i(x) = dA (a7 (x — cIB)),

where ¢/ is the ith row of C, and A is a probability on the real line, symmetric about zero.
We further assume that the kernel w is one of two possible functions: either a = 0 and b
= o, or @ = —¢ and b = ¢ with ¢ positive and small. In the first case, w is a translated odd
function; in the second instance w is even. The key assumption on the matrices {G.:n =
1} is

(3-2) limn-»mmaxlsisngij,n =0.

Under these conditions, Assumptions Al, A2, A3 of Section 2 are satisfied. The importance
of (3.2) in the asymptotics of ordinary least squares estimates has been pointed out by
Huber (1973).

Let r4,:(x) = 6 '(x — c}B). For the normal linear model under consideration
ciyl<ro,i(x>))

) — -1
©3) Yeilx) = 0 (mn,,-(x))

with

yi(x) = f (x — u)p(x — u)wlou) du,
(3.4)

yo(x) = f {1+ (x — w)*} ¢ (x — u)w(ou) du,

¢ being the N (0, 1) density. Hence

_ 2 CaCh [ ¥i(x) dA 0
Va(0) =0 2( 0 n [ y3(x) dA )’
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the off-diagonal elements vanishing because of the assumptions on A and w. For i =1, 2let
Si(x) = f vi(x + u)w(ou) dA(x + u)

and let p;(x) = 8:(x) — [ #:i(¢)$(t) dt. Then

(n) = -1 [ CiP1(Ta,i(x))
poilx) =0 <p2(ro,i(x)))'

According to Theorem 2, a sequence of estimates {( B, 6,)} is asymptotically minimax
if, under every sequence { @» € B.(0, ¢)},

1
(CLCa)(Bn — B) = a{ f yi(x) dk} (CrC) V2 Tk cipa(rs,i(X3)) + 0p (1)

(3.5)
n**(g, — o) = 0{ f 3 (x) dh}“n“/"’ Y& p2(rs,i (X)) + 0p(1)

Special cases. (i) When a = 0 and b = o, (3.4) simplifies to yi(x) = —¢(x) and ya(x) =
— x¢(x). If A is effectively Lebesgue measure (i.e., A is uniform on a symmetric interval
large enough to contain any actual observation), then, to an adequate approximation,

(3.6) pi(x) = D (x) — 27, p2(x) = 27772 — $(x),
® being the N (0, 1) cdf, and

f y:{(x) d\ = 277712 Y3(x) dA = 477712,

The function p;(x) is strictly monotone increasing in x, while p»(x) is strictly monotone in
| £|. The iid. sub-case of this example was treated by Millar (1981), who also examined
the effects of varying A and of replacing the normal by other distributions. Parr and
Schucany (1980) report favorable Monte Carlo results for minimum distance location
estimates having the influence curve p; defined in (3.6).

(i) When a = —¢ and b = ¢ with ¢ every small and positive, and A has continuous
Lebesgue density \’, reasonable approximations are yi1(x) = x¢(x), y2(x) = (x2 — 1) ¢p(x)
and p1(x) = x¢ (x) N'(x), p2(x) = (x2— 1) (x) N'(x) — [(£2 — 1) $?(£) N'(¢) dt. If \ is effectively
Lebesgue measure, then

pi(x) = x¢p(x),  pa(x) = (x> — D (x) + 47772
f Yi(x) dA = 477717, f v3(x) d\ = 3(8x%)7.

Both p;(x) and p2(x) redescend to zero as | x | increases. The score function p; has previously
been considered for robust regression by Holland and Welsch (1977), who note its fine
empirical performance in a Monte Carlo study.

Of course, different functionals are being estimated in (i) and (ii). When a = 0 and
b = », the distance || - ||; is more sensitive to discrepancies in the tails of distributions than
when a = —¢ and b = ¢. A small probability mass that is moved from one tail to the other
affects cdf comparisons more than density comparisons, in a given L?-norm. Since the
functional being estimated is, roughly speaking, the value of ¢ € © minimizing
%1 || Pei — Q| it is not surprising that the estimates (B, 6») in case (ii) should discount
the tails of the sample more than in case (i). In the robustness framework of this paper,
both estimates can be optimal.

The asymptotics used here rest on (3.2), which limits possible behavior of the regression
matrices {C,:n = 1}. Under (3.2), no single observation would be given disproportionate
weight in the calculation of the least squares estimate of B. A striking consequence of
assuming (3.2) is the appearance in (3.5) of C, itself, rather than some robust modification
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of C,.. Even though most probabilities @" in the contamination neighborhood B, (6, c) do
not have strict linear model structure, the asymptotically minimax estimate ,Bn acts as if
they did. .

Global robust estimates (8., 65) satisfying (3.5) for every sequence {@% € B, (9, c)},
whatever the choice of § € © and ¢ > 0, can be obtained by the one-step construction
(2.22). M-estimates with smooth, monotone, bounded score functions can serve as suitable
initial estimates.

The size of the contamination neighborhood B, (6, ¢) depends considerably upon the
choice of A, as does the functional being estimated. Extreme cases include A atomic at the
origin and A effectively Lebesgue.

The example extends easily to linear regression models with non-normal error density
/. Only the definitions of p; and y; change in (3.5).

3.2. Normal non-linear regression. The previous example can be generalized to non-
linear regression models which are locally linear. Suppose that the X; are independent and
that under the parametric model, the distribution of X; is N(gi(8),0%), where g:(B) is
differentiable in 8. The parameter to be estimated is again § = (84, Bs, - - -, 8,,6%).

Make the same assumptions regarding ps; and w as in Section 3.1. Let ry;(x) =
¢! (x — gi(B8)) and let ¢;(8) be the r X 1 vector whose jth component is dg;(8)/98;. Let
C.(B) be the n X r matrix whose ith row is ¢/(8). With C,(8), c;(8) in place of C,, ¢;
respectively, equation (3.5) characterizes asymptotically minimax estimates of 8 and o2
However, checking the assumptions Al to A3 and devising suitable initial estimates is
typically much more difficult in nonlinear regression models; cf. the classical treatment of
in.i.d. parametric models by Ibragimov and Khasminskii (1975).

3.3. Logit model. Each observation X; is necessarily either 0 or 1. The parametric
model asserts that the X; are independent Binomial (1, #;(6)), where logit{n:(6)} =
¥'-1¢i0;. Let 8 = (6, 62, - - -, 6,) and define C, as in Section 3.1, assuming rank (C,) = r.
A reasonable choice for g is the probability which assigns mass % to x = 0 and mass % to
x=1

Setting a = 0 and b = « in defining w yields

oy e 0){1 —m(0)} if x=0,
Yo,z(x) = { if x=1

¢! being the ith row of C,. Thus, V,(8) = 27'C;D%(0)C,, where D, () = diag[;(8) {1 —
7:(6)} ], and
(= [F2em @0 - m@) it x=0,
PoitX) = 9-1e,m(0) (1 — m(0))® if x=1.

Checking Assumptions Al to A3 is cumbersome. The matrix C,(6) defined in (2.12) here
becomes C,(8) = 47C, D2 (6)C,.

According to Theorem 2, a sequence of estimates {7} is asymptotically minimax in
this model if, under every sequence {@% € B, (0, ¢)},
3.7) {CD2(6)C.Y*(Tw — 8) = {CrD2()Cr) 2Cr.Du ()3 (6) + 0,(1),

where y,(6) is the n X 1 vector whose ith component is X; — 7;(§). Thus, the one-step
construction (2.22) of T, here becomes

(3.8) T = b, + (CLD2(6,)C.) 'Ci Dy (62)yn (Br),

with 6, a suitable initial estimate.
On the other hand, a one-step version of the classical maximum likelihood estimate for
@ in the logit model would be

=0, + {CLD.(6)C} ' Clyn (Br).

The estimate 7, puts relatively less weight on observations associated with very large or
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very small values of 7;(f) than does the classical estimate. When the X, are i.i.d. (ie., 7 =
1 and C, is the n X 1 vector of ones), both T, and T} reduce to the same estimate.

The alternate choice @ = —¢ and b = ¢(0 < ¢ < 27') in defining w yields the same
functional T, (0, @") as did @ = 0 and b = o, and so yields the same recipe (3.7) for an
asymptotically minimax estimate. The reason for coincidence is simple: apart from a factor
of 2/, the distance | - |; is the same for both choices of (a, b).

3.4. Probit model. The probit model differs from the logit model in only one respect:
m:(0) = ®(Yj=1 c;6;) where @ is the standard normal cdf. For the choices of a, b, s, already
described in Section 3.3, the one-step construction (2.22) of an asymptotically minimax
robust estimate 7', becomes

(3.9) T =6, + (CLE2(8.)Cn} 'ChEn (6,)y. (62),

where E,(0) = diag{¢(ci0)}, ¢ is the standard normal density, 6, is a suitable initial
estimate, and other notation is as in Section 3.3. The derivation of (3.9) strictly parallels
that of (3.8).

On the other hand, a one-step version of the maximum likelihood estimate for 6 in the
probit model would be

T: =6, + {CLE2(0,)D7'(0,)Co) " CoE (6,) D7 (6,)yn 6,),

where D, (0) = diag[#:() {1 — 7:(6)}].

The estimates T, and T differ strikingly, except in the ii.d. case. T}, assigns bounded
weight to every observation and relatively little weight to observations associated with
large or small values of 7;(8). However, the classical estimate 7'} gives relatively large
weights to observations associated with extreme values of 7;(#), because ¢(x)/[®(x){1 —
®(x)}] becomes infinite as x — *o. Thus, T is very sensitive to departures from the
assumed probit model in the extreme probabilities =;(8).

The discussion in Sections 3.3 and 3.4 may be summarized as follows: (a) Classical
maximum likelihood estimates are qualitatively robust in the logit model but not in the
probit model; (b) the quantitative robustness theory of this paper recommends non-
classical estimates for both models, except in the ii.d. case. These new estimates treat
observations associated with very small or very large probabilities #;(§) more cautiously
than do the classical estimates.

4. Proofs. The proofs of Theorems 1 and 2 are organized around a concept of
Hellinger differentiability for functionals of product measures. The key technical result is
an asymptotic minimax lower bound for estimates of such functionals.

4.1. Hellinger differentiable functionals. Define a set H as follows (cf. Neveu, 1965,
page 112, and Koshevnik and Levit, 1976): A typical element of H is a pair (§, P), usually
written £(dP)? such that P is a probability on (%, /) and £ is a random variable in
Ls(P). For simplicity, the element 1(dP)'? is written as (dP)"2 Suppose &(dP)*? and
1(dQ)"? are elements of H and that » = 27(P + Q). Define the inner product

(4.1) (£(@P)"2, n(d@)'?) = J’ &n(dP/dv)"*(dQ/dv)" dv

and, for arbitrary real a, b, the linear combination
(4.2) af(dP)"? + bn(dQ)"* = {ak(dP/dv)"* + by(dQ/dv)"*} (dv)"".
The choice of dominating probability » does not affect these definitions. The corresponding

norm || - |z on H is given by

(4.3) €(@P)* || = (£(dP)'?, £(dP)'*) = f £ dP.
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In particular, || (dP)? — (d@)"?||x is the Hellinger distance between the probabilities P
and Q.

Suppose ¢ = (¢1, P2, - - -, dz)’ is a random column vector whose components lie in L (P).
Then ¢(dP)"? represents the vector (¢;(dP)Y?, -- -, ¢r(dP)?). If (dQ)"? belongs to H,
{p(dP)%, 1(dQ)"?) represents the column vector of componentwise inner products.

Let P* = P, X P, X «.. X P, be a product measure whose factors are probabilities on
(%, &/). Let I1" be the set of all product measures and let

(44) H,(P", c) = (Q"EII": T, || (dQ:)"* — (dP)"* || = ¢*}.

DEFINITION. A sequence of vector-valued functionals {S, : I1"— R"; n =1} is Hellinger
differentiable at {P" € I1"} if there exist a triangular array of random %2 X 1 vectors
{$in:1 =i =n;n=1} and a sequence of £ X & matrices {A,:n = 1} which have the
following properties:

(i) For everyn =1,

(4.5) Gin € LE(P), f LndP; =0, 1<i<n
and
(4'6) :l=1 J’ {i,n {II:,IL dPt = Ik:

the & X %k identity matrix.
(ii) For every finite ¢ > 0,

A7) limaee SUPgrep, p.ol An (82 (Q") — Su(P™))
=23 ($in(dP)Y2, (dQ)Y? — (dP)'?) | = 0.

(iii) The triangular array {{;.:1 < i < n; n = 1} satisfies a Lindeberg condition: for
every £ > 0 and every d € R* of unit length,

(4.8) lim e Y i=1 j (d’$n)’I(|d'$in| > €) dP: = 0.

Parts (i) and (ii) of this definition express the differentiability idea while part (iii) is
important for asymptotic theory, describing how well such functionals can be estimated.

Suppose Xi, X;, - -+, X, are independent and that the distribution of X; is @;. Let S, =
S, (X1, Xz, +--, X,) be any estimate of S,(Q") based on these random variables. As risk
function take

4.9) Ru(Sh, @") = Eguul| An{(S, — S (@M} ],
where A, is the matrix appearing in (4.7), u is any monotone increasing bounded function
mapping R — R, and | - | is any metric on R*.

PrROPOSITION 1. If {S,.:TI" — R*; n = 1} is a sequence of functionals Hellinger
differentiable at {P" € 11"}, then

(4.10) lim,_... lim inf, infs, supgc g, prc) Bn(Sn, @) = o),
with ro(u) defined in (2.15).

Proposition 1 extends to i.n.i.d. sampling a result by Koshevnik and Levit (1976) on
estimation of functionals in the ii.d. case. The proof rests, in part, on the following fact.

LEMMA 1. Let {{in:1 <1i =< n; n =1} be any triangular array satisfying (4.5), (4.6)
and (4.8). For every h € R*, there exists a sequence of product probabilities { Q7 (h) =
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Qni(h) X «++ X @nn(h) € II"} such that
(411)  limpoo supp=s Yi=1 || {d@n:(A)}? — (dP)"? — 27'R'§,n (dP) |5 =0

for every finite b > 0.

PrOOF. Let {, ., be the jth component of §;., 1 =;j < k. The Lindeberg condition (4.8)
implies that there exists a sequence {e,} decreasing to O such that

(4.12) lim, e Maxi<j=k Yi-1 EP,{fzz,n,jI(l $inj| > €2)} = 0.

For every possible i, j, n define

* $imy if Ifi,ﬂ,flsem
§i,n,j_

(4.13) 0 otherwise,

and let = ¢%n, — f %, dP;. Evidently, [ §.; dP: =0 and | §in ;| < 2en.
Define the factors of the product probability @7 () by setting

dQni(h) 1+ W&, if e < (20R)7
dp; |1 otherwise,

where {in = (Gin1, Sinzs ++ ¢, Sins). It is easily checked that (4.14) does, in fact, describe
probability densities on ( Z, /) whenever |A| < b.

Verification of (4.11) for {Q%(h)} as defined above rests on the Taylor expansion of
(1 + 2)'* to a linear term plus remainder and on the following facts:

(4.14)

(4.15) Z;’=1 J I g—'i,n.l2 sz = Z?=1 J I g‘i.n,|2 dPl = k)
the last equality a consequence of (4.6), and
(4.16) lim, e Y71 f | $in = $in|>dP:i=0

because of (4.12).

PROOF oF PROPOSITION 1. Lemma 1 and (4.6) imply that
(4.17) lim, o sUppai<s 21 || {d@n,i (h)} — (dP:)? |5 = 47'6%
Consequently,
(4.18)  lim inf, infg, supg.cg,pr ey Rn (S, @) = lim inf, infs, supjs=c Rn(S», Q1 (R)).
Moreover, Lemma 1, (4.6) and (4.7) entail
(4.19) lim e SUpP|a|<c | An {Sn(@%(h)) — Su(P")} — k| =0.

Without loss of generality, we may assume that the function u is uniformly continuous as
well as monotone increasing and bounded. Thus,

(4.20)  lim inf, infs, supju=c Rn(Sn, @2 (h)) = lim inf, infs, supis<c Equp (| Va— h[?),

where V, = A.{S, — S.(P™)}.
Let L, (h) = log{I1}-; d@,:(h)/dP:}. Under {P"},
(4.21) La(h) = 'Zy — 27| h|* + 0, (1),

where Z, = Y71 {,»; moreover {Z,} converges weakly under {P"} to the standard k-
dimensional normal distribution; cf. Ibragimov and Khasminskii (1975) for both assertions.
It follows by the Hijek-LeCam asymptotic minimax theorem (Hajek, 1972; Le Cam, 1972)
that

(4.22) lim, .. lim inf, infs, supyu<c Equs #(| Ve = k|?) = ro(u).
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Combining (4.18), (4.20),and (4.22) yields Proposition 1.

4.2. Proof of Theorem 1. Evidently, the neighborhood B, (6, ¢) defined in (2.10)
contains the Hellinger ball H,(P%, 27 'c). In view of Proposition 1, it suffices to show that
the functionals {T. (6, @")} defined in (2.7) are Hellinger differentiable at {P"}, with

' (4.23) Sim (2) = CV%(O)poi(x),  An=An(0) = CZVAO) V. (0).

Let »; = 27'(Py; + Q) and set ps; = dPy;/dvi, g: = dQ:/dv:. From (2.8) and (2.9), it
follows that

(4.24)  An(0)(T.(6, Q") — 0} =2 TiL1 ($in(dPo,)"?, (dQ:)'? — (dPy,:)"?) + 1a(6, Q"),

where

(425) I'n (0: Qn) = f {l n (q 72— 1/2)2 dv;.
Under Assumption A2,

(4.26) lim,._m SupQueHn(ps’c)Irn (0, Qn) I =0

and the triangular array {{;.:1 =i =< n; n = 1} satisfies the Lindeberg condition (4.8) at
{P%}. Thus the functionals {7} (6, @")} are Hellinger differentiable at {Pj} as asserted.

4.3. Proof of Theorem 2. From (2.18), (2.21), and (4.23), it follows that
4.27) An(O) (T — T0(6, Q1)) — Tt (Sin (i) — f $in AQri) —g2 0

under every sequence {@% € B, (0, ¢) :n = 1}. Since u is bounded and continuous a.e., it
suffices to show that the sum in (4.27) converges weakly, under every sequence {Q% €
B, (8, ¢)}, to the standard k-dimensional normal distribution. Let &, = d’{;, where d is an
arbitrary unit vector in R*. Let s% = Y?-;Varg,,(§;»). The desired weak convergence will
be proved by verifying the appropriate Lindeberg condition

2
(4.28)  lim,_.«s.2 Y%, f (&,n— f Ein dQn,,-) I( &m-J'&,,. dQn,:

The term inside the limit in (4.28) is bounded above by

2
s,2 sup; supx{&,n(x) - f §in dQn,i} Y Qn,i(
(4.29)

> es,,) dQn,i =0.

> £sn)

2
= 2¢7%;2 {supi sup;x £7,(x) + sup,(f &in dQn,i) } .

In view of this bound and Assumption A2, (4.28) can be established by showing that

gi,n - f gi,n dQn,i

2
(4.30) lim, o 3y ( f §in dQn,i) =0
and
(4.31) lim, . 2?—1 J’ g%,n dQn,i =1

From the definitions (4.23) and (2.8) of ;. and pg,;, it is apparent that

£,dQn= f {Ghi(x) — Foi(x)} d’Cr"? vo:(x + a) dugi(x + )
(4.32)
- f {Gr,i(x) — Foi(x)} d’C7"2(6)ve:(x + b) dps:(x + b).
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Moreover,
2
1 I:j {Gr,i(x) —Fg:(x)} d’Cn"*(0)ve,:(x + h) dpg,(x + h)]

(4.33)
= SuI)i{d'C;w(f)) f Y6,iY6,i d,u.g,iC;m(G)d} =1 f {Gr,i(x) — Fpi(x)Y? dpe,i (x + h),

which tends to zero, for A = a or b, as n — o because of (2.10) and Assumption A3. This
proves (4.30). The argument for (4.31) is similar.
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