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This paper proposes a new estimator of the parameter vector in a linear
regression model when the observations are randomly censored on the right
and when the error distribution is unknown. This estimator is explicitly
defined and easily computable. The paper contains sufficient conditions under
which this estimator is mean square consistent and asymptotically normal. A
numerical example is given.

1. Introduction and summary. This paper is concerned with the estimation of the
regression parameters in a linear model when the data is randomly right censored. Often
in medical studies when patients are entering a study randomly for a fixed time period, the
observation on the survival time of a patient is incomplete in the sense that it is right
censored. This censoring can be due to a number of causes: the patient was alive at the
termination of the study, the patient withdrew alive during the study, or the patient died
of causes other than those under study.

Formally the above type of situation can be described by the following random
censorship linear model. Let {7T,,i =1, ..., n} be n independent random variables (rv’s)
satisfying

(1.1) T.=a+ Bx. + ¢, l=si=n,
where xi, - - -, x, are known input variables and

(1.2) €1, - -+, &, are independent and identically distributed (i.i.d.) rv’s with zero mean.
The parameters of interest are a and 8. One observes not {7’} but

(1.3) &=[T.<Yl] and  Z,=min(T}, Y)), l1=i=n,
where [A] denotes the indicator of the set A and where

(1.4) Y., .-, Y, are iid. rv’s which are independent of ¢, - - -, &,.

The rv’s Yy, -+, Y, are called the censoring variables. When dealing with survival time
data, one can take T to be log 1o or In of the survival time. The problem considered here
is that of the estimation of (a, 8) based on (8:, Z1), - - -, (8., Z,).

Miller (1976) introduced an estimator of (a, 8), called the Kaplan-Meier Least Squares
(KMLS) estimator, which is obtained by minimizing the weighted sum of squares of the
residuals with the weights determined by the:Kaplan-Meier (1958) estimator of the error
distribution based on the residuals. More recently Buckley and James (1979) suggested
another estimator of (a, B8), herein called the BJ estimator, based on an expectation
identity. Both of these estimators are computed using iteration methods. In both cases, as
these authors point out, the iterations may eventually settle down to oscillation between
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REGRESSION WITH CENSORED DATA 1277

two values. According to Buckley and James, these values are closer to each other for the
BJ estimator than for the KMLS estimator. Miller gives a heuristic argument for the
asymptotic normality of the KMLS estimator under assumptions including that Y, = a +
Bx, + ¢ for iid. {e}, independent of {¢,}. Buckley and James provide some idea of the
large sample behavior of their estimator but do not provide any mathematical justification.

In this paper we introduce a new estimator (&, §) of (a, 8) and study its asymptotic
distribution theory. Section 2 contains the definition of (&, 8). In Section 3 we provide
sufflclent conditions for the mean square consistency and the asymptotic normality of (a,
,8) with the proofs deferred to Section 7. Section 4 contains a detailed discussion about the
sufficient conditions of Section 3, implications of our results, and an estimator of the
asymptotic variance of ,B Section 5 provides details concerning extension of (&, B) to the
multiple linear regression model while Section 6 illustrates the estimator using the heart
transplant data of Miller.

Some of the important features of (a, ,é) are that they are explicitly defined, easy to
compute and do not require any iteration scheme. Another important feature of this
estimator is that its computational and theoretical aspects are easily extendable to the
multiple linear regression model as is done in Section 5 whereas the same can not be said
for the KMLS and the BJ estimators.

NoraTioN. Throughout for any real number ¢, G(¢) = P(Y > t), F.(t) = P(X, > t)=
F(t — a — Bx;), 1 =i < n, where F(t) = P(g; > t); the index i in the summation and
maximization runs from 1 through n; F=n"'Y F,, H = F;G,1 <j < n, H = FG and
H.()=n" ¥ [Z. > -1, H" will stand for (1/H)" for any distribution or surv1val function
H and for r > 0; all limits are taken as n — %, —, means ‘convergence in distribution,’ o(1)
means a term which converges to zero and 0,(1) means a term which converges to zero in
probability; N,(u, Z) will stand for the k-variate normal distribution with mean vector p
and covariance matrix X, and consistent will stand for “mean square consistent.” Moreover,
in the sequel, all distributional calculations are carried out under the assumptions (1.1),
(1.2) and (1.4), besides any other assumptions that will be mentioned as we proceed.
Finally, s =n"'Y x,and 72 =¥ (x, — )%

2. Definition of estimators. Observe that under the assumptions (1.1), (1.2), (1.4)
and the assumption that G(¢) > 0 for all —o0 < ¢ < +oo,

(2.1) E(.Z2) = —J tG(t) dF(t — o — Bxi), l=si=n,

which in turn suggests the relation
(2.2) ESZ{G(Z)} ' = —ftdF(t—a—,Bx,) =a+ Bx, l=i=n.

Hence the variables {§,Z,{G(Z,)} ", 1=i= n}' obey a linear regression model with the
same parameters as in (1.1) except that the errors may not be identically distributed. Thus,
if G were known, 72 Y (x, — X) 8.Z,{G(Z.)} " would be the least squares estimator of 8.
But usually G is unknown and a natural thing to do is to replace G by an estimator in this
quantity. From Susarla and Van Ryzin (1980), an estimator of G ~'(¢) is given by the second
factor of (1.10) there, which upon inversion yields an estimator of G(t) given by

(2.3) GO == {1+ N"Z)/@+ N (Z)NH=%=1  —e<t<+o
where N*(z) is the number of Z, exceeding z, i.e.

(2.4) N*(z) =Y [Z. > z]

Asymptotically, G behaves like the product-limit estimator of G. We have chosen G over
the product-limit estimator because we need to take the logarithm of the product in Gin
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our proof. Details in Section 7 show that G(t) is a consistent estimator of G(¢) under the
conditions of this paper.

Because of the explosive behavior of the asymptotic variance of G(¢) for large ¢, we are
motivated to define an estimator of 8 to be

(2.5) B=12Y (x, — 0)8:Z:{G(Z)) ' [Zi = M,]

where M, is a sequence of real numbers tending to « at a rate to be specified later on.
Similarly, an estimator of « is given by

(2.6) &=n"1Y82{G(Z)) ' [Z < M,] - pz.

3. Statement of theorems. This section contains the formal statements of the

consistency and the asymptotic normality results for (&, ,é). From (2.5) and (2.6), one can
write
. a=Y{n'-x drYyWi{G(Z))y ' = ¥ anW;

' B =123 diW(GZ)) " =3 buWi

where

(3.2) Wi=8Z{Z<M,], di=x;—% and W.,=Wi(G(Z)}"', 1=<i=<n,
and where

(3.3) an=n"'—x dir;2 and bu=1:24d, 1<i<n.

Since both & and ,é are linear combinations of W, we shall prove consistency for such a
linear combination, and then prove the joint asymptotic normality for the two linear
combinations.

In order to state our theorems we introduce the following notation and assumptions.
Let

3.4 Lu(8) =Y aniFi(t), Lno(t) = ¥ buFi(2),

K.i(t) =Y | an| Fi(t),  Kna(t) =Y | bu| Filt), —0 < t <+
and
(3.5) L,j=n""L,, j=12.

Various subsets of the following assumptions will be needed for the consistency and
asymptotic normality of (&, 8), with e, = a,; and b,; as appropriate.

Al. G(t) >0, —o0 < t < +o00,
A2, T e J ¢ dFi(t) — 0.
M’l

M, M, 2

A3. Y e [—J £2G7\(t) dF.(t) — {—J’ ¢ dFi(t)} ] 0.
M, t 1/2

A4, Y el f t? {I?(t)}‘3{ - f F(s){H(s)}® dG(s)} G(t) dF;(t) > 0.
A5. lim inf n H(M,) = b for some b > 2.

1/2

M, t
e f |t|G(t>{H(t)}‘2[—f F(s){H(s))™® dG@)] dK,(t) =0, j=1,2.

—o0

A6.

S
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A7, Soi<c foraln=1 and maxo;— 0,
where o02; = Var(A4,;), An asin (7.27), 1 < i < n and c is a finite constant. We now state
THEOREM 3.1. Under assumptions A1-A5
E(Y exW; — ¥ enla + Bx:)}? = o(1).
COROLLARY 3.1. Suppose A1-A5 hold, with both e.; = b,; and a,; then
E@—a)’+E@~p)’ = o).
The joint asymptotic normality is given by the following

THEOREM 3.2. Assume that Al, A5, A6, A7 hold and that A4 holds with both en; = a.;
and bpi, 1 =i <n. Then

M, M,
nl/z(&+ j ¢t dLn (¢), B+ j tdL,,z(t)> —q N0, %)

where T = ((o3)), J, k =1, 2 with

M, M, 2
(3.6) 01 =lim n[z al, Var(W.G™(Z)} + J' Fey(H @)™ { J s dl_.nl(s)} dG(t)]
(3.7) o2 is the same as o1, with {b,;} in place of {an:}
and

O12 = hm n[z am'bm' VaI‘{WiG_l(Z,’)}

4, M, M,
+J' F‘(t){ﬁ(t)}‘z{f SdLnl(S)}{f SdLnZ(s)} dG(t)] .

4. Discussion of asymptotic results. In the previous section, we have given the
general asymptotic results for the estimators (&, 8) introduced in Section 2. The purpose
here is to see how the results specialize and what the conditions of the theorems mean
from the viewpoint of applications.

(3.8)

REMARK 4.1. If G(x) = 1, and M, = o, then A2-A4 are trivially satisfied provided 72
— o0, Also, @ and B reduce to the usual least squares estimators for the uncensored data
situation.

REMARK 4.2. Assumption A2 can be interpreted as saying that the truncated weighted
average of {ET;}, when weighted by {e.:}, goes to zero. A sufficient condition for this to
happen, when e,; = a,; or b,;, 1 =i =< n, is that 72— o and {E| T:|} be bounded. If {x;}
are bounded, and if ¢; are ii.d. Ni(0, y?) for some y? < o, then {E| T;:|} are bounded. In
much the same way, A3 can be interpreted as a condition on the variances of { W;{G(Z:)} ",
1 = i < n}. If these variances are bounded, then A3 would be satisfied with e,; = a,; or b,;
provided 77 — . An example where these variances are bounded is when {x;} are
bounded, F is N:(0, y?) for some y? <  and G is double exponential with scale paramter
6> 0. (Note that in proving the asymptotic normality of the least squares estimators based
on uncensored data, one generally assumes that 72 — o.)

It is clear from the assumptions of Theorems 3.1 and 3.2 that the choice of M,
(preferably depending on the data) satisfying these assumptions is an important and
interesting question by itself. Just to get an idea concerning the magnitude of {M,}, we
point out here that if M, = c¢(In n)", with 0 < 2r < 1 and ¢ > 0 known constants, then
conditions A2-A7 hold provided that {x;} is bounded with 72 — o, and that for an 5 > 0,
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{F(x) + G(x)}exp(nx2/2) is bounded as x — . In particular, the conclusions of Theorem
3.1 and 3.2 hold whenever F and G are normal or have right tails lighter than a normal
distribution. If one were to choose an M, depending on data, we conjecture that M, =
c¢(In ¥ | Z;|)", with 0 < 2r < 1 and ¢ > 0, would include several interesting possible choices
for F' and G under which Theorems 3.1 and 3.2 would hold.

REMARK 4.3. The results of Corollary 3.1 and Theorem 3.1 extend to the situation
where the ¢ are not necessarily indentically distributed; they need only be independent
with zero means. From the application point of view this means that these results are
applicable to survival data analysis with covariates even when error distributions may be
different from different patients—a phenomenon which can easily arise in practice. A
theoretical example would be when ¢, are N(0, y?), {y.} bounded, and G is an exponential
distribution.

REMARK 4.4. As in Susarla and Van Ryzin (1980), it can be shown that it is not
possible to replace the centering constants in Theorem 3.2 by « and .

REMARK 4.5. On the asymptotic variance of ﬁ and its estimator. Note that if there is
no censoring then the second term on the right hand side of (3.7) is zero and o,; reduces to
the variance of the least squares estimator of 8. In general this second term is negative
thereby implying that the asymptotic variance of the standardized ,8 is smaller than that
of Bo = 13° z dW.G” Y(Z,), an estimator of 8 when G is known. One reason for this
phenomenon is that Bo uses only uncensored observations whereas B uses all the observa-
tions including the censored ones via G.

In some interesting situations the second term in (3.7) tends to zero. To see this, recall
that b,, = d.77% 1 =i < nin (3.7). The Cauchy-Schwarz inequality and Fubini’s theorem
yield

M, M, 2
n f F(t){ﬁ(t)}_z{—J’ sdI—mz(S)} d(—G(?))
(4.1)

M’l

< n(max d?)r;% - 752 f t2{1 — G(t)}G'(t) d(=F(¢)).

—o0

Thus if {x,}, G and F satisfy

4.2) lim sup n(max d?)r;% < o
and
M,
(4.3) lim sup 'r;zj t2{1 — G@)}G7L(t) d(=F@)) =

then the asymptotic variance of n'/28 (see (3.7)) becomes lim 0,2; where
4.4) Onz2 = nr* Y d? Var(8,Z;{G(Z,)) ' [Z. = M,.]).

Conditions (4.2) and (4.3) are satisfied, for example, when

(4.5) {x) are bounded, n'r2—a? O<a’<w
(4.6) and f t’G7U(¢t) d(=F(t)) <« forall n=1.

Under (4.5) and (4.6) one actually has
(4.7) Onz2 = nr3* Y d? Var(8,Z,{G(Z,)} ") + o(1).
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Note that (4.6) is essential for the integrals in 0,22 to exist.
Now (4.7) suggests an estimator of 0,22 to be

(4.8) buze = nrit Y d2(8:.2:{G(Z:)} " — & — Bx)?[Z < M, ].

Using Corollary 3.1, one can show, under (4.5), (4.6) and the conditions of Corollary 3.1,
that | 0n22 — On22| = 0,(1).
In general, one may use Y22 as an estimator of a,;, where

A _ A N
Yn22 = On22 — nAnzz,

M, M, 2
B = f {ﬁnm}‘?{ f sG7(s) dﬁnz(s>} dS,s(t),

with
Sa(t) = 13%n7! ¥ d,8;[Z, = ¢t], Sst)=n1Y (1 -6)[2Z=t], —0 < t < +00,

Note that An22 = 0 and hence '3/,&2 = &n22-

Similarly one can construct the estimators of the asymptotic variance o1; and covariance
012.

One may use B to test Ho : § = 0. The test would reject Ho at asymptotic level 2t if
| n'?B| > (n22)*21-, where z, is the ¢th percentile of N,(0, 1).

5. Extension to multiple regression. Here we briefly discuss the extension of (&,

A

B) to the multiple linear regression model. Suppose
(5.1) T.=cB+e¢, l=i=<n

where ¢, = (1, x,1, -« -, xiz) is the ith row of the design matrix C,, 8’ = (Bo, B1, - -+, Br) is
the parameter vector and {e,} and {Y;} are as in (1.2), (1.4) and Al. We assume that
(CC,)™" exists for large n.

A generalization of (a, B) of Section 3 is given by

(5.2) B=(C.C)'CLW

with W’ = (Wl, ceey W,.), where {V‘V,-, 1 =i =n} are defined in (3.2).
For the sake of brevity, we state an extension of Theorem 3.2 only. For any matrix A,
let A, ; denote its (i, j)th element. Let

F(t) = (Fi(8), -+, Fa()), B, =(C.C)7'Cy,
Va(t) = F'()Bn(t) = (no(?), - - -, Lk(t))

Mﬂ
‘LLnj=j thnj(t), J=Oy ly""ky

pr= (tno, ++, pnr)  and Ty = n"'Uy, 0<j=<k

Then

THEOREM 5.1.  Under (5.1), (1.2), (1.4), Al and A4 through A7 with {(a,, b..)} there
replaced by the (k + 1) row elements of B,, one has

n*(B = pn) =>aNeer(0, =)
where for 0 < i, j < k the (i, j)th element of = is given by

M, M, M,
z,= lim{(B,.DnBZ)i,, +f F'(t){FI(t)}'2<J' sdﬁ,.,(s)) (J sdEn,(s)> dG(t)}

with D, = diag(Var{W,G""(Z)}) n x n. 0O
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6. Numerical example. This section illustrates the computation of(a, 8) as defined
by (2.5) and (2.6) and that of its extension (5.2) using the heart transplant data of Miller
(1976). In the following, M,, is chosen to be c¢(ln n)” with ¢ = 3 and r = 0.4 (see Remark 4.2
above). The dependent variable is T' = logyo (survival time).

When regressing 7' on the mismatch score (7'5), we changed the observation number 60
from 65 to 50 as in Miller (1976) and obtained

(6.1) a@=131102, B=025801, s.d.(B)=0.34673, ¢2= .61217.

Here non-rejection death is treated as censoring.
When regressing T on the age (A), we left the 60th observation unchanged as in Miller
(1976) and obtained

(6.2) & =—083484, B =0.05355 s.d.(B)=0.02039, 62=0.64379.

Here being alive by the termination of the study is treated as being censored.
In (6.1) and (6.2), s.d.(8) = (6n22/n)"* where 6,2 is defined by (4.8), and 6® is an
estimator of the error variance ¢ = Var(g;) given by the equation

(6.3) 2 =n""Y(Z - & - px)%8:{G(Z))) [ Z: = M,].

Using the details of Section 7 one can show that 2 is a consistent estimator of o2 under
conditions similar to those in Theorem 3.1.

When regressing T jointly on A and T'5, where non-rejection related death is being
treated as censoring, we changed the 60th observation from 65 to 50 and obtained

(6.4) d@=-19838, JB(A)=007663, and B(T5) = 0.05154.

When censoring is being alive at the end of the study, we again changed 65 to 50 and
obtained

& =-086862, B(A)=005567, J(T5) =—0.10211.

The reader should be cautioned that in order to use the results of this paper to draw
any further conclusions about the heart transplant data from (6.1), (6.2), (6.4) and (6.5)
one should first ensure the validity of the assumptions (1.4) and Al through A7. The
example given here is merely for illustrative purposes.

7. Proofs of Theorems 3.1 and 3.2. The proofs here follow the pattern of those of
Sections 3 and 4 of Susarla and Van Ryzin (1980). However the proofs are somewhat
different because here { T}, 1 < i < n} are not identically distributed.

In the sequel C will denote a generic constant which will be different in different
contexts, but never will depend on n or any distributions. E, and E;; will denote the
conditional expectation, given (8;, Z;) and {(8;, Z:), (8;, Z,)}, respectively. M will stand for
M,.

Proor oF THEOREM 3.1. Let S, = Ye,; Vf’,w Then
S, = Tewila + Bxi) = Ten Wi{ G71(Z) — G™'(Z)))
(7.1) +Yen {W.G™H(Z,) — (a + Bx,)}
=1+1I say.
Using (2.2) and (3.2), one observes that

0

E(II) = _Zenzj tdFl(t)

M
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and
M M 2
Var(II) = Ye?, {—f t’G'(t) dFi(t) — (—j t dFi(t)) }
Hence by A2 and A3
(7.2) EUII?» — 0.

Now we deal with the more difficult term I. The Cauchy-Schwarz inequality applied to
the sum and expectation gives

(7.3) E(I?) =nYeXLE[W2E (G '(Z) — G(Z))*].

Write @' and G~' as e ™% and e™'" G use the Mean Value Theorem, argue as in Lemma
3.1 of Susarla and Van Ryzin (1980) and apply the Cauchy-Schwarz inequality to conclude

E{G™(Z) - GZ)}*= CE:({InG(Z)-InG(Z)}
(7.4) (GHZ) + {((NY(Z) + 1)/(n + 1)}°)
=C[GAZ) + E*{(NY(Z) + 1)/(n + 1)}™]
.E*(InG(Z)) - InG(Z))}".
The following lemmas are found useful in bounding the upper bounds of (7.4) and in the
proof of Theorem 3.2.
MoMENT LEMMA. Let V be a Binomial (k, p) rv. Then for r = 1 an integer,

EQ+ V) =rl(kp)™.

ProorF. For any v = 0 and integer /= 1, /+ v < #(1 + v). Hence
EQ+V)"=rE{(Q1+V)2+ V). ... (r+V)}!
=r! (kp)”" TET (k ; r)p”(l -p)"*=rl (kpy. O

LEMMA 7.1. LetB,,i=1, ..., k be independent Bernoulli rv.’s with P[B; = 1] = p,,
i=1...,kandlet S=B;+ .-+ + By. Then for anyr =1,

E1+8)"=C(kp)”", p=k7'Tiap

where C is a constant depending only on r.

ProoF. Fix an r = 1. Since f(x) = (1 + x) " is a convex function on [0, «), Theorem
3 of Hoeffding (1956) shows that E(1 + S)™" < E(1 + S*)™" where S* is a Binomial (%, p)
rv. Application of the above Moment Lemma yields the inequality. ]

COROLLARY 7.1.
(7.5) E{1+N*Z)y " "=Cn"{H(Z)—-—n"}",
(7.6) E,{(1+N*(Z))"=Cn"{H(Z)-2n""}7, 1=i,j=<n,
where C depends only on r.

Proor. Given (8, Z,), N*(Z,) is the sum of n — 1 Bernoulli independent rv’s with
probability of success of /th rv equal to H,(Z,). Applying Lemma 7.1 with 2 = n — 1 and
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p.= H/(Z;), one gets

E‘{l + N+(Zl)}_r = C {Z/’éz H/(Zz)}_r = Cn_’{I-_I(ZL) - n—l}—r.
For (7.6), observe that N*(Z,) = N} (Z)) = Yux:, [Z: > Z;] and that N; (Z)), given {(8,, Z,),
(8,, Z))}, is the sum of n — 2 independent Bernoulli rv’s. Now argue as for (7.5). 0O

LEMMA 7.2.

Z,
EInG(Z) - InG(Z)) < C[—n-2 f Ft){H () — 2n7")"° dG(t)
(1.7) -
+n HZ){[6, = 0]+ (1 - G(Z))}4].

PRrOOF. Write
(7.8) -InG(Z)=-3,[8,=0,Z<Z]In (1 - {2+ N*(Z)}7)).
Expansion of —In(1 — x) for x < 1 and the c4inequality (see Loéve, 1963, page 155) yield
{-InG(Z) +In G(Z))' < 8(n"' T A[6,=0,Z < Z]n@ + N*(Z))" +1n G(Z)})*
+832[6=0,Z=Z] Y {2+ N* (z)) """

Bound the infinite series in the second term by the geometric series with common ratio
{2+ N*(Z)) to get

(7.9) E{-In G(Z) +In G(Z)}' < 8E.(I, + L),

where
L= (7 E,{[8,=0,Z=<Z]n{2+ N"(Z)}" +InG(Z)})'

and
I=(n""3,[8,=0,Z = Z]n{1 + N*(Z)})"

Applying the moment inequality to the average and taking expectation yields
E(L)=n""%, E([8=0,Z=Z]E,,{n'(1 + N*(Z))™®}).

An application of (7.6) yields

(7.10) E(L)=-Cn™ J’Z‘ F@){H(t) — 2n71) 78 dG(2).

Next, adding and subtracting H7'(Z,), which is the approximate centering for n{2 +
N*(Z,))™" given {(8,, Z,), (8,, Z))}, in the summands of I, and using the cs-inequality one
gets

(7.11) I, =81y + Ip),
where
Ii={n""3%,[8=0,Z=<Z]1H(Z) +In G(Z))*
and
Lo=[n""3%,[8=0,2=Z)n2+ N"Z)" - H'Z))T"
Applying the moment inequality to the average and taking expectations gives

E(ID) =n ' Y,E[8,=0,% =< Z]E,,(n@2 + N*(Z))" — H(Z)}".
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Now
E, [n{2+N*(Z))'-HY2Z)]*
=H YZ)E.,[{2+ N"(Z)} {2+ N*(Z)) — nH(Z)}]".

Applying the Cauchy-Schwarz inequality under E, ,, a bound of order n* to the 8th moment
of the sum of centered Bernoulli independent rv’s and (7.6), one gets
Z,

(7.12) E.(I;) = - n_zJ’ ‘ F){H(t) —2n7") 8 dG(2).

—o0

To deal with I,;, notice that
E{nY,[8=0,2=<Z]H(Z))
Z,
=—1InG(Z) +n ' {H(Z)[5. = 0] +J FH™ dG).

—o0

This relation together with the c,-inequality yields
Zl
(7.13)  E.(I) = 8[E.(n7' Y, ) + n~* (H Y(Z)[6. = 0] + j FH'dGY']

—o0

where q, is the conditionally centered, given (8., Z,), rv [§, = 0, Z, = Z,]H(Z,). Since {a,
J # i} are conditionally independent and centered, given (., Z,), (7.13) yields

Z, Z
(7.14) E.(In) = C[-n"zj F(H)™dG+n*{H(Z,)[8,. =0] +J’ FH™ dG}“].

—oo

The proof of (7.7) is completed upon observing that

Z,
—f FH'dG=H'(Z)(1-G(Z)} and H*<H?®<(H-2n")"

—o0

for sufficiently large n and upon combining these observations with (7.8) through
(7.14). ]

We now return to the term I in (7.1). From (7.3), (7.4), (7.5) and (7.7) and the facts that
W68, =0]=0and (a + b)"?< a'? + b*for a > 0, b > 0, it follows that

M
lim sup EI? < C lim sup {Ye2, J’ HLGE) + (H(t) —n™)77]

1/2

l:(— j F(s){H(s) —2n7"}® dG(s))
+n {H ()0 - G(t))z] dH, (t)}
M
< Cb* lim sup{zeﬁlf E{H ()
' h 1/2
(7.15) . [(—f F(s){H(s)}™® dG(s))

+n YH@) 2 - G(t))z] dﬁz(t)}
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M
= Cb*(1 + b7Y)lim sup{Ze?uJ (A1)

1/2

-(— J F(s){H(s)) ~® dG(s)) dﬁi(t)}

=0,

by A4. Here dA, = Gd (—F;). In the second inequality b* = {b(b — 2)7"}"*. The second
ineguality follows because A5 and the monotonicity of H imply that for sufficiently large
n, H(s) — 2n"! > 0, and that
Hs){H(s) —2n)Y'=1+2(nHM) -2}"'=b(b—2)"
for all s < M and because G2 < (H)™2
The last inequality in (7.15) follows because

1/2

M t
b7! lim sup Zeﬁij tQ{FI(t)}_S{—j F(s){H(s)}™® dG(s)} dA(t)

M ¢
= lim sup 7! Ye J 2 H)Y (7! f dG77(s))? dH,(t),
(7.16) - -

-1 M
=72 lim sup{nH(M)} Zeﬁ,f LH)) (1 - G()) diL (),

M
= Clim sup n™! zeﬁif {H ()} (1 - G(¢t))* dH.(2),

where we have used (F)"=21,G72=1,(1 - G")?*=1 — G, assumption A5 and the fact
that (H)™' is increasing. The proof of Theorem 3.1 is now complete in view of (7.15), (7.2)
and (7.1). ]

ProOF OF THEOREM 3.2. We need to show that n/2(\; & + A»3) is asymptotically
normally distributed with suitable parameters for every pair (A1, A2) of real numbers. Let

M M
(7.17) V= nl/Z{Al(& + j t dLnl(t)> + M(,é + j t dan(t))}‘

The proof consists of approximating ¥, by a U-statistic %, and then applying Hoeffding
(1948) to %,. Write

M
V= n‘/z{chiWi{é_‘(Zi) - G NZ)} + Leu{W.GTH(Z) +J tsz(t)}]
(7.18) . o
= n1/2(Bn1 + Bn2)) SaY)

where ¢, = A1@n + A2bn, 1 < i< n. Note that B,, is already a sum of centered independent
rv’s. We sketch a proof of approximating B, by a U-statistic.

LEMMA 7.3. Under A5 and A6
(7.19) 12| By — Yea W:GH(Z){In G(Z) —In G(Z)}| = 0,(1).

PROOF. Once again write G~' and G~ as exp(—In @) and exp(—In G), use Taylor’s

expansion up to the second term of e* function and argue as in Susarla and Van Ryzin
(1980) to get
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E{LHS(7.19)}
< n'"?Y|cu| E|W.|E:({In G(Z)) — In G(Z)Y[GH(Z) + {1+ N*(Z)}) '(n + 1)]).
Now use the Cauchy-Schwarz inequality on E, and (7.7) to conclude that

M
lim sup E{LHS(7.19)} =< C lim sup{n‘/gz [ i J’ [t]

1/2

'{ﬁ(t)}"‘[n“(_f F(s){H(s)}® dG(S)) b*
+n P {(H@)} 1 - G(t))z] G(t)d (—E(t)}

M
< Cb** lim sup n "2 J' [¢|(H ()}
t i 1/2
-<— J F(s){H(s)}™* dG(S)) G(t) d (=K. (1))
=0

by A6. Here b** = b* + 1, and K, = |A1| K.1 + | A2| Ka2. The second inequality follows
because (H)™' is increasing and because of an inequality similar to (7.16) holds here
also. ]

LEMMA 7.4. Under A5 and A6
(7.20)  n'2|Ye, W.GHZ)In G(Z) + 311 [8,=0,Z,< Z){2 + N*(Z,))} ]| = 0,(1).
Proor. Use (7.8), argue as just before (7.9) and use W,[§, = 0] = 0 to get
E {LHS(7.20)})
< Cn'2Y| cn | E[| W, |G HZ)EAY . [6,=0, Z,< Z]E,,(1 + N*(Z,))%}].
Now use A5, (7.6) and an equality like (7.16) together with A6 to conclude the lemma. a

(7.21)

LEMMA 7.5. If A6 holds then
n'*¥.cn W.G™(Z,)3,[8,=0,2Z,< Z]{2 + N*(Z)}"
= enW.GTHZ)E,08, = 0,2, = Z)(2H(Z)™ - Hi(Z)(H(Z)) 7} + 0, (1),
Proor. The proof follows from the Corollary 7.1, the Cauchy-Schwarz inequality and
n2+ N'(Z))" - (2(H(Z))" - ﬁn(Zj)(H(Zj)’)72}
=n"{H(Z))*2+ N*'(2))"(nH(Z) - N"(Z))’
-2n"{H(Z)} 2+ N*(Z)"' - 4{H(Z)}*2+ N(Z))" O

Therefore, Lemmas 7.3, 7.4 and 7.5 show that the asymptotic distribution of ¥, is the
same as that of

%n = nl/Z(an + Ezcm VVLG*I(ZI)ln G(Zl)
(7.22) +n7 Nen W.GTHZ)Y,[8,=0,Z =< Z](2{H(Z)}"
- B.(Z){H(Z))™).

To obtain a U-statistic approximation, write
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-1
%,, = nl/Z{an + Zcm VV,G‘I(Z,)ln G(Zz) - (g) lez<;sn (Dnl((an Zz)) (61': Zj))

(7.23) .
- (’3‘) Tizics<hzn Pual(8,, Z), (8, Z)), (84, Z1))),
where
(724 On(4.2),(8,2) = (0~ VenW.(1 - 8)[2,< Z,< M{G(Z)H(Z))"
+ ey W,(1-8)[Z.= 2 = MI{G(Z)H(Z))™
and
29 D2((8,, Z.), (8, Z,), (84, Zs))

=(n—1)(n-2)6n)"T*c. W1 - §)[Z < Z = M][Z: > Z ){G(Z) H*(Z))

where the 2* is the summation over all 6 permutations of i, j and &.
Since %, is a U-statistic, we can now use the techniques of Hoeffding (1948) to show
that the distribution of %, is the same as that of

(7.26) Uy =n'"2Y, Ay
where
M M
A, = cn(W.GTH(Z,) + j tdF,(t)) — (1 - &)FII(ZL)J tdL,(t)
(7.27) e Z
Z,ANM M
—j F(t)H-Z(t)U sdE,,(s)} dG (1), 1<i<n

and where L, = A1 L,; + A2 L2 and x A y = min(x, y).

The conditions needed for approximating %, by #. are implied by A4, A5, and A6.
Assumption A7 in turn enables one to apply the Lindeberg-Feller CLT to %,. Finally,
tedious but straightforward calculations obtain the expressions (3.6)-(3.8) for the asymp-
totic variances. ]
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