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ASYMPTOTIC DISTRIBUTIONS OF SLOPE-OF-GREATEST-CONVEX-
MINORANT ESTIMATORS

By SUE LEURGANS!

University of Wisconsin-Madison, Mathematics Research Center

Isotonic estimation involves the estimation of a function which is known
to be increasing with respect to a specified partial order. For the case of a
linear order, a general theorem is given which simplifies and extends the
techniques of Prakasa Rao and Brunk. Sufficient conditions for a specified
limit distribution to obtain are expressed in terms of a local condition and a
global condition. It is shown that the rate of convergence depends on the order
of the first non-zero derivative and that this result can obtain even if the
function is not monotone over its entire domain. The theorem is applied to
give the asymptotic distributions of several estimators.

1. Introduction. Suppose for each of n independent variables X; there is a known ¢;
such that the distribution of X; is believed to be determined by and to vary with ¢;. Let F,
denote the cumulative distribution function (CDF') of X;, conditional on #;. Let (-) be a
specified functional on a subspace of cumulative distribution functions.  induces p, a real-
valued function on the space of ¢’s, by u(¢) = 8(F;). u is an isotonic function if there is a
partial order on the space of #’s such that whenever ¢ is “greater than or equal to” s, u(t)
= u(s). This paper concentrates on the case in which the ¢’s are real numbers with the
usual ordering and p an isotonic function is equivalent to p a non-decreasing function. An
isotonic (or monotone) estimator of y will be an estimator which always has the known
monotonicity, but is not restricted to a particular functional form. Use of an isotonic
estimator is appropriate if the order relation is certain; that is, if the failure of the
observations to exhibit the specified order is an artifact of the randommess of the
observations dominating the unknown underlying deterministic increasing function.

The least-squares solution to this problem has been known for some time. Ayer et al.
(1955) and van Eeden (1956) describe an estimator i, (t), the isotonized mean, which is the
monotone function with smallest error sum of squares Y%; {X; — u(#)}? with u nonde-
creasing; fi, adaptively pools observations until the group means are increasing. Barlow et
al. (1972, Chapter 1) discuss several algorithms for computation of this estimator and
include the fact that, if s is in (¢x—1, £ ], pa(s) is the left hand slope at % of the greatest
convex minorant of the cumulative sum process of the X’s {(j, ¥/=1 X;), 0= j=<n);for
J =0, the summation is taken to be zero. The asymptotic distribution of this estimator was
stated by Brunk (1970). The present paper shows that Brunk’s result can be sharpened
and extended through the use of a theorem on the distribution of the slopes of greatest
convex minorants of processes. This theorem can also be used to extend the results of
Prakasa Rao (1969) on estimation of monotone densities, as well as to obtain asymptotic
distributions of other estimators. The general theorem is stated in Section 2, applications
of the theorem are indicated in Section 3, and the general theorem is proved in Section 4.
The final section contains a discussion of the relationship of the results described here to
other research.

2. The general theorem. The asymptotic distribution of these estimators is of
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interest because the finite sample distributions are especially complicated in all but the
very simplest cases. However, to obtain limiting results, it is necessary to specify how the
limits are obtained. If, for example, the set of #’s to which X’s correspond is fixed and
hence finite, while the number of X’s observed at each ¢ becomes infinite, and if the mean
of those X’s corresponding to a particular ¢ converges to u(f) and p takes on a distinct
value at each of the ¢’s for which observations are recorded, then these means are
asymptotically consistent, asymptotically independent, and asymptotically normal if re-
scaled in the usual manner; see Parsons (1975) for further discussion of this case.

This paper concentrates on the case in which the number of distinct #’s at which
observations are made becomes infinite. Exact conditions on the ¢’s appear in the examples
below. Meanwhile we assume that for each n we observe {(Tn:, X.:), i = 1(1)n} where
Xoi| Tui ~ Fr,. We can assume that the observations are indexed so that T increases
(strictly) with ¢ for every n. If the T’s are random, X, is thus the concomitant of the ith
order statistic of the 7”s. Inspired by the isotonized mean, we wish to work with estimators
of the form p.(s) = slogcom(s) {(¢, Z.(t)), t € T } where slogcom(s){A} is the left-hand
slope at s of the greatest convex minorant of the set of points A, Z,(¢) is a random
continuous process and 7 is an interval containing s. Theorem 1 states that if the process
Z, satisfies two conditions, then the asymptotic behavior of p.(s) is known. While the
conditions look complicated, they can be described intuitively and verified in practice.
Before examining the conditions, note that the proof uses the approximate estimators p..(s
+ D,) = slogcom(s) {(¢, Z.(t)), |t— s|=2cn7?},local versions of p.(s).

The first condition on Z, is that the increments of Z, stay above certain lines over
certain regions with sufficiently high probability. These lines depend on r and c, although
this dependence is suppressed in some of the notation. Therefore weak convergence of the
Z,, process will not imply Condition 1.

Condition 1 (Hitting Times).
limeoolim sup, e P{Z.(t) — Z.(s + D,) < Li(t), somet € I;} =0, i =1(1)4,
where L;(t) is a line, D, = 0,(n?) is a scalar and I; is an interval,
I,=(—»,s+D,]N Y L=[s+D,+2n" 0)NT
L=[s+ D,,©)NJ Ii=(—»,s+D,—2cn?1N .
The first two lines are
Li(t) = —t(n, ¢) — (s + D, — t)ji(n, ¢), Ly(t) = —t(n, ¢) — (s — D, — t)ji(n, c),
where jn, ¢) = u(s) + 2cn ) P*p(s), s, =5+ 2cn" + Dy,
£, ¢) = {(1 — 2P~V/2) 20Dy (5 ~(PHI/2c04P/% 0 < ¢ < 1

for some constants s, u(s), p, p(s) and {. L; is obtained by using the formula for L, with ji(n,
¢) replaced by p(s) — (2cn™?)*P/%p(s). L, is obtained from L. by making the same
substitution and replacing s + D, by s — 2cn™".

The second condition is that a suitably renormalized local version of Z, converges to a
Wiener process about a convex function. This condition will be used to obtain the limiting
behavior of i.(s) for c fixed and n large. Thus the first condition will be used to show that
the local behavior of Z, determines the asymptotic behavior of .

Condition 2 (Local Weak Convergence).

: n(Z.(s + 2enPt + D,) — Z,(s + D,)) — 2cn'tu(s)
’ (2¢n'?)"20(s)

|t|=1

—u t, W(t) + ﬂ(s_) (26)1/217' t| (1+p)/(2p) as n— oo.
a(s)

|¢|=1
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where p, s, u(s), p(s) and o(s) are constants such that s and p are in (0.1) and p(s) and o(s)
are positive; W(¢) is a two-sided standard Wiener process on [—1, +1], and the convergence
is weak convergence on C[—1, +1].

THEOREM 2.1 If for some constants p(s), o(s), p(s) and p, the processes Z, satisfy
Conditions 1 and 2 above and p,(s) = slogcom(s + D,) {(t, Z.(t)), t € T}, then

n P2 {,(s) — u(s)}
{a(5)} " {p(s)}”

—q X(p)’

(1)

where
XP =, slogcom(0) {(t, Wi(¢) + | ¢|"*/%), | ¢| < oo}
and W(t) is a standard Wiener process on R with W(0) = 0.

We shall see below that the case p = % is most common in applications. In this case, the
distribution of X‘® can be described without use of convex minorants. As stated by Prakasa
Rao (1969), the distribution of X%/® is that of V/2, where Vis the random value at which
W(t) — t? attains its maximum. Chernoff (1964, Theorem 1, page 37) proves that V has a
density of the form A(x)h(—x), where A is a function involving partial derivatives of a
particular solution of the heat equation.

3. Application of the theorem. This section contains two examples of the applica-
tion of Theorem 2.1. The first example is an extension of Brunk (1970) to higher order
derivatives and random times. The second example discusses isotonized linear combina-
tions of order statistics. Theorem 2.1 can also be used to obtain the results of Prakasa Rao
(1969), Prakasa Rao (1970), Barlow and van Zwet (1970) and Barlow et al. (1972).

ExXAMPLE 1: The isotonized mean. Let the functional 6(.) operate on the space of
cumulative distribution functions with finite expectations by assigning to each CDF its
expectation. The induced function p satisfies pu(¢) = E(X;|¢). The isotonized mean fi,
alluded to in Section 1 is a natural estimator of p. If F, is the empirical distribution
function of {Ty;, 1 =i =< n} and if

fin(w) = slogcom () {(Fn(T)), ¥%-1 Xni/n), 0 < j < n},

then i, satisfies fi.(r) = fin(Fo(r—) + n7'). Since D, = F.(r) + n™' — F(r) = Op(n™?), if s
= F(r), then

fin(r) = fin(s + D») = slogcom(s + Dy){(¢, Zx(¢)), 0 =t =1},

where Z,, is the random function defined by linear interpolation between points of {(j/n,
Y1 Xni/n), 0= j=k(n)}. Theorem 2.1 will be applied to give the following result:

COROLLARY 3.1. Assume the following seven conditions are met:

1. {T., 1 =i =< n} are the order statistics of a sample of size n from a distribution F
which possesses a positive derivative f(r) in a neighborhood of r.

2. E(Xyi| Twi) = p(Twi) and {Xpi — p(Tyi), 1=<1i=<n} isa set of mutually independent
random variables for each n.

3. For every n, {(X, — p(Tw)), 1=<i=n}and {Tw, 1=1i=n} areindependent sets
of random variables.

4. Var (X, | Twi) = 0% < » (and o*> > 0) and (X — ((Tw))’, 1<i=n,n=1} are
uniformly integrable.

5. For some 8 > 0, sup;<,—s p(t) < p(r) < infi=(+5) p(t) and p is increasing on [r — 8, r
+ 6]

6. p has an Nth order derivative at r.

. 7. N is the smallest positive (finite) integer with p™'(r) > 0. Then
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N 1 ' 1/(2N+1) .
{f(r)n}N/(2N+l){ﬁ%})ﬁ} {I‘«n(r) _ I"(r)} — X(l/(2N+1))’

where [i,(r) is the isotonized mean based on {(T;, Xn:), 1=1i=<n} evaluated atr.

ProOF. The conditions of Theorem 2.1 are checked with p = 2N + 1)7), o(s) = o,
p(s) = u ™M@ /{fN(r)(N + 1)!}, and Z, the normalized cumulative sum process. Note that
r replaces s in the conditions for and statement of Theorem 2.1. Let £(n, ¢) denote a(n, c)
— (r). For notational convenience, we obtain the limiting distribution of {i,(F.(r—)). In
what follows, D, denotes F,(r—) — F(r) and s = F(r).

We sketch the verification of the first Hitting Time Condition; the others are routine
variations. In this example, the first Hitting Time Condition reduces to

lim,_...lim sup,_. P {—Y%:2” X,./n *
< —t(n,c) — (s + D, — k/n)i(n, c), some k= n(s+ D,)},
which involves
q(n, ¢) = P{TE30 (Xn — p(Ti)) > nt(n, ¢) + (ns + nD, — k)e(n, c)
+ —YEHEE (W(Thi) — p(r)), some k =< n(s + D,)},
the probability that a cumulative sum procesé crosses a line, where the sequence of
cumulative sums depends on n and the line depends on 7 and on c. Since the fourth
assumption of the corollary implies that p(T%:) = E(Xn | Tw) < p(r) for i < n(s + Dy),
q(n, ¢) = P{YEP (Xp — p(Twi)) > nt(n, ¢)  + (ns + nD, — k)e(n, o),
some £ < n(s + D,)}.
This last expression can be written as P {S,, > nt(n, ¢) + 4(n, ¢), some 0 < /=< n(s +
D,)}, where S,,is the £th cumulative sum of n independent random variables with variance
o2, Using the Dubins-Savage inequality (Dubins & Savage, 1965; Dubins & Freedman,
1965) or the Hajek-Rényi Inequality applied to the submartingales {SZ;,, 0 < /=< n} with
constants ¢, = &(n, ¢)/{o® + nt(n, c)k} (Chow, Robbins, and Siegmund, 1970, page 25), it
can be shown that
P{S,..>nt(n, ¢) + &(n, c), some 0=<~¢=<n(s+ D,)} =< (1 +en, c)nt(n, c)/o?)™
= (1 + 02N+12N(2N _ 1)p2(s)§/02)—1.
This implies lim.,.lim sup, .« g(n, ¢) = 0, as desired.

The weak convergence condition involves the convergence of the process defined by
linear interpolation between the points of

4 51 {Xn,Q(nHi_IL(Tn,Q(nHi)}+2{ {(Tr,0m+:) — p(r)}
P o{k(n)}7 T o {k(n)y

@)

’

0=|d=k(n)

where k(n) = 2cn'™ and Q(n) = nF,(r). By assumption 3, the process defined by the first
sum is independent of that defined by the second sum. Assumption 4 ensures that the
Lindeberg condition holds for {X,, gm+i — ((Tr,@m+:)/n), 1=1i=<k(n)} and thus that the
first process in (3) converges weakly to Brownian motion (Billingsley, 1968, page 77, pr. 2).
It remains to show that the second term in (3) converges weakly to the nonrandom
process p ™V (r) (2¢) PV | ¢ | N/ f(r)NH(N + 1)!6}. The following lemma will be useful:

LEMMA 3.1. If V,.(t) = F;'(Fo.(r) + tk(n)/n) and if assumption 1 of Corollary 3.1
holds, then

Vi(t) — Va(0) ~ 2en~ V2N Dg/£(r).
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ProOF. Since assumption 1 implies that n™*(F,’ — F™') converges weakly to a
Gaussian process in a neighborhood of r, F,'(¢) = F~(t) + n Y2B,(t), where B.,(t)
converges weakly to a Gaussian process, and

Va(t) — Vo (0) = FU(F,(r) + tk(n)/n) + n~ 2B, (F,(r) + tk(n)/n)

— F7U(Fu(r)) — n™"2B,(F,(r)

= FYF.(r) + tk(n)/n) — FY(F,(r)) + n""?0(sup B.(x)).
Since with probability 1,

F.(r) = F(r) + O((In n/n)"?) = F(r) + o(k(n)/n)
(cf. Csaki, 1968), expansion of F~! in a Taylor series at F(r) shows that
Valt) — Va(0) = th(n)/{nf(F'(F(r)))} + Op(n""?) + o(k(n)/n).

The lemma follows. )

The second term in (3) can be written as the sum of a Lebesgue-Stieltjes integral with
respect to F and an integral with respect to (F,, — F'):

-1 Valt) -1 Valt)
ho ho
va,.«» {n(x) — p(r)} dF(x) +WJ:/,.(0> {p(x) — p(n)} d(F, — F)(x).

Assumptions 5 and 6 imply that the first integral is, to first order,
n{k(n)} 2 {Va(t) — )™ e w™ () f(r) /(N + 1)!

= u™M @) [V, (8) = VO TR/ (N + Do},
which converges to u™ () {2¢t/f(r)}"*'f(r)/{(N + 1)!6} by Lemma 3.1. Since N is odd,

this is the process desired. The second integral will be shown to be negligible. The
differentiability conditions imply that the second integral is bounded above by

n | p(Va(8)) — p(ValO) | {| FalVa(8)) — F(Va(8)) | — | Fa(Va(0)) — F(V,(0)) |} {k(n)}
= 2k(n) [ ™ (P {Va(®) = Va(0)}Y + o((Va(t) = Va(0))")Isups | Falx) — F(x) |.

This bound is therefore of order [n/{k(n)ln n}]/*(V,(1) — r)*, which Lemma 3.1 implies
is of order

{k(n)/n)"[n/{k(n)In n}]"/* = p'/2=*D/END (0 n) ™12 = o(1).

This completes the verification of the weak convergence condition.

ExAMPLE 2. Smoothly weighted linear combinations of order statistics; equally spaced
observations. Let J be a smooth (see below) weight function defined on [0, 1] with
JJ(u) du = 1. §(F) is defined to be the solution of [J(u)@(u — 6(F)) du = 0, where @ =
F7 for all continuous F such that the integral is well-defined. For all F members of a
specific translation family, 8(F') is a percentile of F. Which percentile 8(F') gives depends
on the weight function and on the shape of F. For example, if / is symmetric about %2 and
the distribution determined by F is symmetric, §(F) is the median of F. The weight
function ¢/ can be used to construct the following process from which a slogcom estimator
will be obtained.

Let {X;, 1 =i = k} () denote the jth order statistic of the set X;, - .., X} and take T’
= {/n. Then for s in (0, 1) fixed, define

Zu(s + ¢/n) = Y521 J(G/ (€ + D) Xninsy+i,» L < i = £}(j)/n, ¢ positive,
Zn(s + ¢/n) = =Y75 J(j/(—=¢+ 1)) {Xninsy—i+1, 1 = i = —€}(;/n, £ negative,
and Zn(s) =0,
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where (ns) is the least integer greater than or equal to ns. The process Z, can be thought
of as the cumulative sum process of Corollary 3.1 pinned at s (that is, Z,.(¢) — Z.(s)) with
each sum of random variables replaced by the J-weighted sum of the order statistics of the
same set of random variables. Extend Z, to a continuous process on [0, 1] by linear
interpolation and define u.(s) = slogcom(s){(¢, Z.(¢)), 0 < t = 1}. For any finite set of
integers A, define N(A) to be the number of elements of A. Let

Jn(A) = Yjea J(j/(N(A) + 1)) {Xnit € A}/n.

Then p.(s) can be written as [N(L*) max J,(L) + N(U*) min J,.(U)]/N(L* U U*), where
the maximum is taken over the sets L of the form {i = j < (ns)} for some i, L* is the
largest such set for which the maximum is attained, the minimum is over sets U of the
form {(ns) + 1= j =<k}, and U* is the largest such set for which the minimum is obtained.
Note that L* and U* are disjoint.

COROLLARY 3.2. If the following six assumptions are met, then

(N +1)!

nN/(2N+1)
G2N” (N)(s)

1/2N+1)
} {un(s) — u(s)} —a X(@N+DTH as n— o,

1. X,.; — p(i/n) are independent, identically distributed random variables with cumu-
lative distribution function F.

2. [J(u)Qu) du =0, [ J(u) du = 1, and p is non-decreasing on (0, 1].

3. J is continuously differentiable nonnegative function whose derivative J’ satisfies
a Holder condition for some y, %4 < y < 1, that is, | J'(u) — J'(v) | = K|u — v|” for finite
K. The support of J is a compact subset of (0, 1).

4, ¢® = [ [ J(F(x)) J(F(y))F(min(x, y)){1 — F(max(x, y))} dx dy > 0.

5. u has an Nth order derivative at s, 0 < s < 1, where N is the smallest finite integer
with u™(s) > 0.

6. F is absolutely continuous, with strictly positive density f such that f converges to
zero at infinity and f’ is bounded.

The first two conditions describe the model and assert that the weight function J is
appropriate. The third condition, which includes a requirement that </ trim, is used to
verify the Local Weak Convergence. The nonnegativity of J will be used in the proof of
the Hitting Time Condition. The fourth condition is more a definition than a condition,
since the third condition ensures the integral is finite. The fifth condition describes the
local behavior of u at s. The sixth condition is a regularity condition used to obtain the
Cornish-Fisher expansion needed to compute the drift component of the local weak
convergence.

Corollary 3.2 shows that if the X,,; are all members of the translation family generated
by the CDF F, the relative efficiency of two different isotonized linear combinations of
order statistics with weight functions J; and o/; is determined by the ratio o(J1, F)/o(Jz,
F), where o(dJ, F') = [ [ J(u)J(v){min(x, v) — uv} dQ(u) dQ(v). Corollary 3.1 shows that
if F has finite variance, the same formula gives the efficiency of an isotonized linear
combination of order statistics relative to the isotonized mean, although the weight
function of the mean does not satisfy the conditions of Corollary 3.2. This same ratio is the
asymptotic relative efficiency of two linear combinations of order statistics for estimating
the location parameter of independent, identically distributed random variables whose
distribution is a member of the location family generated by F. Therefore, all the
comparisons known for a simple location problem carry over to isotonic estimation. In
particular, if F' does not have a variance, Corollary 3.2 applies, and the isotonized version
of any linear combination of order statistics which trims will converge in the familiar
manner. However, Corollary 3.1 does not apply. This extreme case shows that the
isotonized mean is sensitive to wild observations and isotonized trimmed linear combina-
tions of order statistics are more robust to heavy tails.
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The proof of Corollary 3.2 can be described as showing that linear functions of order
statistics behave almost like sums of independent random variables. In Leurgans (1978), it
was shown that Z, has the same distribution as the sum of eight terms, six of which
converge to zero in C[0, 1]. The remaining terms are Y47 Z,; + C.(¢), where the Z,; are
independent random variables and C,(¢) is a nonrandom process. The assumptions of
Corollary 3.2 can be used to show that

Cu(t) ~ k(n)tu(s) + THD {pu(s + j/n) — p(s)}/{tk(n)}.

The weak convergence condition then follows as in Example 2.1.
The representation of the order statistic process alluded to above can also be used to
verify the Hitting Time Condition. The verification of the first condition will be sketched.
The first step is to reduce the first condition to

Hme_olim supp_.o P{=Y%=1 J(G/(¢+ DIH{Xn'ms —iv1, 1=<i= ¢}y
<nLi(s—¢/n), 0<{<ns}
= lime_.lim Suppe P{Xf=1 J(j/¢+ D{Xn s civ1, 1=i= &}y
> nt(n, c) + £(u(s) + e(n, ¢)), 0 < £< ns}.

If X, . =X, — pi/n) + p(s), then X7, ; = X, ;. Because a location family was assumed, the
X;,; will be iid. Since </ is assumed nonnegative, each probability above is less than or
equal to

P[Y5=1 J(G/(€+ D) Xniy, 1=i=&(p
> nt(n, c¢) + ¢{u(s) + e(n, c)}, some ¢, 0 < £< ns].

The representation of a linear function of order statistic process as a cumulative sum
process plus seven other processes can now be used to determine the behavior of the
limiting process. Since the X', ; have identical distributions, C,.(¢) = ntu(s) and two of the
six remainder processes are identically zero. If Y, is the ith remainder process, it suffices
to show that :

lim._,olim sup,—.« P {SUPo=i=s | Yin(t) | > nt(n, ¢)/5} =0
and
lime_..lim Supn.. P {31 Zui = né(n, ¢)/5 + e(n, ¢)£/5, some 0 < £=< ns} = 0.

The statements for the remainder terms are verified in Leurgans (1978, Section V.3). The
cumulative sum term follows as in the preceding example.

Corollary 3.2 can be extended in the manner of Corollary 3.1 to T,; which are either
other tractable deterministic sequences or order statistics from a suitable distribution.

4. Proof of Theorem 2.1. Let Y, denote the right-hand side of (1) and X,,. the same
expression with u.. replacing p,. The theorem will be established in the following steps:
1. For all ¢, X, =>4 X. as n — . (X, will be defined below.)
2. X, >4 XP as ¢ — oo,
3. lime,elim inf, .o P{pinc(s) = pna(s)} = limg,lim inf, .o P{Xpc = Y.} = 1.
By Theorem 4.2 of Billingsley (1968, page 25), Y, — X, which implies Theorem 2.1.

Step 1. Since adding a line to a function increases the slope of the function’s convex
minorant by the slope of the line
ﬂnc(s) - H(s)

= slogcom(s + D,){(¢, Z.(t) — Z.(s + D,) — (¢t — s — Dy)u(s)), |t — (s + D,) | < 2en™?}.

Translating the process so that the time scale of the function whose convex minorant is
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being obtained is [—1, +1] and rescaling,

(2cn'™P)1/?

O(S) {I-‘«nc(s) - IL(S)}

n(Z.(s + D, + 2cn"t) — Z,(s + D,)) — 2cn'Ptu(s)
T-p\1/2 ’l tl =1,
(2en'?) "0 (s)

(4) = slogcom(()){ <t,

the local weak convergence condition implies that the expression above converges as
n— oto

slogcom(0) {(t, W(t) + (2¢)®p(s)/a(s) | t| /%), |t| = 1},

which can be shown (using scale properties of the Wiener process) to equal {2c¢K(s)}"*X.,
where

X, = slogcom(0) {(¢, W(t) + | ¢|"*P/%), |¢]| = 2¢K(s)},
K(s) = {p(s)/a(s)}*.
Dividing (4) by {2cK(s)}"?, we see that for fixed c, X, converges in distribution to X..

Step 2. The only difference in the definitions of X. and X' is that in X. the set of
points is restricted to | ¢| < 2¢cK(s). Therefore to show X. converges in distribution to X‘”,
it is necessary to show that large values of ¢ do not affect the convex minorant of W(¢) +
| £]"*P/% Since p < 1 implies the exponent of | ¢| is greater than one, the proof of this step
follows from W(t)/t —..0 (t — =), as is pointed out by Wright (1981). For an explicit
proof in the case p = %, see Prakasa Rao (1969, Lemma 6.2, page 34).

Figure 1 displays a realization of the process Z, and the lines ¢1, connecting (s + D, —
en®,Z,(s+ D, —cn?)) and (s + D, + cn?, Z,(s + D, + cn™?)); £2, which has slope u(s)
— (2en™?)P/2Pp(s) and intersects the graph of Z, at s + D, — cn™”; and ¢3, which has
slope ji(n, ¢) and intersects Z, at s + D, + cn”. If the region R lying above all three lines
is convex, as in the figure, no points of Z, in this region can affect slogcom(s + D,){(¢,
Z,(t)), t € R} and p,.(s) will equal p,(s) if Z.() > £2(¢) and Z,(t) > ¢3(t) for |t — s — D |
> 2cnP. The region R will be convex if Z,(s + D, — cn™”) = £1(s + D, — cn™?) > £3(s +

| \C | T}
[ \L I l' y. A
]
| -

r2

I
\ | | I
N | | '
X N ' I | }
v\ | | I

A\ | I
A\ | | |
\\ | l | [
| | ' | |

s-2¢cn p"Dn s-cn p"'Dn s+D, s+cn '?"Dn s+2¢n-p+D"

Fic. 1 Realization of the process Z, and lines ¢, 4, Zs.
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D, —cn?) and Z.(s + D, + cn™?) > ¢2(s + D, + cn™"?), which necessarily occurs if Z,(t)
> £3(t) for [t — (s + D, — cn™) | < cn™” and Z,(t) > ¢2(¢) for [t — (s + D+ cn™) | <cn™.
Therefore pn.(s) = p(s) if Z,(t) > £3(¢t) for |t — (s + D, + cn™?) | > cn™ and Z,(t) > £2(¢)
for |t — (s + D, — cn™®) | > cn". Therefore it suffices to show that the conditions imply
that the probability Z, lies above two lines, for each of two separate intervals of ¢, is one
in the appropriate limit. We shall show that the Hitting Time Conditions with ¢ = 1 and
the Local Weak Convergence Condition imply that Z, lies above ¢3 for ¢ < s + D, with
appropriately high probability. The other three Hitting Time Conditions are used in the
same manner, and then the Bonferroni Inequality can be used to complete the proof.

Thus it remains to show that lim._.lim inf,_... p(n, ¢) = 1, where after rearranging we
have p(n, ¢) = P{Z.(s + D,) — £3(s + D) = £3(t) — Z,(t) + Zn(s + D,) — ¢3(s + D,), ¢
< s + D,}. The probability that Z.(s + D,) — ¢3(s + D,) exceeds ¢3(t) — Z,(t) + Z,(s +
D,) — ¢3(s + D,,) is greater than the probability that Z.(s + D,) — #3(s + D,) is greater
than a fixed constant £(r, ¢) and that this fixed constant is greater than £3(¢t) — Z,(¢) + Z.(s
+ D,) — ¢3(s + D,). Applying the Bonferroni Inequality to the intersection of the above
two events, and recalling the definition of L;(¢) in the Hitting Time Condition, it is easy to
show that

p(n, ¢) = P{Z.(s + D,) — £3(s + D,) = t(n, c)}
— P{Z,(t) — Z.(s + D,) < Li(t), some ¢t < s + D,}.

The Hitting Time Condition therefore implies the lim._,.lim inf,_... of the last term (minus
sign included) is zero. Using the Local Weak Convergence Condition with £ = —' it can be
shown (Leurgans, 1978, Chapter 3, Section 3) that the lim inf,_.. of the first term is 1 —
®((¢ — DAc®7'V2), where 0 < { < 1 (from the definition of t(n, ¢)); A = (2% —
1)p(s)/ (a(s)V2) is positive because p < 1; and ® is the cumulative distribution function of
the standard normal distribution. Therefore the lim_,..lim inf, ... of the first term in (5) is
1, and the proof of the theorem is complete.

5. Discussion. Example 1 is a generalization of Brunk’s Theorem 5.2. It should be
remarked that Brunk’s condition that “the observations satisfy Lindeberg’s condition” can
mislead the unwary: from the proof of Example 1 we see that the observations must satisfy
local Lindeberg conditions, which are unrelated to a global Lindeberg Condition. Wright’s
paper also generalizes Brunk’s Theorem, and is the only paper known to the author with
results for N > 1. Wright does not require that N be an integer and allows a different
variance structure, but otherwise his results correspond to Example 1.

Robertson and Wright (1975) discuss monotone estimators of the form max min J,(L
U U), with L and U defined as in Example 3.2. Unlike p,(s), ii.(s) is always a monotone
function of s. Robertson and Wright give conditions under which {i,(s) is consistent for
u(s), but their methods do not give a rate of convergence. Corollary 3.2 gives such rates for
the slogcom estimators ., and suggests that fi, has the same asymptotic behavior, even
though u. and i, are identical only in the case of Example 3.1. Isotonized percentiles of the
[in type are also discussed by Casady and Cryer (1976).

Recall that the isotonized mean at s(fi.(s)) is the mean of the x,./’s over an adaptively
chosen neighborhood of s. Theorem 5.8 of Barlow, et al. (1972) and Theorem 3.2 of Davis
(1972) point out that for each s, if slightly wider deterministic windows centered at s are
used, the resulting estimators converge more rapidly. However, this result appears to be
the same sort of superefficiency result obtained in Example 3.1 for N > 1. In the case of
Barlow et al. (1972), s must be at the center of every window. In Example 3.1, s must be
exactly a point at which p’(s) = 0, but some other derivative is positive. If one is interested
in estimation of an entire function, both kinds of s are isolated. Also, the deterministic
window estimators need not give monotone estimators of u(s).

The fact that u, can be consistent in some cases even when p is not monotone is
reminiscent of Theorem 3.4 of Barlow, et al. (1972), which states that in the normal case
with equal known variances, likelihood ratio tests that group means exhibit a specified
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partial order against the null hypothesis that the means are all equal is an unbiased test of
some alternatives which do not have the specified partial order against the same null
hypothesis. The application to estimation does not appear to have been noted previously.
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