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LIKELIHOOD RATIO TESTS FOR AND AGAINST A STOCHASTIC
ORDERING BETWEEN MULTINOMIAL POPULATIONS!

By TiM RoBERTSON AND F. T. WRIGHT

University of Iowa and University of Missouri-Rolla

Likelihood ratio tests concerning the parameters of two multinomial
populations are discussed. A stochastic ordering restriction is considered as a
one sided alternative to equality. The one and two sample tests for equality
versus stochastic ordering and stochastic ordering versus all alternatives are
derived and their large sample distributions are obtained. The large sample
distributions are mixtures of chi-squared distributions. The tests developed
provide discrete analogues for the one sided Mann-Whitney-Wilcoxon and
Kolmogorov-Smirnov tests.

1. Introduction. Tests for the equality of two populations against a stochastically
ordered alternative are among the more widely used nonparametric procedures. They
include the one-sided Mann-Whitney-Wilcoxon and Kolmogorov-Smirnov tests. We con-
sider analogous one- and two-sample likelihood ratio procedures under the assumption
that the underlying populations are discrete. It is well known that one-sided procedures
are more powerful than their two-sided counterparts. Thus these procedures are recom-
mended over the standard chi-squared tests provided, of course, that the underlying
assumptions are valid.

We denote the two collections of multinomial parameters by p = (p1, p2, -+ -, px) and
q = (q1,qs, ---, q&) and we assume that both p and q are in A = {(x, X2, -+, xz): £, >0,
Y21 x, = 1}. Consider the hypothesis H; that the ¢ distribution is stochastically larger
than the p distribution. Specifically,

(1'1) H1:2;=1p122;=1 q) = 1! 2) rk -1, 2f=1pl=2f=1 q;.

We note that the restrictions in (1.1) determine a partial order on R", which we denote
symbolically by p > . Robertson and Wright (1980b) studied this partial order as a
quantification of the notion of conformity to an order restriction. In particular, one
interpretation of p > g is that p satisfies the hypothesis that its entries are decreasing
more than does g. In this paper, we consider likelihood ratio statistics for testing problems
involving three hypotheses, namely, Hy: p = ¢, H; and H; = ~ (not H;). We shall consider
both one- and two-sample tests.

Chacko (1966) studied a likelihood ratio statistic for testing the null hypothesis that p
=go=k""(L 1, ..., 1) against the alternative that p; = p» = --- = p, (and of course, p
# qo). The hypothesis p >> qo is implied by the hypothesis p; = p, = . .- = ps, but not
conversely, so that the test discussed here has a less restrictive alternative than the one
considered by Chacko. In fact, p > qq is equivalent to i " ¥! i p, = (k — i)' ¥, p,
which, for lack of a better phrase, we term “decreasing on the average”. Thus, the results
in this paper yield maximum likelihood estimates under this restriction and distribution
theory for likelihood ratio tests of homogeneity versus decreasing on the average and for
testing decreasing on the average as a null hypothesis.

It is interesting to note that the statistic, derived in Section 3, for testing p = q, versus
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D > qo has a chi-bar-squared distribution as did Chacko’s test statistic. Robertson (1978)
generalized Chacko’s work by considering the test of p = ¢ (arbitrary ¢) against an
arbitrary order restriction on p. He also considered the problem of testing an order
restriction on p as a null hypothesis. The two-sample test developed here for H, versus H;
— H, is discussed in Grove (1980).

In Section 2, the one- and two-sample maximum likelihood estimates of the multinomial
parameters subject to the restrictions in H; are derived. The distribution theory for the
one-sample tests of H, versus H; — Hy and H, versus H, is given in Section 3 and Section
4 contains the corresponding two-sample theory.

2. Restricted maximum likelihood estimates. In order to develop the desired
likelihood ratio tests we must first obtain the maximum likelihood estimates under the
restriction p >> g. The approach uses the theory given in Section 5 of Barlow and Brunk
(1972) which requires the following notation. For any collection of positive weights, w =
(w1, wa, « + -, wy), let (x, y)., be the inner product on R* defined by (x, )., = Zf=1 x, y.w;; let
Il denote the induced norm, ie., || x||2 = Y%, x2w,; and for any subset A of R* let
E. (x| A) denote the projection (i.e., closest point under | -||) of x onto A provided it exists
and is unique (cf. Brunk, 1965).

We first consider the one-sample problem. Assume ¢ is known; assume a random sample
of size m from the population associated with p and let p = (1, p2, - - -, Pr) be the vector
of relative frequencies; i.e., mp has a multinomial distribution with parameters m and p.
Let C={x € R* x;, = x,= ... = x,} and note that Cis a closed convex cone in R*, so that
by Brunk (1965), E.(-| C) is well defined.

THEOREM 2.1. Ifp,>0,i=1,2, ..., k, then the maximum likelihood estimate (m.l.e.)
of p subject to H, is given by
2.1) p=DEsq/p|0),
where, for x, y € R*, xy denotes the vector (x1y1, X2y2, + + -, Xx Yz) and x/y = (x1/y1, X2/Y2,
e, Xg /yk)

Before the proof of Theorem 2.1 is given, we describe the lower sets algorithm (LSA)
for computing E..(x| C). For A a nonempty subset of {1, 2, .-, k}, set

M(A) = ZieA wlxi/ZLEAwi'

Set ip = 0 and choose i, the largest positive integer i which maximizes M ({io + 1, - -+, i}).
Next choose i, the largest integer i greater than i; which maximizes M ({i; + 1, -- -, i}).
Continuing this process, we obtain 0 = i, < i; < ... < i,= k and the projection

E,(x|C),=M{i-1+1,---,4}) forie {y_1+1,..-,4) and j=1,2, ...,¢
The sets {i,-1 + 1, -+, i;} are called the level sets.

Proor. The mle., p = (pi1, P2, -+, Pr), solves the following optimization problem:

minimize — Y%, mp, Inp, subjectto p>q.

Set s = m™(p1/P1, P2/D2, ) Pr/Dr), W = m(Py, Pa, +++, Br), & = m™(qr/D1, q2/D2,
*++, q/Pr), and ¢(y) = —Iny. Then § = m™\(p1 /P, Pz/Ps, -+, Pr/Pr) solves

(2.2) minimize Y1 w.¢(s,)

subject to

Yiiw(g—s)=<0,1=i<k and Y’ wi(g —s) =0
The Fenchel dual, C**, of C is
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C** = {u; (u, v)» = 0 for each v € C}
={u; Y uw=01=<i<k Y yw =0}
(cf. Barlow et al., 1972, page 49). Thus (2.2) becomes
minimize Y%, w;¢(s.) subjectto g—s€& C**

and by Theorem 3.4 of Barlow and Brunk (1972) the solution to (2.2) is unique and is the
projection of g onto the cone C. Thus

p=mpE.(q/mp|C) =pEs(q/p|C).
THEOREM 2.2. Asm — o, p converges almost surely to p provided p > q.

Proor. By the strong law of large numbers, p — p a.s. as m — «. Moreover, E,, (x| C)
is continuous in both w and x so that p — pE,(q/p|C) a.s. Using the LSA to compute
E,(q/p|C), one sees that since p > g, M ({1, ---, i}) =< 1 with equality for i = k. Hence,
E,(q/p)| C) = e, where e, is the k-dimensional vector of ones and so pE,(q/p)|C) = p.

In the two-sample problem let § denote the vector of relative frequencies of a sample
of size n from the ¢ population and assume that p and § are independent. Let

2
B={x€R k;x12x22 e = Xpy Kprl = Xpr2 = ---Ska},

N=m+n and 0= (p,q).

THEOREM 23. Ifp, §.>0,i=1,2, ..., k, then the maximum likelihood estimate of
0 subject to H, is given by
(2.3) (P, q) =8 =wE.(h|B)
where w = (mp,, mps, -+, mpr, ng1, ngz, -+, ngx) and
A1+L1Vq7i’ 1=1,2, -+, k,
mN p,
hi= P
Sy P i py, ... 2k

ﬂN é 1—k

PRrROOF. Our maximum likelihood estimation problem is the same as the one described
sy (5.5), (5.6) and (5.7) in Barlow and Brunk (1972) and they have shown that the solution
also satisfies

Y-1P = Y- (mp,+ ng)) /N =31 g,
fori=1,2, ..., k ~ 1 with equality for { = k. Letting t = (p1/mp1, p2/mp2, -+ -, px/mpr,

q1/nq1, -+, qr/ngx) these restrictions are equivalent to
(2.4) Siiw(t,— k) =0and ¥ 5w (b — t) =0, i=1,2,..+, k-1
and

Trmw (= k) =0=Y" i w(h—t).
From Barlow and Brunk (1972), (2.4) is equivalent to 2 — ¢t € B**. Hence, with ¢ as before
t = (p1/mp1, p2/mpa, + -+, Pr/mpr, @1/ndy, - -+, @r/nGs)

solves:

minimize Y2 w,¢(¢,) subjectto h —t€& B“*.
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Appealing to Theorem 3.4 of Barlow and Brunk (1972) again, we have that (p, ¢) =
wE, (h|B), which is the desired conclusion.

Since membership in B imposes no restrictions between the first £ coordinates and the
last % coordinates of a point, (E(-|B)i, E(:|B)2, +++, E(-|B)x) and (E(+|B)r+1, +-+,
E (.| B)2:) can be computed independently. It follows that

. mp + ng

(2.5) P =DpE;s (——A C)
p Np

and

4 mp + ng . mp + nq

=E"—'—:—C'=—E‘——AC,

q9=4q9 q( NG ) q q( NG >

where C’ denote the cone {x: x; = x2 =< +-+ = x}.

THEOREM 2.4. If p > q, then P{lim,, ,.»(p, §) = (p,q)} = 1.

Proor. Since E,(g + e:|C) = E..(g]|C) + es, it follows from (2.5) that

A

(26) p—p=(n/N)PEs (qp%p c) and G—§= —(m/N)éE5<g—;A—e\ c).

By the strong law of large numbers P {lim, »—..(p, §) = (p, ¢)} = 1. Since (n/N)p and
(m/N) § are bounded and E,, (x| C) is continuous in x and w, we need only show that

E(q_—_zz C) _ E(z—_e C) o,
p q

q
E,,(;‘ C) = —Eq<—§ C) = e

In the proof of Theorem 2.2, it was shown that p > ¢ implies that E,(q/p | C) = ex and the
proof of E,(—p/q| C) = —e is similar.

It is interesting to observe that (p, ¢) is strongly consistent for (p, g) for any sequence
of sample sizes (m, n) provided m and n simultaneously approach c.

or equivalently

3. Tests with a known standard: one-sample tests. In this and the next section
we use A generically to denote the likelihood ratio. Suppose ¢ is known and that we have
a random sample of size m from the p-population and consider testing Ho: p = q against
— Hy where Hy: p > q. Let

S =-2InA=-2m Y% p.(ln g, —Inp,).

Since H, is a boundary point of H; the usual limiting chi-squared results for —2 In A do not
apply. However the next result shows that the limit distribution is a mixture of chi-squared
distributions. Before stating the result we define the mixing proportions. Let w = (w,, we,
.+, wy) be positive weights and let Wi, Wy, ..., W, be independent normal variables
with zero means and variances w1, w3, - - -, wi' respectively. We denote the probability
that E,(W| C) has exactly ¢distinct values (level sets) by P. (¢, k).

THEOREM 3.1. If Hy is true then for any real number t
limy P (So = t) = 25;] P, (4 k)P(xi-/=0),

where x is a chi-squared variable with v degrees freedom (x5 = 0).

ProoF. Writing a second order Taylor’s expansion for In ¢, and In p, about the point
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P., So1 can be expressed as follows:
(3.1) Sot = Sk1 Bai H(Vm(p, — q.))* — Tkt BB m(pi = DY,

where q; is between p, and ¢, and B; is between p, and p.. Let Uy, Uy, - - -, Ui be independent
normal variables which are centered at their expectations and have variances p1’, pzl,
..., pr', respectively. Then the random vector \/I-;( p —p) converges in distribution to
(po(Uy = O), po(Us — 0), +++, po(U, — 0)) where U = Y% p:U.(cf. Robertson, 1978).
Hence, appealing to Theorem 4.4 of Billingsley (1968), we have that

(Nm(p = p), b, B, &, B) > o(pr(Us = O), -+, ps(Us = 0), p, 0, , P)
provided H, is true. Thus, under Ho, So; converges in distribution to
(3.2) Y1 qu(U, — 0) — Yt q.{Eq(Ter — U| C):).

Now, noting that E,( Ue, — U|C) = Ues. + E,(—U| (), squaring the binomials in (3.2),

combining terms and using Theorem 7.8 of Barlow et al. (1972), (3.2) can be rewritten as
L qi{E(W|C), — Wi)?

where W,=-U;;i=1,2, --., k. Corollary 2.6 of Robertson and Wegman (1978) gives the

desired conclusion.

If g = g2 = -+ = q& = k7' then the P(4 k) can be determined recursively from
Corollary B on page 145 of Barlow et al. (1972). Their Appendix A5 gives the P (4 k) for
k < 12 in this case. However, if the g, are not all equal the P (¢ k) are much more difficult
to compute. Equation (3.23) of Barlow et al. (1972) is a recursive relation from which one
can obtain the P(£ k) provided P(j, j) is known for j < k. Barlow et al. (1972) contains
closed form expressions for P(j,j) with j < 4 and the tables in Abrahamson (1964) can be
used to compute P (5, 5). Robertson and Wright (1980) have obtained bounds for certain
chi-bar-squared distributions. Their results show that

(3.3) limpw P(Sn = t) < {P(xi1=t) + P(xi2=1)}/2

and of course, one could obtain a conservative test using the upper bound in (3.3).
Next, we consider the one-sample likelihood ratio test of H; versus H». The test statistic
is
S =—2InA = —-2m Y% p:(In p, — In p).
Let P,(E) denote the probability of the event E computed under the assumption that p is
the population vector of probabilities.

THEOREM 3.2. For any p satisfying H, i.e. p >> q, and for all t
limy o0 Pp(Si2 = ) < limy0 Py (S12 = 2)
and 4
limyw Py (Siz = t) = Y5, Py(4, k) P(xi-1= ¢).
Proor. Writing a second order Taylor’s expansion for In p; about the point p, we see
that Si; can be written
(3.4) L poyH(Vm(p. - ),

where v, is between p, and p,. Now we want to obtain the limiting distribution of (3.4)
under H; and to show that this limit is stochastically largest for p = ¢. Let p > ¢ and let
O=np<m<-::-<nqa=kwithp,+ .-+ +p,=q1+ --- +qgifori=mn;, 2, ++-,n4 and p;
+ .o +p,>q1+ -+ +q, for i, e, .-+, na. By the strong law of large numbers, for
almost all w (in the underlying probability space) there is an mo(w) and an e > 0 for which

(goe1+ o+ @)/ (a1 -+ +p)<l—c¢
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foreachj=0, ..., A —1and i>mn, with { # 5,4, -+, 74 and
(qu,+l+ +qrr/)/(f’n,+| +etp)>1-¢

for each 0 = j < /= A provided m = my(w). So in using the LSA to compute
E;(q/b — e,| C) for such an w and m, we see that the level sets are of the form {n, + 1,
-+, m,} with 0 =5 < /= A. Consider the closed, convex cone

D={UEC:UI=...=UT,"U7“+1=...=v7’2’...’vm‘71+]=...=v”‘4}'

If E..(g| D) denotes the projection of g onto D with respect to the distance associated with
(-, *)w, then for such w and m

(3.5) E;(q/p — ex|C) = E5(q/p — ex| D)

since Ez(q/p — ex| C) € D. One way to compute E,.(g]| D) is to first obtain g* which is
constant on {n, + 1, -+, 1,41} by setting

g‘* = ZZT;JH w/g,/ ZQWIJH w,
fort=m,+1,.--,m41andj=0,1, ..., A — 1, and then to apply the LSA to g* with
weights w1, -+, wx. (For any vector g € R*, the notation g* will be used only to denote

the vector defined in this manner.) If g = ¢/p — e., f = p/p — e, and w = p, then g* = f*
and hence E5(q/p — ex| D) =Es{(p — p)/p|D}. Clearly, (Vm (p — p), P, y) converges in
distribution to (p (U, — U), po( Uz = U), « -+, pu (U — U), p, p) with Uy, -+, U, and U
defined as before. Using (2.1), we see that (3.4) converges in distribution to

(3.6) St p{E,(Ue, — U| D) Y =Y p{E,(W|D), — W}

where W, = —U, fori=1,2, ---, kand W = S p. W.. Since E,(W| D) is constant on
{n,+1,.--, n,41) forj=0,1, .-+, A — 1, (3.6) can be written as Y, q.{ E,(W|D), —
W12 To compute E,(W| D) we first obtain

Wz* — 41 Pe W/ /Z n+1 P

/=n,+1 /=, +1
fori=n,+1,---,m4and;j=0,1, ..., A — 1. Now, if
7‘1 = (pt/QL) u/ly T= Zf:l qsz and TI* = Z'/]QTL*l q/ T// 7/;,;!+1 (I/;

then W* = T*. Since W = ¥t q. Wi = T and E,(W|D) = E,(W*|D) = E,(W*|D) =
E,(T|D), (3.6) is equal to Y*; q.{ E,(T| D), — T}> However,

fq(T — TV =Y, q{T. — E,(T|D).)* + Y1 ¢.{E,(T|D), — T}

The first term on the right hand side of the previous equation is || 7 — E,(T'| D)||2 which
is smallest when D is largest, that is D = C, which occurs if p = g. So the first conclusion
of the theorem is established and it follows that p = ¢ is the asymptotically least favorable
distribution in H,, in the sense that the probability of a type I error for the asymptotic test
is largest if p = q. Furthermore, if p = ¢, then D = C and the second conclusion is a
consequence of a result due to Bartholomew (cf. Theorem 3.1 of Barlow et al., 1972). The
proof is completed.

As we have noted earlier, the computation of the P(/, k) may be tedious and so we
apply the bounds for chi-bar-squared distributions given in Robertson and Wright (1980)
to obtain

k-1

(3.7) SUPpe i, limy oo Pp(Sio = t) < V5, </_1

)2’*“P(x'f.1 =>t).

Of course, the upper bound in (3.7) can be used to determine a conservative asymptotic
test.



1254 TIM ROBERTSON AND F. T. WRIGHT

If g is known one might want to test Hy: p = q versus H/: g > p. However, if we define

p,=(pk?pk—ly "'»Pl) and q,=(qky qr-1, "'yql)

then p’ > ¢’ is equivalent to ¢ > p. So the tests developed in this section can be used to
test Ho: p = q versus Hi: ¢ > p and H/ versus H; with ¢ known.

4. Two-sample tests. In this section we suppose that p and § are the relative
frequencies of successes corresponding to independent random samples of size m and n
from the p and q populations respectively. We first consider the likelihood ratio test of H,
versus H; — Ho where H: p >> q. The test statistic, —2 In A, can be expressed as

[C% ) I Tor = 2m T puln p, — In p?) + 20 $&1 Gi(In g, — In g?)
where p! = g7 = (mp, + n§,)/N;i=1,2, ---, k and p and § are given by Theorem 2.3.
THEOREM 4.1. If p = q, then for each real t
limp, no P(Tor = ) = Y5, Py(4, k) P(x3-2 t).
Furthermore,
SUPp=g liMpnsee P(Tor = t) = %{P(x}-1=t) + P(x32=t)).

ProoF. Writing a second order Taylor’s expansion for In p, and In p® about P, and for
In g; and In ¢? about §;, we see that Tp; can be written as the sum of

(4.2) 1 BT (Vm(p? = P — Tk B H(Nm (B, - )Y

and

(4.3) Shi G (Vn(g! — 4)) - Thi doiH(Vr(gi— 6)Y

where 6,(v,) is between p? and p;(p, and p,) and p;(a.) is between ¢° and §,(g, and §.). Let
V= (Vi, Vs, -+, V3) with the V, independent normal variables which have zero means
and variances ¢, ¢3', - - -, g%, respectively, and suppose that V is independent of the U

defined in the previous section. If we set V = Y%, ¢, V,, then as m and n simultaneously
approach o

(Vm(p = p), V(¢ - q))
=o(pi(Ui = 0), -+, pe (U = 0), i(Vi = V), -+, qu (Vi = T)).
Furthermore, since p, and p,(§. and §,) are strongly consistent for p, ( q.) provided p > g,
it follows that, with probability one, § = (6, -++, 6,) = p, v = (v1, -+, ) > p, p =
(p1, +++, ) > qand o= (o, - -+, 04) > q.
Let p = g and m, n — o so that m/N — a € [0, 1]. Since (4.2) and (4.3) are continuous
functions of («/;1—( p—-p), \/;(ci - q), b, 4,0, v, p, o), we may apply the weak convergence

results mentioned earlier to show that (4.2) converges in distribution to the product of
(1 - a) and

(44) Y pl[(Va(V,— V) - V1= a(U, - 0))?
—(E,(Va(V = Ve,) — V1 = a(U — Uex)| C).}2]

and (4.3) converges in distribution to the product of @ and (4.4). Hence, Ty, éonverges to
(4.4), which can be written as

Y pl{(VaV, = V1= al,) + (V1 = aU - Va?7))?
—{E,(VaV — V1 = aU|C), + (V1 = aU - Va7)}?].

Squaring the binomials in the above expression and applying Theorem 7.8 of Barlow et al.
(1972), this expression can be written as




TESTS FOR A STOCHASTIC ORDERING 1255

(4.5) T p[ WP = (E,(W|C).)] = T p{ W, — E,(W|C).)?,

where W, = \/EV, —<V1—aU, ~ N(0,p;') and W;, Wy, ..., W, are independent. Since
the limit (expression (4.5)) does not depend on a, To; converges in distribution to (4.5) for
any sequence of m and n’s which both approach infinity (cf. Theorem 2.3 of Billingsley,
1968). As we have seen earlier (4.5) has the chi-bar-squared distribution stated in the first
conclusion of the theorem. The second conclusion follows from the results given in
Robertson and Wright (1980a).

In this two-sample situation the vector p is not specified by Hy. One could use p° = (pd,
.++,p?) as an estimate of the unknown p and compute the P(¢, k) based on this estimate.
The use of the resulting chi-bar-squared distribution would provide an approximate large
sample test. Or, if one wanted an asymptotic test with size a, the test could be based on the
second conclusion of Theorem 4.1, that is the critical value, C, could be chosen to satisfy
P(xi-1=C) + P(x}-2=C) = 2a.

Next, consider a likelihood ratio test of H, versus H; = ~ H;. The test statistic, T, =
—21In A, can be written as

(46) T12 =—2m ZLI'Z=1 l;l (]-n ﬁz - ]-nﬁz) —2n Z{Ll éz(ln Q_L - ln él)

THEOREM 4.2. If P, ,(E) denotes the probability of the event E computed under the
assumption that p and q are the values of the parameters, then for each real t

SUpPp>>q limm,,Hm Pp,q( Ti=t) = SUpp=g¢ limm,n—.m Pp,q(TlZ =1t)

and

. =1\ ,_
Supp=q hmm,naw P(TIZ = t) = Z(/Ll <f—l )2 k+1P(X?~1 = t)

Proor. Writing a second order expansion for In p, (In ¢,) about the point p,(§,) and
expressing p, — p, and ¢, — ¢, as projections, (4.6) becomes

A a 2
4.7  (n/N) z{;ﬁ?f:?{ «/mn/NE,;(q;p ‘ C) }

+ (m/N) 3k é?¢:2{ x/mn/NE(;(i;—p’ c) } i

where 7,(¢,) is between p; and p,( g, and §;). Define D as in the one-sample situation. As in
that case, for almost all w and m and n sufficiently large
c) - Ea(q—;ﬂ D).
q

E,;(q ' c) = E,;(q T"‘ D) and E<;<q P
p p q

Considering the algorithm for computing E, (g | D), we see that
E,;(Q D) _ Eﬁ{(q - q)—A(p -p)| D} and E<;<q —AP‘ D>
p b | g

=Eé{(é— q);(p-p)|D}.

Hence, if m, n — o with m/N — a € [0, 1], then, with U, V, U and V defined as before,
(4.7) converges to '
2
o) ]

1

since E,(f/p| D) = E,(f/q |~D) f(~>r any fdefined on (1,2, ---,k}. If T, = (p,/q.) U, and T
=Y*,q.T. then T* = U* T = U and (4.8) can be written as

(4.9) S ¢ {E,(W|D), — W)

(4.8)

» [E {qJE(V— Ver)— pv1 — a(U — Uey)
=1 4 q q
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with
Wi=vaVi—V1—aT: and W=7y q.W.

Since (4.9) does not depend on a, T}, converges in distribution to (4.9) for any sequence of
m and n’s which simultaneously approach . As before, (4.9) is made stochastically largest
by setting D = C or p = q. So the first conclusion of the theorem is established. In this
case, that is p = g or D = C, (4.9) has a chi-bar-squared distribution with tail probabilities

k1 Po(4 k) P(x2-1 = t) for all real ¢t. The second conclusion of the theorem follows from
Theorem 1 and Remark 2 of Robertson and Wright (1980a).

5. Summary. We outline below the procedures that have been developed here for
testing Hs: p = q vs. Hy — H, where Hy: p > q and H; vs. Hy = ~ Hi.

I. One-sample tests: known standard. p is the relative frequency estimate of p based on

a sample of size m and ¢ is known.

A.
M.Le. of p subject to p > q: p =pE;(q/p| C) whereEj (-|C) can be computed by
the LSA or

ﬁl =pAz minlsaSL maxzsﬁsk Zf=a q:/2ﬁ=a ﬁjy l = 1) 2; M) k

B. Test of Hy vs. H, — H,.
(1) Test statistic:

So=—2InA=2m Y%, p.(Inp, —Ingq,)
(2) Null distribution:
limp—o P(So1 = t) = Y51 Py(¢4, k) P(xi-r= £).

C. Test of H; vs. H,
(1) Test statistic:

Slz = -2 ln }\ =2m 2{21 ﬁ,(lnﬁl - lnﬁ,)
(2) Null distribution:
SUPpsq liMmw P(S1e = t) = Yhi Po(4, k) P(x}-1 = t).
II. Two-sample tests. p and § are independent relative frequency estimates of p and ¢
based on samples of size m and n respectively.

A. M.le. of p and g subject to p > q: p =(p/N)Es {{(mp + ng)/p|C} and ¢ =
—(§/N) E; {(—(mp + ng)/§| C} with the projections computed by the LSA or

D= (ﬁL/N) min;<,<, maX,<pg<k 2}6=a (mﬁj + néj)/2ﬁ=(x ﬁl-
(il = (éz/N) maXi<q=: minzs/jsk 2f=a (mﬁj + néj)/ZjL?:a (ij-

B. Test of Hy vs. H; — H,.
(1) Test statistic:

Too=—2In X =2m Y%, p(ln p, —In p?) + 2n ¥ G.(In g, —In q?)
with p? = q% = (mp, + ng.)/N.
(2) Null distribution:
SUPp=g liMppw P(Tor = £) = % {P(x}-1= t) + P(xi-2= t)}.
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C. Test of H, vs. H,.
(1) Test statistic:

Tie=-2InA=2m Y%, p.(Inp, —In p,) + 2n ¥, G.(In . —In G.).
(2) Null distribution:

. R—1\,_
SUPps>q liMmnsw P(T12=t) = ’/,e=1</_ 1 )2 kIP(xi = ¢).
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