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A CENTRAL LIMIT THEOREM FOR STATIONARY PROCESSES
AND THE PARAMETER ESTIMATION OF LINEAR PROCESSES

By Yuzo Hosoya! AND MASANOBU TANIGUCHI

Tohoku University and Hiroshima University

A central limit theorem is proved for the sample covariances of a linear
process. The sufficient conditions for the theorem are described by more
natural ones than usual. We apply this theorem to the parameter estimation
of a fitted spectral model, which does not necessarily include the true spectral
density of the linear process. We also deal with estimation problems for an
autoregressive signal plus white noise. A general result is given for efficiency
of Newton-Raphson iterations of the likelihood equation

.

1. Introduction. In this paper, we deal with estimation of linear processes and related
problems. Most of the models which pertain to applications of time-series analysis can be
reduced to a class of stationary processes which are usually termed linear processes, and
a variety of investigations have been concerned with statistical inference based on these
processes. Whittle (1952, 1962) gave the first systematic study with respect to the parameter
estimation for a scalar-valued linear process x(n) = Y%, a;(f)e(n — j) with ao(d) = 1,
where the e(j) are ii:d. random variables with mean zero and the innovation variance
Var{e(n)} = ¢* does not depend on 6.

In order to estimate §, Whittle proposed as an estimate of 8 a value # which minimizes
the quantity [7, Ix(w)/fs(w) dw, where Ix(w) is the periodogram calculated from a partial
realization x(1), - - -, x(IN) and f;(w) is the spectral density of the process; for an estimate
of ® he proposed 6 = [, Ix(w)/g(w) dw where g(w) = | Y %0 a;(8)e™ |2

Whittle suggested an asymptotic theory pertaining to these estimates and Walker (1964)
and Hannan (1973) later expounded the theory in a more rigorous fashion. Finding that
there are cases where the innovation variance o” depends upon 6§, Hosoya (1974) proposed
to minimize [Z, {log f;(w) + Ix(w)/fy(w)} dw instead of [, Ix(w)/fs(w) dw in order to find
an estimate of , and he gave the asymptotic distribution of the estimate under regularity
conditions similar to those of Walker’s paper. In particular, Hosoya noted that while the
asymptotic covariance of the estimate does not depend on the fourth cumulant of the
innovation in Whittle’s model, it does in his model. For a vector-valued linear process x(n)
= Y70 Aj(0)e(n — j), where the x(n) and e(n) are mean-zero vector-valued processes and
the coefficients A;(f) are matrices, Dunsmuir and Hannan (1976) and Dunsmuir (1979)
consider estimation of ¢ by the minimization of the quantity log det K(f) +
J7a tr{ fo(w) Ix(w)} dw, where K(f) is the covariarice matrix of the e(n) and f; and Ix are
now spectral density and periodogram matrices of x(n).

The former paper assumed that K() and the A;(#)’s are separately parameterized; the
latter removed that assumption. Besides the regularity conditions on f;, these papers
assumed that {e(n)} is a strictly stationary ergodic process such that (i) E{e(n) | %1} =
0 ae., (i) E{e.(n)es(n)| Z-1} = Kab a.e., (i) E{e(n)es(n)e.(n)| F-1} = Quse ae., (iv)
E{eq(n)es(n)e.(n)eqs(n)} < o, where the subscripts denote respective components of e(n).
Though condition (i) is natural in view of the definition of innovation process and (ii) is
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natural for the purpose of a central limit theorem for covariances, conditions (ii) and (iii)
seem a little too artificial. We would replace these conditions by more natural ones with
respect to the second and fourth conditional moments and replace strict stationarity by
the fourth-order stationarity, at the same time dispensing with the explicit assumption of
ergodicity. It is to be noted, however, that the above previously-mentioned papers estab-
lished the central limit theorem and the strong consistency of the estimate under fairly
general regularity conditions on f;.

In the following discussion, we aim at further development of those previous works on
linear processes by establishing some general results which might have independent
interest in themselves. To be more specific, we prove two central limit theorems in Section
2. The basic assumption known so far for a central limit theorem to hold for stationary
processes is the strongly mixing condition for strictly stationary processes (see Rozanov,
1967, and Ibragimov and Linnik, 1971). We propose a new condition in Theorem 2.1 and
discuss its relationships with various mixing conditions in Remark 2.1. Theorem 2.1 is
applied to establish Theorem 2.2 which extends Hannan’s central limit theorem for serial
covariances (see Hannan, 1976).

In Section 3, we deal with the estimation problem. By regarding the quantity
7. {log det fi(w) + tr fi(w) f2(w)} dw as a measure of divergence of a spectral density
matrix f; from another f; when f; and f; are of the same dimension, we can interpret the
minimization of the integral [~ {log det fy(w) + tr fo(w) 'Ix(w)} dw with respect to § € ©
as the way to choose the least diverged spectral density in a fitted model { f5; § € 6} from
the observed spectral density, namely Ix. In Section 3 we give an asymptotic theory
for the estimate without the assumption that the true spectral density belongs to
{fs; 0 € O}. In that respect, the above measure of divergence will play an important role.

In Remark 3.1, we give an example which illustrates that this extension is not a formal
one and that the usual asymptotic properties do not necessarily hold for our case. The
asymptotic theory we expound in Section 3 is derived as an application of results in Section
2. Furthermore, by way of Proposition (c) in Lemma 3.1, we show, as an extension of
Lemma 1.7 of Hosoya (1974), that in general the quantity [7, {log det f3(w) +
tr fo(w) fa(w)} dw is minimized at @ = 6,. The result, incidentally, was treated as an
assumption in Dunsmuir and Hannan (1976). The results in Section 3 also are an extension
of those of Taniguchi (1979) for non-Gaussian vector processes.

Section 4 is for a model of an autoregressive signal plus white noise. There we suggest
a Newton-Raphson iterative computation procedure for constructing an estimate.

In Section 5 we give a justification for that procedure. Fisher (1925) was the first to note
the fact that an estimate which is obtained as the first step of the Newton-Raphson
iteration for solving a likelihood equation is in general equivalent to the maximum
likelihood estimate up to probability order O,(1/ VN) when observations are iid. and
sample size is N. We can say more. The second iteration will produce an estimate which
is equivalent to the maximum likelihood estimate up to order O,(1/N). We establish the
fact in a very general framework in Theorem 5.1.

As for notations used in this paper, we denote the set of all integers by </, and denote
Kronecker’s-delta by 8(m, n).

2. Some limit theorems for stationary processes. Let {z(n); n € J} be a vector-
valued linear process generated as

2.1) z(n) = Y% G(jle(n —j), ned,

where the z(n)’s have s components and the e(n)’s are p-vectors such that E{e(n)} = 0 and
E{e(m)e(n)’} = 8(m, n)K, with K a nonsingular p by p matrix; the G(j)’s are s by p
matrices; and the components of z, e and G are all real. If Y7y tr G(j)KG(j)'< o (this
condition is assumed throughout), the process {z(n)} is a second-order stationary process
and has a spectral density matrix f(w) which is representable as
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(2.2) flw) = i k(w)Kk(w)*, —T=w=<m,
2

where k(w) = Y70 G(j )e*’. Denote by C.(s) and I,(w) respectively, the serial covariance
and the periodogram matrices are constructed from a partial realization {z(1), ---,
2(N)}; namely,

1
C.(s) = N niz(m)zm+s), 0O0=s<sN-1,
and C.(s) = C4(—s) for —N + 1 < s < 0; and
L(w) = F.(w)F.(w)*, where F,(w)= ! Y z(n)e™, —r=<wsm.
2.

Denote the (a, 8) component of G(j), C. and I, by Ga.s(j), C%s and IZ; respectively, and
denote the ath component of z(n) and e(n) by z.(n) and e,(n). Assuming that {e(n)}
is fourth-order stationary, let @%,.....(¢:, &, t5) be the joint fourth cumulant of e (2),
eq,(t + 1), en(t + 1), e, (t + ¢5) and assume that

Dtptym—o | @%vwa(br, b t3)| <0 (1= 1, +++, s < p);
then the process {e(n)} has a fourth-order spectral density Q‘;l...%(wl, w2, w3) such that

~ 1 S
(23) Qil'--%(wl; w2, ‘-03) = W Z‘Z,tz,zf_mexp{—l(wltl + wely + wgta)}Qfxl...,x‘(tl, to, tg).

Denote by @7%,...,, and Q'f,l. ..q,» Tespectively, the fourth-order cumulant and spectral
density of the process {z(n)},1=gqi, -+, qs <s.
We now set down a central limit theorem for a second-order stationary process.

THEOREM 2.1. Let a zero-mean vector-valued second-order stationary process {x(t)
= (x1(8), -+, x,(t))":t € J} be such that, for a positive constant ¢, (i) Var{E(x.(t +
7| %)} = O(r7>7) uniformly in t, for a = 1, - - -, p, (ii) for a positive constant n,

E|E{x¢)xp(m)| #1} — E{xa(¢)xp(m)}| = O[{min(| £~ ¢|, |m — ¢|)} "]

uniformly in t, for a, B =1, - - -, p and 4 m both greater than ¢, (iii) {x(t)} has a spectral
density matrix f(w) = { fup(w); @, B =1, - - -, p} such that each element is continuous at the
origin and f(0) is non-degenerate, then &y = N2 Y1, x(n) is asymptotically normally
distributed with mean zero and covariance matrix 2nf(0), where % is the o-field generated
by the set of random vectors {x(n); n < t}.

The proof is given in Section 6, together with the proofs of the other theorems and
lemmas in Sections 2 and 3.

REMARK 2.1. The relationship between the previous conditions (i) and (ii) and the
strongly mixing condition seems not to be a straightforward one. The mixing condition is
for strictly stationary process, whereas the previous conditions do not require that restric-
tion. Moreover, the former is concerned with a property between events belonging to
F ' and Z §.,, whereas the latter conditions concern only the relation between & *,, and
Fir, Where F Lo, F 7. and £, are o-fields generated respectively by {x(s); s = ¢}, {x(s);
s =t + 7} and {x(¢ + 7)}. On the other hand, conditions (i) and (ii) seem to be more strict
with respect to the upper bound on the difference | P(A)P(B) — P(A N B) |4 eF’,,
B € #,+.) than the strongly mixing condition does. However, if a process {x(¢)) is a strictly
stationary uniformly mixing process such that

Supaez..,pess. | P(A N B) — P(A)P(B)|/P(A) = O(r7*™)

and Ex(¢)>*" < o for certain positive ¢ and 71, then the process satisfies the conditions (i)
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and (ii). On the other hand, if a process is absolutely mixing with finite second-order
moment and if there exist e and A > 0 such that

E suppess, |P(B) — P(B| #'.)| = O(r7>=7®)

1
fl l x2 dP = O(m)

(this latter condition always holds for normal distribution), then (i) and (ii) follow; see
Ibragimov and Solev (1969) for absolute regularity.

The first proposition can be shown as follows. First, x(n) can be approximated by a
simple function £(n) = ¥ a;I(w € A;) such that A; € 7 and E | x(n) — (n) |2 < 772 for
a fixed . Since

|E{#(n)} — E{Z(n)| # "}|* = | 3; a;{P(4)) — P(A;| F =)} |*
=Y, | |2 {P@A) + PA; | F=)B T, | PA) — PA; | 2|}

and ess sup Y| P(4)) — P(A;|F %) | = O(r7*™) uniformly for any decomposition {4}
(Ibragimov and Linnik, 1971, page 308) it follows that

Var[E{£(n)} — E{£(n)| #"}] = O(z 7).

and as c tends to infinity

Since E | x(n) — £(n)|®> < 777, {x(t)} is seen to satisfy the condition (i). Condition (ii)
follows from a slightly modified argument by means of Holder’s inequality. As for the
absolutely mixing case, let y be the truncated version of x(n) such that y = x(n) if | x(n)|
=< 7 and y = sign(x(n)) -7 if | x(n)| > 7*, and let £(n) be a simple function £(n) = }, B;I(w
€ C)), C; € # %, such that sup | £(n) — y| < 772" In the relation

|E{x(n)} — E{(n)| # "} |?
=[3;181HP(C) + P(C; | )] X X, | P(C) — P(C; | # ),
the first term on the right-hand side is less than 27* and
E(3,|P(C) — P(C;| # )|} = 2E{sup C € F3 | P(C) — P(C| F )|} = O(r >,

Var{E(x(n)) — Ex(n)| # ")} = 0(1_—214,;)

Now condition (i) follows from the fact that E | £(n) — x(n)|*> = O(r7>™). Condition (ii)
holds in the same way.

Let {2(n); n € J} be the linear process introduced in the first paragraph of this section;
that is, 2(n) = %0 G(j)e(n — j), n € J. Denote by %(t) the o-field generated by {e(n); n
=t}.

THEOREM 2.2. Suppose that
(i) for each B1, B2 and m,

Var[E{es (n)eg,(n + m)| B(n — 1)} — 6(m, 0)Kp p,] = O(r~%), e>0,

uniformly in n;
(il) E| E{ep (ni)ep,(ns)es,(ns)es (ns)| Bn, — 1)}

— E{ep,(n1)ep,(n2)es,(ns)es, (na)}| = O(r ),

uniformly in n,, where n; < n; < ny < nsand n>0;
(iii) the spectral densities fzs(8 =1, - - -, s) are square-integrable;

(iV) Zﬁ:fz-j3=_°°| QEI- . 'ﬂ4(j1’ j2! ]3)| <,
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Then VN{CZu(m) — V(M) o, ae = 1, +++, s, 0 = m =< L) have a joint asymptotic
normal distribution whose mean is zero and the asymptotic covariance between
VN(Clraalm1) = Yiraa(ms)} and VN{Ciaoums) = yisas(ms)} is given as

277[ [ﬂxwa(w) ﬁxzm(w)exp{_i(m? - ml)w} + ﬂlm(w) ﬁxzaa(w)exp {l(ml + mg)w}] dw

'kazﬂz(_wl)kaaﬁa(w2)ka4ﬂ4(_w2)éz'1‘..ﬂ4(wly - We, wz) dwdw, .

3. Asymptotic properties of quasi-Gaussian maximum likelihood estimates for
a linear process. In this section we shall apply the results of the previous section for
estimation of parameters of the spectral density fitted for the process (2.1). Let {z(n); n
€ J} be the linear process defined by (2.1) with spectral density f(w) given by (2.2). Fitting
a certain parametric spectral density model fy(w), § € © C RY, for this process we shall
estimate 6. Let 2 denote the set of all spectral density matrices of linear processes whose
coefficients satisfy

270 tr{G(J)KG(j)'} < .

A functional T defined on 2 is determined by the requirement that for a parametric family
of spectral density matrices {fy; § € © C R}, there exists a unique T(f) in O for every
f € ?such that

(3.1 D(frp, f) = mineoD( £, f),

where
D(f, f) = f [log det fi(w) + tr{ fi(w) 'f(w)}] dw.

Define a convergence on 2 as follows. If, for every continuous s X s matrix-valued
function Y(w),

f tr{y(w) fv(w)} dw—>j triy(w)flw)} do as Noow, fyE€Z,

then we say that fv converges to f weakly, denoted by fx —. f. To ensure the existence of
T(f), some assumptions are needed on the parametric family { fp; 6 € ©).

LEmMA 3.1. Suppose that © is a compact subset of RY, that 0, # 0, implies f; # f,, on
a set of positive Lebesgue measure, that f;(w) is positive definite, and also that every
component of fy(w) is continuous in 8 and w. Then (a) for every f € P, there exists a value
T(f) € O satisfying (3.1); (b) if T(f) is unique and if fx —u f, T(fn) = T(f) as N — oo;
(c) T(fy) = 0 for every 8 € O.

For an estimate of T'(f) we propose T{I.(w)}, which is to be called a quasi-Gaussian
maximum likelihood estimate under the model f;. For simplicity hereafter, denote T{I,(w)}
by T'(I,). We assume that every component of f;(w) is a twice continuously differentiable
function of # € ©, where O is compact such that it has a non-empty open subset, and that
the second derivatives of these components are continuous in w € [—#, 7]. Then we have

THEOREM 3.1. Suppose that T(f) exists uniquely and lies in IntO, and that
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M;= j_ [6060’ tr{ fo(w) 'flw)} + 060’ log det ﬂ;(w)] dw

0=T(f)

is a nonsingular matrix. Further we assume the conditions (i)-(iv) in Theorem 2.2, and
(v) f(w) € Lip(a), the Lipschitz class of degree a, a > 5.

Then
p'limN—-moT(I ) = T(f)’

and the distribution of the vector VN {T(I.) — T(f)} under f, as N — o, tends to the
normal distribution with mean zero and covariance matrix My M7 7', where V= {V, ¢}
is a ¢ X q matrix such that

Vi, =dn f tr[f {fo w))~ ‘f(w)%{fo(w)}_‘] _dw

0=T(f)

+ 27 Zrt u,v=1 J'J' {30 f(r” 1 f(u v)(w2)} Qituv(_wly w2, _w2) dw; dw2,

0=T(f)

and f§" (w) is the (r, t)-th element of { fy(w)}™.

COROLLARY 3.1. The above V;, can be expressed as

Vie = 4ﬂf tr[f {fa(w)} ‘f(w)ri {fa(w)}_l] dw

0=T(f)

+2W2abcd=12rtuv— ff {30 f(rl) ) _f(uv)(WZ)}

X kra(_wl)ktb(wl)kuc(_WZ)kvd(WZ)ézbcd(_wl; w2, _"-’2) dw1 dws.

6=T(f)

Note that in the above theorem the sufficient conditions for the central limit theorem
are described only by moment conditions without the ergodic or mixing properties which
have been used in much literature up to now.

Now we have the following proposition.

ProposiTION 3.1. If
_ ) Kabea if ni=n;=ns3=ny,
(3.2) cum{ea(nl), es(n2), ec(n3), ea(na)} = {0 otherwise,

then the asymptotic covariance matrix of the quasi-Gaussian maximum likelihood
estimates in Theorem 3.1 is equal to M7'UM;", where U has (j, ¢) element

Uy = 4"J tr[f(w)— {fa(w)}‘lf(w)— {fa(w)}_l] dw

9=T(f)

3 pedet Kabed [51; J ) % ) dw]

ab

’

0=T(f)

X I:Zr J’_’7 k*(w) % {fi(w)} R(w) dw]

cd

with [ Jas denoting the (a, b) element of the matrix in the bracket.
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In general, we say that an estimate § of parameters of a process is robust against the
fourth cumulant if the asymptotic distribution of 4 is independent of the fourth cumulants
of the process. In the case of the estimation of innovation-free parameters, namely when
the relationship

33) % tr[{fa(w)} ()] dwlo-ripy =

holds, the following remarks about the above proposition and robustness are pertinent.

REMARK 3.1. Suppose that G(j) are square matrices, ie. s = p, and that
det{} ;20 G(j)z’} # 0 for | z| < 1. Then, in the case where f(w) = fy(w), (k(w) = ks(w)), and
when 6 is the innovation-free parameter, it follows that

J k*(w)[—— {fo(w)}~ }kg(w) dw

B _L [£ k¥ (@) {RF (@)} K™ + K7 {ko(w)} ! % ko(w)} dw =0.

Thus the quasi-Gaussian maximum likelihood estimates for the innovation-free parameters
are robust against the fourth cumulant under the conditions (3.2) and f(w) = fy(w).
However, in the case of f(w) # fy(w), the relation

J *(w)[—— {fo(w)}™ ] k(w) do =0

0=T(f)

is not satisfied generally. For example, let the true spectral density matrix be that for the
MA (1) process, namely

10 1%\ Lff1 0 1 %) "
=1l D) (e 2))6 D) )

and let the fitted spectral model be that for the AR(1) process with

o[ 2)-8 2228 2]

where Y, = diag(s, 6s).
Then it is not difficult to show that

J k*(w)[— {folw)} ™ ] k(w) do = (3‘2‘;’;2 —ging 0.
0=T(f)
This implies that, in the case of f(w) # f;(w), even if (3.2) is satisfied, the quasi-Gaussian
maximum likelihood estimates for the innovation-free parameters are generally not robust
against the fourth cumulant.
However if s = 1, ie., the process concerned is scalar-valued, we have the following
unified result.

REMARK 3.2. Consider the case s = 1, and assume that

K4 if ni = N2 = N3 = Ny,

(3.4) cum{e(n,), e(n:), e(nz), e(ny)} = {0 otherwise.

is satisfied. Then the quasi-Gaussian maximum likelihood estimates for the innovation-
free parameters are robust against fourth cumulant even if f(w) # fy(w). In fact if 6 is the
innovation-free parameter, noting (3.3), we have
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f_ ﬂk*(w)[%{fa(w)}“] k(w)dw=%” f [%{fow)}lﬂw)] dw = 0.

9=T(f) - 0=T(f)

For example, consider the A-step ahead linear predictor with length g for the scalar case
(s = 1). Then we construct a linear combination a;z(n — 1) + ... + a,z(n — q) which
satisfies

E|lz(n+h) —az(n—1)— ... —azz(n—q)|°

(3.5)
=min,,...s,E|2(n + k) — biz(n — 1) — -+« — byz(n — q)|*.

However, this problem is equivalent to that of fitting
folw) = |1 — G’ "*Ve — ... — g et hrDe| 2

by the criterion D(fj, f). In fact, since 4 is independent of the innovation parameter, we
have

J_ % (@)} (@) do|o-rip = O,

which implies T(f) = (ai, ---, a4)". Puttmg T(I,) = (&, ---, &,)’, we can see that the
distribution of the vector VN (al —ay), - «/ZT/' (a4, — a,) tends to the normal distribution
with zero mean vector and covariance ma’érix (2R,)'V(2R,)", where R, has (j, k)
element y.(j — k), 1 =, k =< q, with y.(j) = E{z(n)z(n + j)} and v.(—=j) = y.()),

yolh+ 1))
v+

Evidently the asymptotic distribution of JN(4, — a)), -++,VN (4, — a,) is robust against
the fourth cumulant.

—_ -1
ae/ db), T(f) - Rq (

V=477j f(w)z[(—% {fo()} ™ — (fo(w))™ ]

0=T(f)

4. An autoregressive signal with white noise. As an application of the preceding
asymptotic theory, there is the problem of estimation of an autoregressive signal which is
observed when superimposed with white noise. The model with which we deal in this
section is as follows. Suppose that a signal {s(¢); t € J} is generated by a scalar-valued
autoregressive process

(4.1) 2hibis@—) =n(), tedbo=1,

where all zeroes of ¥ 6,27 are assumed to be outside the unit circle and E{n(¢)} = 0,
E{n(t)n(s)} = 6,+18(¢, s). Suppose then that the observed process {X(¢); t € J} is given
by

(4.2) ’ X(t) = s(¢) + e(t)

where {e(t)} is a scalar-valued white noise such that E{e(t)} =0, E{e(t)e(s)} = 0,420(¢,
s), and E{e(t)n(s)} = 0 for all ¢ and s.

For the estimation of the 6;’s in the model (4.1) and (4.2), based on a partial realization
X(1), ---, X(N), Hosoya (1974) suggested the minimization of

4.3) D(fs, Ix) = J’ {log fo(w) + Ix(w)/fo(w)} dw,
where fj is the spectral density of {X (¢)} given by

0q+1
(4.4) fo(w) = (W+ 0q+2) ,

and Ix(w) is the periodogram Ix(w) = | T X(t)e™! |% Hosoya’s reason for the use of

2N



140 YUZO HOSOYA AND MASANOBU TANIGUCHI

(4.3) is as follows. According to the Fejér-Riesz theorem (see, e.g., Achiezer, 1956, page
152), if g(w) = Yi-—, are™ and g(w) is real and nonnegative, then there exists an h(w)
such that g(w) = | A(w)|? and A(w) = Yh-0 Bre™<. Thus, f; is representable as

o’ 27=0 ye?
45) o) =5 |57 e
where o” and y are functions of 6. Then we cannot omit the term ¢® = 27 exp{(1/27)-
JZ. log fs(w) dw} in the approximation of the Gaussian likelihood function as Whittle
(1952) did in defining the least-squares estimate. As in the previous section, denote by
T(Ix) the value of § minimizing D(fs, Ix). Hosoya (1974) derived the asymptotic distri-
bution of T'(Ix) for the case where {e(¢)} and {n(¢)} are Gaussian. The next result is more
general and can be obtained as an immediate corollary of Theorem 3.1 and Corollary 3.1.

2

’ \P0=1)

PROPOSITION 4.1.  For the model represented by (4.1) and (4.2), assume that

(a) {e(?)} and {n(¢)} are fourth-order stationary processes such that the vector-valued
process {e(t), n(t)} satisfies conditions (i), (ii), (iii), (iv) of Theorem 2.2 and the fourth-
order spectral density is denoted by Qi;'!..,,4(w1, wz, w3), where ay, -+, a4 =1o0r 2.

(b) Let 6° be the true value of 9; then 6° = (89, .- ., 02.2) € B X K; X K,, where Bis a
compact subset of R? such that for (6., - - -, 8,) € B, all zeroes of ¥ 7o 0,2’ are outside the
unit circle, and K, and K, are, respectively, compact subsets of R*. ThenVN {(TIx) —
6°} is asymptotically normally distributed with mean 0 and with covariance matrix
M{'VM;?, where V = {V,/} Jy£=1, ... q+ 2 such that

Jf—4ﬂJ’ {ﬁrﬂ(w)}2 {fo(w)}1 {fa"(w)} dw

+ 27 Zgl-' J’j {ﬁ’o(wl)} T— {fﬂn(‘o2)}_lkal(—wl)kaz(wl)kaa(—wZ)

X ko (w2) Q.. oy (—w1, w2, —w2) dw: dws,

where ki (w) = 1/(3 %, 67e*’) and ke (w) = 1.

For the numerical computation, it would be more appropriate to use, instead of (4.3),

N—1 IX((’-’J)

(4.6) A0, X) = Y5 log folwj) + ¥ X
folw))’

where
: . 1 )
w=2mj/N,  j=0,.--,N=1 and Ix(w)=5—=|8X(e)e" 2.

Since the first derivative of A (8, X) is nonlinear with respect to 8, a certain approximation
is required for the solution of dA (6, X)/36 = 0. For that purpose, the Newton-Raphson
iteration procedure starting with a consistent estimate of § seems appropriate for the
reason that follows. Then a possible procedure is:

Al: Solve ¥ 7o 6, {Z, grea1 X —NX@t—-—q—-2¢)/((N—q—2¢)}=0,¢=1,...,q, for
6. Let the solution be 01, oo, 0q.

A2: Calculate ;. and b, as

1 A 1 1 s s
ﬁZj 2 Ix(w;){ g(w;| b1, + -+, 8.)) 7" — NE/ 2mIx(wj)) NZ, {g(wi| 01, -+, 0}

0q+1 =

1 - - 1 - - ?
NZJ' {g(wjloly M) 00)}_2 - [NZ/ {g(wfloh "'704)}_1]

Ogs2 = E, 27 Ix(w)) — q+1—21 {g(wlloh .o, éq)}—l’
where g(w| 81, « -+, 0,) = |2I_, Ore* |z.
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A3: Let 8® = § and apply the iteration formula
A0, X)]“ 3A (84", X)

3606’ s k=3
Another class of models in which we get an ARMA model whose innovation variance
depends on the other parameters is when a continuous differential equation is sampled
discretely. This case is considered by Robinson (1980) which gives an algorithm similar to
A1-A3, except that periodogram averages are used in place of autocovariances in Al.

o(k) = 0(12—1) _ [

5. Newton-Raphson iterative method. Under the assumptions of Proposition 4.1,
we can easily see that the estimate § calculated in the steps A1-A2 is consistent in the
sense that § — 6° in probability. Moreover, it turns out that 8 is equivalent to 7'(Ix) up
to the order O, (N™Y); that is, N{#® — T(Ix)} tends to 0 in probability. This fact can be
established in a more general framework, as we show in the next paragraph.

Let Ly(8) be a function of an unknown parameter § =*{,, - - -, 6,-}’ and observations
X(1),X(2), +-+,X(N) and let N5(6°) = {6: | 8 — 6° || < 8} where §° is the true value of 6.
Now assume the following.

B1: log Ln(8) is third-order differentiable with respect to 6;,i =1, -.., q’, for § €
Ns(8°, and &; = p-limy_.N'9%log Ln(8°/86:86;, i,j =1, ---, q’, exist such that the
matrix {¢,} is nonsingular.

B2: N™'9°log Ln(6)/36,80;08; is bounded in probability uniformly in § € N5(6°).

B3: There exists a consistent estimate 8, i.e., §' — 8° in probability as N — w, such that
JN (8! = 8°) has a limiting distribution with a finite covariance matrix. .

B4: 0 is a solution of the equation 8 log Ly (8)/36 = 0 which is consistent; and JN a4 -
#°) has a finite asymptotic covariance matrix.

Let T'yv(6) be the ¢’ X ¢’ matrix whose (i, j) element is 8*log L (6)/36;36; and let yn(6)
be the q’-vector whose ith element is dlog Ly (6)/36;. Now define

(5.1) 6%>=6"—Tn(6") "yn (0"
and
(5.2) 9 =0%— I‘N(6‘2)_1y1v(02).

THEOREM 5.1. If B1 through B4 hold, then VN (8% — 6) tends to 0 in probability; in
other words, VN (62 — 0°) has the same limiting distribution as VN( - 6°). Furthermore,
under the same conditions, N (8 — 8) tends to 0 in probability.

Proor. By the Taylor expansion of dlog LN(é) /36; = 0 around 67,

(5.3) dlog Ln(8Y)/80; + Y, (8, — 6})a*log Ln(6")/36,06;

+ 3,5 (6, — 0}) (B — 03)8°log Ly (6*)/36,36;86, = O, i=1-.--,q,
where 8} is between 6! and f;fori=1, ..., q’. In (5.3) above,

Y (8 — 6})a%log L (8")/6:36;
(5.4) =73, (6, — 0%)0%log Ln(8")/36,08; + Y., (6 — 6})d*log Ln(6")/36;36;
=Y, (6; — 63)8%log Ln(8")/36:06; — dlog Ln(6")/36;,
by (5.1). From (5.3) and (5.4), it follows that
(65) %, VN(§;— 6})N"'3’log Ln(8")/068:36;
=—3,5: VN8 — 6})(8, — 0}) N"'9°log Ln(6*)/36:6;06).

Writing the term on the right-hand side above as

VN (6; — 6})N*(6, — 0%)8%log Ln(6*)/{ N'*36:36;36:},
we see that, for 0 < ¢ < %, both 8°log Ln(8*)/{N"**36,30;36,} and N(6) — 8}) converge
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to 0 in probability and VN (@ — 6}) is asymptotically of finite variance by assumption.
Thus the whole quantity on the right of (5.5) converges to 0 in probability. It is easy to see
that N~'a%log Ln(8")/36:86, converges to ¢;; defined in B1. By assumption, the matrix {Z;;}
is nonsingular so that each VN (6; — 07) tends to 0 in probability. In order to prove the
second assertion of the theorem, note the following equation:

N(6° - §) = [1 - (Tn(6%))'Tw(§)IN (8% - )
— W(Tw (8%} (3L, (63 — 6,)aTn(0**)/06:) N (6 — B),

where ** is a vector such that §;** is between 6;and 0%,j=1,-..,q’,dTn(8)/36risa q’
X g’ matrix with 8°log Ln(6)/36:36,30, as its (i, j) element and [ is the ¢’ X ¢’ identity
matrix. Then if N (6% — 8) is bounded in probability, the first term on the right-hand side
of (5.6) converges to 0 in probability since {T'~(#%)}'T'n(d) converges to the identity
matrix, and the second term tends to 0 since {I'w(6%))} '6I'n(6**)/a6; is asymptotically
bounded. The fact that N(§%> — 8) is bounded in probability is evident in view of the
equation

67 N(8*=8) = VN[I - (Tn(6)}'Tw(9)]VN(6' - b)
— W{Tw(6Y)} [Tk {Tw(8)/06,} VN (6} — 6:)1VN (8" — 8)

(5.6)

where 6 is between 8} and 6,7 =1, - - -, q’, since
JNII = (Tn(8))"Tw(8)] = £, (oTw (6)/ N9} VN (6 — 6})

where 67, is between 8} and 6, and ()I‘N(Oz) /Na#0; is bounded in probability.

REMARK 5.1. More generally, let 8* be the kth step estimate obtained by repeated use
of formulae (?.1) and (5.2). Then, in view of the above proof, it is easily seen that
N®D72(g% _ §) tends to 0 in probability under the same conditions of Theorem 5.1.

d%log L(6)

36,36,
Then the estimates of the scoring method are obtained as ¢ = ¢! — {T'~(8")) 'y~ (8") and
0% = ¢? — {T'n(9%)} yn(9?). For these estimates, instead of (5.6) and (5.7) we have

REMARK 5.2. Denote by I'y(8) the matrix whose (i, /) element isE

(5.8) N(¢® — ) = [I - (T2} 'Tw(B)IN (> — §) + 0, (1),
and
(5.9) N(¢? — 8) = VN[I - (T'n(6")}'Twn (H)]VN (6 - 8) + O, (1).

Therefore when N7 T'n(6) tends to ¢;, which is generally true, it follows from (5.9)
that N~ (92 — ) = Qp(l) and thus that N(¢® — ) tends to 0 in probability, since in
(5.8) {T'n(¢%)}'T'w(0) tends to the identity matrix as in Theorem 5.1.

6. Proofs of theorems. In this section we give the proofs of the theorems and
lemmas stated in Sections 2 and 3.

6.1 Proofs for Section 2. We first set down some lemmas that will be needed in the
proofs.

LEMMA A2.1. If $7%0 | Gap())|* < o for each o, B and if 37, .. = | Q... (1,
J2 Ja)| < », then the process {z(n)} has a fourth-order spectral density @3,...qi (w1, w2,
ws) such that

Q;l...m(wl, w2, (03) = Zﬂl,... ,ag=1 kqllxl(wl + we + ‘-03) kqgaz(—wl) kqaaa(—w2) kq4a4(_w3)

6.1
©1 X QF...ailwr + w2 + w3, Wz, w3) A€
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Proor. Define G,3(j) = 0 for j < 0. Then the fourth cumulant @3,...q. (n1, ns, ns)
is given as an absolutely convergent series such that
(6.2) Q¢211~~~q4(n1, na, n3) = Zﬁl.--- ,aq=1 27;, ,Ja=—00 qual(jl) e Gq4a4(j4)
X Q%...as(M1 + Jj1 — Jo, N2 + J1 — J3, N3 + j1 — Ja).
In what follows in this proof, @Z,...,, (n1, ns, ns) is abbreviated simply by @°. Define
. . . . 1 0 —iwj e . . . . .
ho(w|ne + j1 — Js, ns + j1 — Ja) =ﬂ2j=—oo e Q... (J, N2 + J1 — Ja, N3 + J1 — Ju).
Then in view of the fact that A; and kg, are square-integrable, it follows that
Y s Ggyar(J2) R --as (M1 + J1 = j2, N2 + j1 — J3, N3 +j1—J1)

©3) = J’ Rgyar(—w1) eimtidohy(wy | ne + j1 — ja, ns + j1 — ju) do.

Since for a certain positive constant c;,

Zfa f |Gq3a3(j3)kq2az(w)h2(w | ng +j1 '—j3, ns +j1 —]4)| dw
(6.4) - 7
=0 J’ |k¢12a2((’))| dw E;j,jzyf:a:—m | Qzl-”ﬂl(jl) j27 ]3)|

-

so that the left-hand side of (6.4) is finite, it follows from the exchange of the summation
and integration that

Qz = Zﬁl--~a4=l 2;:,1'4=—00 qual(jl) Gq4a4(j4) j ZZ=—W Gq3a3(j3)

X kg, ar(—w1) eimrioy (wy | g + j1 — Ja, N3 + J1 — Ju) dwy
(6.5)

= Zgll, ceaq=1 Zz-/4=—°° quﬂl(jl) Gq4lx4(j4) fj quaz(_wl) kqaaa(_('-’Z)

X exp{i(nl +j1)0)1 =+ l(nz +j1)(.02} ha(wl, w2 |n3 +j1 _]4) do.’l dwz,

where
R T o o
hs(wr, w2 |ns + j1 — Ja) = oy S8 i @irmi0vis X Q.. .a(J2, J3, M3 + J1 — Ju)

and the second equation is due to the Parseval equality. By means of repeated use of a
similar argument,

QZ = Zglv"'-mi:l E;;=_°° G‘Ill!l(jl) fjf kihaz(—wl) kq3a3(—w2) kq4a4(_w3)
(6.6) -
X [H§=1 exp{i(n;+j1)w/}:| Qc,...ou(w1, w2, w2) deor dws dws.

Since again by the Parseval equality

L1 (7 . . ~.
37w Goya(J1) o j exp{i(w1 + w2 + W) J1} Rgyar(—w1) (27) Qf;...as (w1, w2, w3) din

= J’ kqlal(wl)quaz(—wl + w2 + w3) ernm(wl — W2 — W3, W2, w3) db)l,
-

it follows from (6.6) that
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Q2 = qu,...,m:l J’J’f [H?’:l exp{ingw/}]kqla,(wl + we + w3)kq2a2(—w1)

X kqalm(_"-’2) kq4a4(_('-’3) le---o«(wly w2, wa) dw; dws dws.

Accordingly, the relationship (6.1) holds.

LEMMA A22. Assume Y7 ), j=—w| Q. .a,(J1, J2, J3)| < . For any square-integrable
functions W1 and W, defined on [—m, 7],

limpyeN Cov{f Wi(w) I3, ax(w) dw,f Wa(w) L350, (w) dw}

6.7 = 277J' Wi(w) Wa(w) faras(®) fagas(w) dw + 27rf Wi (w) Wa(—0) furas(@) frzas(w) dw

+ 27rJ' J’ Wi(w1) Wa(—w2) @2,...au (@1, w2, —w2) der dwe.

-7 J—7

Proor. Let

Wl(n) = if Wi(w)e™ dw, Wz(n) = LJ' Wa(w) eine dw,
2 . 29 B
then

N COV{J’ Wi(w) I3 ax(w) dw,f Wa(w) L350, (w) dw}

1 ~ ~
= W Zrlx,---,n4=l Wi(ny — no) Wa(ns — ng) {‘Yilaa(nS - nl)Yigm(rM — ng)

+ Yara(Me = M) Yoraa(ns — n2) + Q.. .ai(M2 — Mu, N3 — My, Ny — 1)},
where the terms containing covariances converge to the first two terms in the right-hand
side of (6.7); see Grenander-Rosenblatt (1957). Now let

1 . ~
By = W Zﬁ,...,nﬁl Wi(ni1 — ng) Wa(ns — ng) Q%,...«i(n2 — ny, nz — ny, ny — ny),

and write £ = ny, o = na — Ny, 63 = N3 — Ny, 44 = Ny — n1. Then

1 ~ ~
(6.8) By= ~ N2 am-ne1 {N = S(ta, b5, ta)} Wi(—=) W2 (6 — 1) Qi .ca oy L3, £4),

where

max(| 4|, | 4], |£s|)  if sign 4 = sign £ = sign 44,

Sl b &a) = {max(|t’,~|, |41) + | 4| if sign 4 = sign 4 = —sign 4.

However, since, for a certain positive constant c,
1 ~ ~
N | 302 cm-ns1 S (&, b, £a) Wil—=0o) Walls — 4) Qi s (o, &3, £4) |

C
= NZ 1\2;5;,,[4=—N+1 (|| + | 6]+ | 4])| Q.. .as (o, &3, 1) |

and also since the terms

4 .
/2,/3,/4%" | Qil---m(&, /Ei;&) |;] = 2y 37 47
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converge to 0 as N — oo, it follows that

(6.9) linlN—>ooBN = 22,4’,,4=—m Wl(_[2) WZ(/3 - 14) Qil-“ou(f% f3y f‘l)-

Then, by repeated application of the Parseval equality,

(6.10) limy_By =27 ff Wilwi) Wa(—ws) Qi,...m(wl, Wz, — w2) dw; dws.

LEmMMA A2.3. IfY ;| G.p(j)|? < w for each a, 8 and if
Zip/'z,fa | Qi as Uy j2»j3)| <,

then for any a, as, as, as, we have
limN_,mNCOV{Cilaz(m), Ciam(n)}
= 2'”J’ {f;laa(w)ﬂzm(w)e_i(n_mm + ﬁnm(w) zrzaa(w)ei(n*‘mm} dw
(6.11) -

+ 2ar ng,)...)ﬁ,:] ff exp(imwl + in’wz)k.,lﬁ,(wl)k.,zpz(—wl)kaapa(wz)ka,p,(—wz)

X Qf;,...m(b)h —Ww2, w2) dw; dws.

ProOF. In the relation

N Cov{C3,.,(m), Ciu(n)}

- u rd z rd 2
612) =¥N1ny (1 _lul Nl){yma(n)yam(u +n—m)+ vau(U + n) vyl —m)}
N-1 _ | u | z
+ Yu—n | 1 A aeaa(m, u, u + n),

the first sum converges to the first integral in (6.11); see, for example, Hannan (1976).
Denote by Dy the second sum in the right-hand side of (6.12), and denote by Lxy(A) the
Fejér kernel; then i

T 1 T . .
Dn=27Y5 .. =1 J’f {ﬂf Ly(w2 + ws)exp(imw; + inws)ke g (w1 + w2 + ws)

(6.13)
X kaapa(—wz)éﬁl...p4(w1 + w2 + w3, we, w3) dwz}kazpz(—wl)kmp4(—w3) dw, dws.
Let
Hpy (w1, we, w3) = ko (w1 + we + w3)kaaﬁ3(_w2)éf?l~--ﬂ4(wl + w2 + w3, w2, w3).
Then,

’ fff {% LN(('-’2 + wg)H((JJl, w2, 0)3) - H(wl’ —ws, 0)3)}

(6.14) X Rogp(—w1) Ragp(—ws)exp(imwr + inws) dwi dwe dws
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=UJ.

. - 172
X {f | klxzﬁz(_wl)lz dwl f | ka4,B4(_°-’3)|2 dwa} .

By a slight extension of the known result of L?convergence of a Cesaro sum, and the
application of it to the first factor in the right-hand side of (6.14), it follows that this first
factor converges to 0 as N — . Therefore,

2

1/2
dwl dw3}

1 T
Q;J Ly (w2 + w3) H (w1, w2, ws) dwz — H(wy, —ws3, w3)

limy_ Dy = Efg,'...,pﬁl 2m JJ’ exp(imw; + inwg)k,,lp,(wl)kazpz(—wl)
X kﬂﬂﬁa(w3)ka4ﬁ4(—w3)é§1~ . .34(0)1 , —W3, w3) dw; dws. ]

Let {wn(n), #u(n); n =0,1,2, --., n(m)}, m =1, 2, ..., be a zero-mean square
integrable martingale for each m where {%,(n); n =0,1,2, ..., n(m)} is a sequence of
increasing o-fields and n(m) —  as m — o, The next lemma is due to Brown (1971), with
a slight modification, and is essential for the theorem which follows it. Let w,,(0) = 0,
Un(l) = wn (1), and u,, (R) = wn (k) — wn(k — 1).

LEMMA A2.4. Suppose that

38 Elun(RYI{| un(k)| = en(m)}]=0

(i) limpy e

1
n(m)
for any € > 0, with I the indicator function, and

(i) [(Z35 E {um (k) | Zu(k — DI/[ZEE E (un(R)}] = 1
in probability as m — «. Then
T un (k) /[Z35) E {um(k)*} ]

is asymptotically normally distributed with mean 0 and variance 1.
Using the above lemmas, we shall now prove Theorem 2.1.

ProoF oF THEOREM 2.1. It suffices to show that the result holds for the case p = 1,
since the proof for general vector-valued process is reduced to it by considering linear
combinations Y5 c.x.(n). Hence assume p = 1 in what follows. Let (s, &), k=1, -+ -,
M be a sequence of pairs of integers such that 1 < sz, ty <N, sy — tp =1, — Sr—1 = 7/, and
t; = 1. Without loss of generality it is assumed that N = Sy—;. The integers r and 7’ are
chosen such that

M-r7) T’ M

—_('r+'r') — 00, T/ — o0, and ( ,)1+E/2—>0.

70

(In order to see that such a choice is possible, refer to Rozanov, 1967, page 195). Then it
follows that 7/(7’)'**/2 — 0. Represents £y in the form

&v=(r/N)2 ¥ me + (v//N)2 TR ni,
where 1 = ¥, < /<, 2(¢)/ V7 and 0% = Y= /<tun (£)/7’. In the inequality

!’ 7 2 ’
(6.15) E{ <N> /2 pt n;}z =< ﬁ (M — 1)Var(n?) + W THSUSML | Covink, 1%,
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the term (7'/N)(M — 1)Var(n7) tends to 0 since Var(n1) is bounded in view of the fact that,
under the assumption of the theorem, lim,_.Var(yi) = 27f (0), whereas, with respect to
the second term, since

_ () dy)

)}—W, J=12 ...,

Var{E (nk+; | F

for a positive constant ds,

27’
N ¥ XZeh | Cov(n, 3 (Var(n)}/*[Var(E (n,| #%)}]"*
(6.16) _21‘ d, M1 .11”11 k] “1-e/2, 01/2 | —1-e/2
N
- 27'(M - 1) d, S I L g1/ e,

N

where & } is the o-field generated by {x(¢); ¢ < &, — 1) and d; is a positive constant. Since
the term in the right-hand side in the third inequality of (6.16) is of order O (7"**r~*/?), in
view of the fact that M/N = O(r7"), it is seen to converge to 0. Hence

lmy - E{ (1%) vy nz}z =0.

Furthermore,
(6.17) Var{ (%) VESM L E (e | 971?—1)} = do(Mr)(r') 7%

for a positive constant dz, where &#}_; is the o-field generated by {x(¢); t < sz—1} and F¢§
is the o-field generated by {x(¢); ¢t = —7'}. Hence

Var{ \[V S E (s | %)} 0,

and consequently ¢év has the same limiting distribution as &y = M™% ¥4, {9, —
E(m/|F%1)}. It is evident that {n, — E(m,|F}%1); Fry; £=1, ..., M} is a martingale
difference. What remains to be shown is that the sequence {n,— E (/| F }1); /=

M} satisfies the conditions (i) and (ii) of Lemma A2.4. As for (i), this is seen to be satisfied
in view of the inequality

(6.18) E[{n.— E(m:| Z:)YI{|n,— E(n,| F11)| = eM}],
< Var{n,— E(n;| F£1)}*(eM) 2

and the relation Var{n, — E (.| # %-1)} < 2 Var(n,) < d, for some constant d;. Moreover,
Var(n,) = Var(y) for I = 2, ..., M, lim, .Var(n,) = 27f(0) and E{E (n/|F}1))* =
O{r(+')7%™}, so that it follows that

(6.19) limy_w M2 3, Var{n,— E (n,| F£1)} = 27f(0).
On the other hand,

M7 YR EM? | Fr) = Tisjns T E@x()x (k) + M T E(n? — EMY)| F11)
where the first sum in the right-hand side converges to 27f(0) as N — o, whereas
E|M™ 37 E(n;— E(m?)| #£1)|

SM YA (7 sk B | E{x()x(R) — E(x(j)x(R)| F 11)| < dor ()71,

for a positive constant ds. Since it can be assumed that 7 (') 17— 0, M Y22, E (n? | F -1)
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converges in probability to 27 f(0). Finally, since
p—limy_. M Z 1 E[{n,— E(ﬂ/| 1)}2 | 1] p_llmN—mo M E =1 E(TI/ | F %),

it is seen that the condition (ii) of Lemma A2.4 is satisfied.

ProoF oF THEOREM 2.2. Represent z(n) as z(n) = zP(n) + 2?(n), where 2z (n) =
E G(en — j) and z2®(n) = T%-ms G(jle(n — j), and let C%” (m) =
N~ ZN_I”‘zf,k)(s)z ”(s+m) k,j =1, 2. For fixed M, each of VN{C%" (m) — E(C“” (m))}

(e, B=1, ,8;,m=0, ..., L) is a finite linear combination of the terms

N7V 31 ea(n)eg(n + m) — 8(m, 0)K., 4},

plus a term which converges to 0 in probability. Set
Yapm(n) = es(n)eg(n + m) — 8§(m, 0)K,g

and let y (n) be the vector whose elements are the y, () suitably ordered. Then {y(n)}
is a zero-mean second-order stationary process. In view of the assumption (i),
Var{E (y.pm(n)| # (n — 7))} = O(r7*7). Also, it is easy to derive the relation

E | E{yalﬂl,ml(nl)yazﬁz,mz(nZ)l B —71)}— E{ylxlb’l,rru(nl)yazﬁz,mz(ne)}l = 0(""—1_7’), n < ng,

from the assumptions (i) and (ii). Furthermore, the process {y(n)} has a continuous
spectral density, since

COV{ymﬁl Jmy (nl)y yazﬁz,mz(nfz)}

= Jr exp{i(n: — nl)w}[ K o Kp pexp{i(me — mi)w}

1
+ o K, 5, Kp, oexp{i(m; — m))w} + h(w)]dw,
where

h(w) = J J exp{iwim + 1wema} Q% pyenp(w1, — w2 + w, we) dw; dws,
-

and h(w) is continuous. Consequently the process {y(n)} satisfies the conditions of
Theorem 2.1 and N7 ¥4, y(n) has an asymptotic multivariate normal distribution. In
order to complete the proof, in view of Theorem 2.1, it suffices to show that the asymptotic

variance of VN Cf,k,;j '(m) converges to 0 as M — oo if k and j are not both 1. The asymptotic
variance of VN C('” '(m) is given as

lnnN_,wVar{«/_C(k1>(m)}=2ﬂJ {f},’;’;k’(w)f}{;{’(w) +f “(w)f k)(w)eﬂm“’} dw

(6.20) +2ﬂ2%1,...,ﬁ4=1J’f exp{im(wi+w2)}

kUB (wl)km (_wl)kl()l’?i(w2)k;¥jz4(_w2)ézl' - ga(01, —w2,w2) dwr dwz,
where
ESHw) =310 Gap()e™ and kT (w) = X a1 Gap(f)e™.

Hannan (1976) showed that the first integral in the right-hand side above can be made
arbitrarily small for sufficiently large M for k, j not both 1. Whereas in view of the
relationship
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27 3B, pam1 ff exp{iw: + w)m}kB(wr) - - k};j,;).(—wz)éﬁl...,;,(wl, — w2, w2) dwi dw;

5d2’,§,,...,,;4=1{f |EB(w)[* de’ | &) |“de' | B ()| de’ | B G () |* dw}',

with d a positive constant, if £ and j are not both 1, the second term in (6.20) converges to

0 as M — oo, since each of k.z(w) is 4th order integrable and thus [7,| 2% (w)|* dw tends

to0if 2 = 2.

6.2. Proofs for Section 3.
ProoF oF LEMMA 3.1. The proofs of (a) and (b) follow from Theorem 1 of Taniguchi
(1979).

In the following we shall prove (c).
For almost every w € [—7, 7] we have

log det f.(w) + tr{fi(w)} folw) ‘
= log det fy(w) — log det f5(w) {fi(w)} ™ + tr {£i(w)} o(w)
= log det f(w) + ¥ 5-1 {Aj(w) — log Aj(w) — 1} + s,

where Aj(w) denotes the j th latent root of { f:(0)} fo(w). Now Aj(w) — log Aj(w) —1=0
and the equality holds if and only if A;(w) =1,/ =1, -+, s (i.e., f: (w) = fy(w)). This implies

J’ {log det f:(w) + tr{fi(w)} fs(w)} dw= J’ {log det f3(w) + s} dw,

and equality holds if and only if f;(w) = fy(w) a.s. O

The following lemma is established in the same way as in Theorem 2 of Taniguchi
(1979).

LEMMA A3.2. Suppose that T (f) exists uniquely and lies in Int O, and that

—_ ! 62 - 62
M= Jr_" [W tr{fo(w)} 'f(w) + 9000’ log det ﬁ)(w):L=T(f) “

is a nonsingular matrix. Then for every sequence of spectral density matrices { fn}
satisfying fn —w f, we have

T(fv) =T(f) —f MFI-% tr[{fs@)} ' {fv() = f@)}Do=1(p) dw

"9
+ aNJ’ Y (tr[{fo(w)} " {fn(w) = f@)}Do=1(s) dw,
where ay is a ¢ X q matrix which tends to zero as N — oo,

For the purpose of estimating 7' (f), the next lemma is necessary.
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LEMMA A.3.3. Assume that {z(n)} defined in (2.1) satisfies the conditions (i)-(iv) in
Theorem 2.2, and (v) in Theorem 3.1. Let ¢j(w),j =1, -+, q, be s X s matrix-valued
continuous functions on [—m, ] such that ¢;(w) = ¢j(w)*. Then

(1) p-limy_e [7, tr{L (0)$j(w)} dw = [Z, tr{f(w)$;(w)} dw,

(2) the quantities

‘/_-NJ' tr[{Iz(w) - f(w)}¢1(w)] dwy ] = 1) ce0yq,

have, asymptotically, a normal distribution with zero mean vector and covariance matrix
V whose (j, ¢) element is

477[ tr{f(w)¢j(w)f(w)$-(w)} dw

+ 27 ¥ tuv=1 fJ’ ¢£tj)(w1)¢%(w2)éituu(—w1, w2, —w2) dw; dwa,
where ¢ (w) is the (r, t)-th element of ¢;(w).

Proor. We can see that

Var f tr [{L(w) — EL(w)}¢j(w)] dw
= Var Y% 1 f [{Izs(0) — EIZ(w)}e 5 (@)] dw

<2528 5y Var J’ (Ip(w) — ELp(0))) () de.

In view of Lemma A2.2, the last expression is at most of order O(N™"). Now we shall
evaluate the bias term. Noting that EI, (w) is the Cesaro sum of f(w) and that f(w) € *
Lip(a), a > %, we have tr{E I 3(w) — f,5(w)} = O (N™%), uniformly in w (e.g., Hannan, 1970,
page 513). Thus we have

J.

JN f 6l(EL @) — f(@)}ér(@)] do

(6.21) = max,,sup. | ¢ (@)] $5p-1 (VN | EIZg(w) = frp(@)]}

= o,

which converges to zero as N — «. This completes the proof of (1). Part (2) is proved as
follows. For any ¢ > 0, taking M sufficiently large, we have the Cesaro sum

. 1 ; n .
oihm(w) = - i ¢$¥,£),M(n)<1 - %)exp(—mw)

such that
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MAaxy, =1,...,sSUPwe-nn] | 917’ (@) — b m(w)| <.

Hereafter let ¢; 1 (w) = {¢{}) »(w)} and ¢; u(n) = {$p{7}).1(n)}. In the integral

(6.22) VN f tr [{I.(w) — EL(w)}¢;(w)] do,

¢;(w) may be replaced by ¢;,»(w). For that purpose, put
Ou(w) = ¢j(w) — ¢, m(w) = {8,p),m(w)},

and evaluate

Var<~/ﬁf tr [{I: (w) — EIz(w)}SM(w)]‘dw>
(6.23) -

= Val‘[Zf;,p=1 JNJ’ {Iig(w) — ET5(w)}8(p,0),m () dw].

In view of Lemma A2.2, (6.23) is dominated by

28® Yo p=1 {277] | 8(p,00,0(w)|? faa(w)fpp(w) dw

(6.24) + 277]; 88, 00,4 (0) 80, ), () fap (@) fpa (@) dw

+ 277 ff 3(/3,a),M(wl)&p,a),M(—wz)QﬁﬁaB(wl, w2, — w2) dwy dwz} ,

which tends to zero as M — «. By Bernstein’s lemma (e.g., Hannan, 1970, page 242), the
asymptotic normality of VN [7, tr[{L, (w) — f (w)}¢;(w)] dw is equivalent to that of

(6.25) VN f tr{{I. (w) — EL(w)}¢j,m(w)] dw,
for each M. The above (6.25) is equal to

1
626 o tr T (1 —'7"4—'> JN {cz(—n) - (1 —'—Z’f]—')yz(—n)}@,mn).

The asymptotic normality for (6.26) follows from Theorem 2.2. Now evaluate the asymp-
totic covariance

Cov[mf tr{l.(w)¢j(w)} dw, «/NJ' tr{l.(w)¢,(w)} dw:|

(6.27)
=NC0V{ f 3% arm1 Lo a(@)d 2 (w) do, f DIPIURY I (%) T3 A (A dw}.

By Lemma A2.2, (6.27) converges to
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Zl.---,a4=1{2ﬂ J’ Pidan (©) s @) ferar(@) fozas(@) o

+ 277J’ l()tén)q(('-’)¢¢(£fxa(_w)ﬁx1m(w)ﬁxzaa(w) dw
+ 27 ff G (@01)9 s (—w02) Q2. (w1, w2, —w2) dwy dwz}-

Noting that
6% (@) = o (@), % (~w) =df(w) and fus(w) = fralw),

we have the desired results.

ProOF OF THEOREM 3.1. Lemma A3.3 implies that I, (w) =, f (w), in probability. Thus
Theorem 3.1 follows from Lemmas A3.2 and A3.3.

PROOF OF PROPOSITION 3.1. Because of (3.2), we can see @%pca(w:, wo, ws) = Kapea/
(27)°. By Lemma A2.1, we have

Qituu(—wly Wa, —W2) = Yo b,c,d=1 kra(—wl)kzb(wl)kuc(—wz)kud(wz)Kabcd/(277)3-

Thus'we have

2w Zrt u,v=1 JJ 6«9 fg wr) —f(" D)(w2)|0=’1‘(f) X thuu(—wl, w3, —w2) dw; dws

= Yabed=1Kabed [—;—f *(w) — {fa(w)}_lk(w) dw]
K -7

ab

1 ki
X [—2; J’_,, k*(w) aiaf{fg(w)}_lk(w) dw]

cd'0=T(f)
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