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ASYMPTOTIC NORMALITY OF LINEAR COMBINATIONS OF
ORDER STATISTICS WITH A SMOOTH SCORE FUNCTION

By Davip M. MasoN
University of Kentucky

Asymptotic normality of linear combinations of order statistics of the
form T, = n™' ¥ J(i/(n + 1))Xi. is investigated along with a slightly trimmed
version of T,. Theorem 5 of Stigler (1974) is extended to show asymptotic
normality of T, for a wide class of score functions. In addition, a proof of
Theorem 4 of Stigler (1974) is given.

1. Introduction. Let Xj, - .., X, be independent identically distributed having com-
mon distribution function F, and let X;, < - - - = X,,, be their corresponding order statistics.
JJ will be a real valued function defined on (0, 1); </ is usually called a score function. We
will consider linear combinations of order statistics of the following form:

(1.1) T,=n"'3, J(—-’—-)Xm.
n+1

Bennett (1952), Jung (1955) and Chernoff et al. (1967) have shown that if J is properly
chosen, T, can be made into an asymptotically efficient linear estimate of the location or
scale of F. Various workers have proven asymptotic normality of T, under a variety of
conditions; see in particular, [3], [5], [11], [14], [16], and [17]. The most general conditions
are those obtained by Shorack (1972) and Stigler (1974).

Among the several results of Stigler (1974), his Theorem 5 shows that if

(1.2) lim, x*(F(—x) +1 - F(x)) =0 for some a >0, and

(1.3)  J is bounded and continuous a.e. with respect to F~' and J(u) = 0 whenever
ue (0,8) u (1-24,1) for some1/2 >8>0, then

(1.4) n"* (T, — ET,) —a N(0, ¢* (J, F))
and
(1.5) Var(n'?T,) — o*(J, F),

where o® (J, F) = [§ [§ J(w)J(v)(u » v — uv) dF~(u) dF " (v). Here u A v = min(x, v).

Shorack (1972) considers a more general class of statistics called linear combinations of
functions of order statistics. The conditions of his Theorem 1 as it applies to T, can be
formulated as follows. Assume

J is continuous a.e. with respect to F~', and if J is continuous at u then
(1.6)  J, — J converges uniformly to J(u) in some neighborhood of u, where
Jo(u) = J(([nu] + 1)/(n + 1)); and for some M >0,r >0,s>0andd >0

(L.7) [J ()| < Mu""V*(1 — u)V" V2,
and
(1.8) | F7 () | < Mu~/7%(1 — u) /55,
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then
(1.9) nY* Ty = pn) —a N(O, 6*(J, F)) with o (J, F) < oo,
where u, is an appropriately chosen centering constant. (u, = [1,,"" J, (1) F~ (u)du will

always work.)

We will give an extension of Theorem 5 of Stigler (1974) that will imply asymptotic
normality of T, under somewhat more relaxed conditions than (1.6)-(1.8). In addition, it
will be shown that (1.5) is true for a slightly trimmed version of T),.

2. The main theorem. Let F”(x) = P(Xi» < x) and F{"'(x, y) = P(Xin < x, Xjn < ).
For notational simplicity, from now on we will drop the superscripts in F{" and F\". We
will begin by recording some facts. Observe that

(2.1) Fi(x) = P(S,(x) =1), where S,(x) =Y~ I.q(Xi);

and

(22) 1-Fi(x) =P(S,(x) <1) =P(Sf(x) >n—1i), where S¥(x) =35 ls-(X).
Let

(2.3) 8i(x,y) = Fij(x, y) — Fi(x)F;(y). By [4]
(24) gl;"(x) y) = 0)
also
(2.5) cov(Xin, Xjn) = f f gi(x, y)dx dy, see [8].
Note that
(2.6) 1 X5-185(x,y) = n(F(x A y) — F(x)F(y)),
(2.7) 8ij(x, ¥) = (Fi(x)(1 = Fi(x))"*(F;(y)(1 — F;(y)"?,
and

; .
(2.8) = ( " 1>J<n ” 1>g¢,(x y)‘

. . 1/2

< (sl ons)

(2.9)

(Z‘ L ( -f-l)J(nil)g‘/(y’y))l/Q.

We will first consider the following slightly trimmed linear combination of order
statistics:

— ! n_-k2+1 l .
(210) Sn n Ez—k, J<n ¥ 1>me

where k; = 1 and k; = 1 are fixed integers.
In this section, u, = ES,. Define F"}(u) = inf{x:F(x) = u} for0<u < 1.

THEOREM 1. Let J be continuous a.e. with respect to F~'. If, in addition, for some
r>0,s>0,and M > 0 J satisfies (1.7) for all u € (0, 1);

1
(2.11) J u'7 (1 — w)"* dF Y(u) < o;
0
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and if

(2.12) ki and k, are integers chosen so that ky = 2/r and k, = 2/s, then
(2.13) n*(Sn = pn) —a N(O, 6°(J, F)),

and

(2.14) Var(n'”2S,) — ¢*(J, F) < .

Proor. Conditions (1.7) and (2.11) imply that o*(J, F) < . Choose 1/2 > 8 > 0 and
K > 0 such that
|J(u)| < Ku'/""'? for u € (0,9),
(2.15)
and =K1 -uwsY? for ue(1-321).

Now choose € such that §/2 > € > 0 and both € and 1 — € are continuity points of F~'. Let
n be sufficiently large so that 2 < [(n + 1)e]andn — ks + 1 >n + 1 — [(n + 1)€], where
[x] = greatest integer < x. Now let

(2.16) Spe=n"'YL, J€<——i—1-)Xi,,, where J.(u) = J(u) if u € (¢, 1 — €) and 0 otherwise.
n

Theorem 5 of [17] implies that

(2.17) n'*(Spe = ESne) —a N(O, 0*(J., F)),
and
(2.18) Var(n'*S,.) — o*(J., F).

((2.11) implies that (1.2) is satified for some a > 0.)
Hence to prove (2.13) and (2.14) it is sufficient to show

(2.19) lime}o lim supn—» Var(n'*(S, — S,.)) = 0.
Now, Var(n'*(S, — Sp.)) < Wi, + Wa,, where
—1/2 n+1le l
(2.20) Wi, =2 Var(n R g (n — 1)X,-,,>,
and
_ n—hod i
(2.21) W, =2 Var(n 1/2 Ei=nki‘£“"+l)d J(m)Xm> .

We will show that lim. o lim sup,—.. Wi, = 0. The proof that lim. o lim sup,_... Wz, = 0is
merely a change of notation and will not be given.
Observe that by (2.5), (2.8), and (2.9), Wi, < 2(fZ. M, (x)! dx)?, where

1} J
J(n + 1>J<n + 1) l 8y(x, x).

(2.23) lim. ;o lim sup,—. f (M, (x))"/? dx = 0.

(2.22) M, (x) = p~t gl gl e

i=k, =k,

Thus it will be enough to show that

For this purpose we need to consider what happens on the following sets:

A= {x:n7! <= F(x) < 2¢}, Aon = {x:F(x) <n'},
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Apm={x2=Fx)<1-n""}, An={x1-n"'<F(x)=<1},

A (x) = {i:kl =si=s[(n+1) €], -

11<F(x)},

Bt = {i:kl sisln+ e grop=Fos 1}'

and

=1 : -1 l
A;;,.(x)—{z.kIst[(n+1) el,n sF(x)<2(n+1)}.
Let my;(x) = n"' | J(i/(n + 1)J(j/(n + 1) | g;(x, x). By Minkowski’s inequality and (2.7),

f (M (x)"? dx = Y1 f (i jeanm mi(x)* dx
o A

in

+ z}(:z j E[Ln’:;li(] n—l/Z
Atn

J( ! ) ‘ (Fi(x)(1 = Fi(x))2 dx = Yi, Lin (say).
n+1

To complete the proof it is sufficient to show that lim. lim,_.. I;, = O for each i =
1, -- -, 6. A proof will only be given here for the case when i = 1. The interested reader is
referred to [9] for proofs for the other cases. Ci, ..., C; will be constants such that the
stated inequalities are true independent of n and e.

Casel. 0<r<?2.

ProoF. Observe that for x € Ay, and i € Ay, (x), I J(ﬁ) ! =< K(F(x))"""'/2; hence
n

by (2.6), Iin = Ci Ven, where V., = [4 (F(x))"” dx. It is easy to see by (2.11) that lim,,
lim, .. V., = 0.

Case2. r=2.

ProoF. Let By, = {ithi=i=<[(n+ 1) €], Fx)/2=<i/(n+ 1) = F(x)}, and By, =
{t:ki=i=[(n+ 1) €], i/(n+1) = F(x)/2}. By Minkowski’s inequality, I, < I, + Ioin;
where I, = [, (Yijen, mmi(x))'? dx for [ =1 or 2. Proceeding as in Case 1, I;1, = C; Ver.
Observe that

(2:24) L = f Sy ™ 1/ 0+ )] (Fi(x)(1 = Fi(0)” dx.
Aln 8

By Chebyshev’s inequality, we see that for i € B,,(x) and x € A,,,
1 — Fi(x) < P(S,(x) — nF(x) <i— nF(x)) < C:(nF(x))"}(1 = F(x)).

Now (2.15) and an integral approximation shows that the expression in (2.24) is < C3Vn.
The following corollary extends Theorem 1 to the statistic T',.

COROLLARY 1. Assume the conditions of Theorem 1. In addition, assume that
E|X |"<wand E | X*|° < o, then n"*(T, — w.) —a N(0, 6*(J, F)).

Proor. It is sufficient to show that if r < 2 and k& = 2/r, 72T 57" J(i/(n + 1)) Xn
— 0 in probability, and if s < 2 and k> = 2/s that n™"* ¥ 7o, 42 J(i/(n + 1)) Xin — 0 in
probability. The proof of these facts is straightforward and left to the reader.
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REMARK 1. Several workers, [3], [56], and [14], have considered a more general class of
statistics called linear combinations of functions of order satistics. For an extension of
Theorem 1 to this class of statistics refer to [9]. Also conditions for the asymptotic
normality of linear combinations of order statistics in the non 11.d. case have been
investigated by [12], [15] and [17]. For an extension of Theorem 7 of Stigler (1974) along
the lines of Theorem 1 also see [9].

REMARK 2. In[9]asymptotically efficient estimates of the location and scale of various
distributions are constructed based on S,. Theorem 1 shows that the variances of these
estimates converge to the asymptotically optimum variance even though the underlying
distribution may not have a finite variance. Also refer to [6] for another application of
Theorem 1.

3. On Centering. It is often of interest for estimation purposes to know when the
centering constant . can be replaced by u(J, F) = [iJ(«)F (1) du in Theorem 1 and
Corollary 1. As in [14] a sufficient condition is that |J'(u) | < Mu #*"V/73(1 — ) 3218
for some § > 0 and M > 0. Also refer to [6]. Here we will supply a proof for Theorem 4 of
Stigler (1974). See [18] and [19].

THEOREM 2. (Theorem 4 of Stigler (1974)). Assume that J is bounded and satisfies a
Holder condition of order a > ' except perhaps at a finite number of continuity points of
F'and [} (w1 — w)"? dF (u) < , then n"*(ET, — w(J, F)) = 0 as n — .

ProoF. First consider the statistic L, = Y%, J,(i/(n + 1))F~'(U,), where Uj, < - .- <
U, are the other statistics of n independent uniform (0, 1) random variables U, ---, U,
and J,(i/(n + 1)) = [,/ J(u) dufor i =1, --. , n. We will first show that EL, — u(J, F)
= o(n~'%). By integration by parts L, — u(J, F) = [§ (WG.(w)) — ¥(u)) dF '(u), where
W(w). = [ J(v) dv and G, is the empirical distribution based on Uj, - -, U,. Pick any €
> 0 and & > 0 such that [i_s (u(1 — u))"* dF (1) < € and [} (u(1 — w)'"* dF '(u) < e.
Observe that | n'>(EL, — u(J, F)) | is less than or equal to

1 1-8

\/ZEJ

1-8

|An(u) | dF () + VnE j

8

[ An(u) | dF " (u) + J?zEf [ An(u) | dF ' (u)
0

= Iin + D + Iy,
where An(w) = Y(Ga(w)) — Y(u) + J(W)(Ga(u) — w).

It is easily seen by Fubini’s theorem and the fact that E | G.(u) — u| = n”"*(u(1 — w))'?
that I, + I3, < 4€ supo<.=1|J(u) |. Proceeding in a manner similar to the techniques of
Boos (1979), it can be shown that I, — 0. See [10] for more details.

Now to complete the proof of the theorem. Without loss of generality we will assume
that o/ is left continuous and has jumps b, ---, b at 0 < a; < --- < a; < 1 respectively.
Set J (u) = Y4, bI(a; < u) and J.(u) = J(u) — Ja(u). Note that J, is continuous and
satisfies a Holder condition of order a > %. Now n'/?*| ET, — EL, | is less than or equal to

iyn .
, 1/2 On _ l -1/77.
(31) n =1 [ IJF(U) Jc(n + 1 ) ’dUElF (bm)’

i—-1)/n
(3.2) + 20 2 | 54 E | Xinagsn .

It is not too difficult to see that (3.1) = Mn'*E|X,| for some finite M > 0, and
application of the theorem of Sarkadi (1974) shows that (3.2) — 0.
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THE CAUCHY MEAN VALUE PROPERTY AND LINEAR FUNCTIONS
OF ORDER STATISTICS'

BY SUE LEURGANS

University of Wisconsin-Madison

An estimator is said to have the Cauchy Mean Value property if the
estimate obtained from a pooled sample is always between the estimates
obtained from the two original samples. It is shown that the only linear
functions of order statistics with this property are the arithmetic mean,
percentiles and weighted midranges.

1. Introduction, notation, examples and statement of theorem. An estimator is
said to have the Cauchy Mean Value (CMV) preperty if the estimate obtained from a
pooled sample is always between the estimates obtained from the original two samples. In
many statistical situations the CMV property seems natural. CMV estimators (including
percentiles, midranges and the arithmetic, geometric and harmonic means) have been used
in isotonic regression. (See Robertson and Wright (1974).) This note is a proof that the
CMV property is restrictive in that the class of linear functions of order statistics contains
essentially three CMV estimators.

Unsubscripted capital letters will denote sets of numbers. If A contains n numbers, they
will be denoted A,, A,, -+, A,, where A; = ... = A,. A will be called a sample. If A (size
m) and B (size n) are samples, (A U B), will be a member of the pooled sample. A member
of the r-fold replication of A will be (A"),. If an estimator L, is a linear function of order
statistics L,(A) = Y-, ¢ A, for every n.

One immediate consequence of the CMV property is that if L,,(A) = L,(B), then L,
cannot be CMV unless L,.+» (A U B) = L,(A). Therefore L,,,(A") = L,,(A) for all r and all
A of size m. Taking A = {1}, CMV linear functions of order statistics must satisfy
Yi=1 cni = c11, and it suffices to characterize those CMV linear functions of order statistics
with Ci; = 1.

ExaMPLE 1. The arithmetic mean is given by L,(4) = Y% n7'A.. (c.. =n™").

ExaMPLE 2. A weighted percentile can be defined by L.(A) = 0A,, + (1 — §)A, 4 if
np is integer and L,(A) = A(,,) otherwise, for § and p in [0, 1] and [np] the least integer in
{1, - - -, n} greater than or equal to np. If p is irrational, ¢, ., = 1 and c,; = 0 for all other
i

ExampLE 3. A weighted midrange is defined by L.(A) = A, + (1 — 6)A,, where
0=6=<1,and c,; =68 =1 — cn, and ¢,; = O for all other i.

These examples are the only examples.

THEOREM 1.1. If {L,, n = 1} is a linear function of order statistics with the Cauchy
Mean Value property, then L, is a constant multiple of the arithmetic mean, of a weighted
percentile, or of a weighted midrange.

Received March, 1979; revised May, 1980.
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2. Association of CMV estimators and monotone functions.

LEMMA 2.1. If L, is a CMV linear combination of order statistics, then there exists
a real-valued function g on [0, 1] such that g(k/n) = Y%\ ¢, for 1 < k < n and every
integer n.

Such a function will be referred to as a CMV function. CMV functions for the examples
are easy to obtain: for Example 1, g(k/n) = k/n: for Example 2, g(s) = 0., +
(1 — 0)I,>p; and for Example 3, g(s) = 010 + (1 — )1 (.,;. Section 4 proves Theorem
1.1 by showing that these are the only CMV functions.

PROOF OF LEMMA 2.1. yt A = {0}* u (1} " If L, is CMV, L,,(A") = L.(A), for all r,
k and n. Take s rational and n an integer such that ns is also an integer. The equation
above implies that g(s) = 1 — L.({0}™ u {1} "™™) is well defined for all rational s in that
£(s) does not depend on n. The lemma follows by extending g to irrationals in any
(measurable) manner.

THEOREM 2.1. All CMV functions can be taken to be nondecreasing on [0, 1].

PRrooF. Since every monotone function on the rationals in [0, 1] can be extended to a
monotone (measurable) function on [0, 1], it suffices to show CMV functions are monotone
on the rationals. We assume ¢,; = 0, 1 < j < m, m < N and sketch the induction on V.
(N = 2 follows from ¢;; = 1.)

Let A consist of N — 1 distinct positive numbers. Set M = N(N — 1). Since L, is CMV,
Ly(A N) = Ln-1(A). Define

Yo = Z{i‘i{f\;-ll')ik4iwl Cumi and Y3 = E‘z‘zrvlr’lf-»l)+1 Cafie
Lemma 2.1 implies y» + y3 = cxp. If £ = 1, y2 = 0 trivially. If £ = 2, modify sample A to
obtain A’ by increasing Ax—; to (Ax—1 + Az)/2. Next set A* = AN "1y (4')*!. The CMV
property and the inductive hypothesis imply Ly (A*) = Ly (A"). Direct calculations show

Ly (A*) = Ly (A™) + (A — Ax-1) y2/2. Since A has no ties, y» is nonnegative. The proof for
v is similar. Therefore cy-, = 0. The theorem follows from Lemma 2.1.

3. Two equations satisfied by CMV functions.

THEOREM 3.1. If g is a CMV function,and 0 =a<a+38<b<b+86=1, all
rational, are such that g(a) < g(a + 8) and g(b) < g(b + §), then (1) and (2) hold.

28
lgla+6) — g(a)][g(b +8) - g(ﬁi—b—t——)]

(1) 2

8
=[g(d+6) —gla+ S)J[g<a + 5) - g(a)].

S+b+3§6 S+ b
[g(b) — g(a)][g(ﬁf——;-i—> - g(ﬁi—i—f—)}

=[g(b+8) — g(b)][g(%) _ g<a 4 g)}

Proor. Select N such that Na, Nb and N§ are all integers, with N& > 1. Choose W, X,
Y and Z positive satisfying X > Z(g(a + 8) — g(a))/(g(b + 8) — gla + §) > W(g(b) —
g(a)/(gb + 8 — g) >—-W>-Z > -Y. Construct samples A and B by taking A; =
B,=—-Yfori=Naand A;= B, =X,1= N (b + §) + 1. Complete A by taking A, = —Z, Na
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+t1=<i=N(a+8 and A;=Z(gla+8) —gla))/(g(b+8) —gla+8), Na+8 +1=
i{ < N(b + §). Finish B with B; = =W, Na + 1 <= i < Nb and B, = W(g(b) — g(a))/
(g(b+8 —g), Nb+1=1i= N(b + 8). Lan(A U B) can be calculated from the
definitions of A and B, yielding an expression linear in Z and W as constrained above.
Since A and B satisfy L,(A) = L,(B), if Lyis CMV, Lon(A U B) must also equal Ly (A) for
all Z and W. Equations (1) and (2) are obtained by setting the coefficients of Z and W to
zZero.

4. Proof of Theorem 1.1. Theorem 1.1 follows from two propositions. Proposition
4.1 states the CMV functions increase either at one point (Example 2), at 0 and at 1
(Example 3) or at all points in [0, 1]. Proposition 4.2 states that the only strictly increasing
CMV function is the identity function (Example 1).

We extend the terminology of Boas (1972, page 121) to call x a point of constancy of a
nondecreasing function g if g does not increase at x and to refer to an interval on which g
does not increase as an interval of constancy.

ProposITION 4.1. If g is a CMV function and g is constant at some point, then g
increases at 0 and at 1 or at only one point.

Proor. Since nondecreasing functions cannot have isolated points of constancy, if g is
a CMV function constant at a point, g is constant on an interval. Assume this interval is
to the right of a point at which g increases (or use g’(s) =1 — g(1 — s)). From Lemma 4.1,
the point at which g increases is isolated. If g increases at any other points, it must increase
at a pair of points surrounding an interval of constancy. By Lemma 4.2, g increases only at
Oandatl. O

LeEMMA 4.1.  If g generates L,, and there exist t, u, v suchthat 0 =t <u<v=<1and
g 1s strictly increasing on [t, u] and g is constant on (u, v], then L, is not CMV.

Proor. The proof of this lemma consists of the construction of a counter-example.
Choose n sufficiently large that there exists £ such that t < (¢ — 2)/n < (2k — 1)/2n < u
=< k/n < (k + 1)/n = v. These inequalities and the assumptions of the lemma imply that
Cnk—1y Cnky C2n2k—3, C2n2k—2, Con2k—1, @Nd C2n 21 are positive and that ¢, +1 and cynok+) are zero.
Let A be any sample of size n, with no ties. Modify sample A4 to create two new samples.
For sample B, replace A, by As—1 — x/¢nx-1 and A by Ay + x/cn s For sample C, replace
Apsr by Ay — x, where (Aper — Ar)Can/ (1 + Cup) < X < Cpp(Are1 — Ap) and cpp-1(Ap_y —
Ar—2) > x. Ap_» can be chosen to ensure the last inequality. These constraints define the
ordering of the sample B u C. It follows that Ly.(B U C) = L:,(A%) ~ x{consns/Cns-1 +
Congr] + (Aks1 — Ar)C2n2e. As x ranges over an open interval, L,,(B u C) varies. Since
samples B and C were chosen so that L,(B) = L,(C) = L,(A), L, cannot be CMV.

LEMMA 4.2. If g is CMV and there exist a, b, and § such that0 = a<a+8§<b<
b+é6=1,686<(b—a)/2 and

(3) gla) <gla+8) =g()<gd+9),

then g is constant on (0, 1) and discontinuous at 0 and at 1.

Proor. First we show that (3) holds for a = 0. The constraint on § implies that
(a + b+ 28)/2 is in the interval of constancy. Since g is CMV, equation (1) of Theorem 3.1
applies. Substituting g(a + 6) = g(b) in (1) and reducing gives g(a + §/2) = g(b).

If a is positive, set a’ = max(a — 8/2, 0). By the monotonicity of g, g(a’) < g(a’ + 8)
= g(b). Because g(a + 8/2) = g(b) holds for a = a’, g(b) = g(a’ + §/2) = g(max(a, §/2)).
Since g (b) > g(a), it follows that a < §/2, a’ = 0, and g(0) < g(8) = g(b) < g(b + §).
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Next we show that the interval of constancy extends leftwards to the origin. Define a
sequence b, recursively by b, = b and b, = b, if g(ba—1) < g(ba_y + 8/27) and b, = bn_y
+ 8/2" otherwise. Inductively, g(8/2""") = g(b,) = g(b) < g(b, + 8/2"), for every n, and
hence g(0+) = g(b) or g is constant on (0, b]. Since g(0) < g(§/2") = g(0+), g is
discontinuous at zero. Similarly, g is constant on [, 1) and discontinuous at one. 0

ProposiTiON 4.2. If g is a strictly increasing CMV function, then g(x) = x.

Proor. If gis a strictly increasing CMV function, Lemma 2.1 implies that all ¢,; > 0.
Set n = 2% > 8. Substituting @ = j/n, b = (j + 2)/n and § = 1/n in (1) and expressing the
resulting equation in terms of c¢,; shows that can2;+1 = (Cnjs1 + Cnj+3)/(Crj+2 + Cnjs3), 1 =
2j + 1 = 2n — 5. Using (2) in place of (1) implies [cpj+1 + Cnj+2]Con2j+4 = Cnj+slConzj+s +
Conzj+2), 0 =j=n — 3. If j = n — 4, eliminating the c¢;,; terms implies ¢, j+4 — Cn 42 =
—Cnj+1(Cnj+s — Cnj+2)/(Cnjs2 + Cnj+3). SiNce Cnj+1/(Cnj+2 + Cnj+3) is finite and positive,
Cnj+2 = Cnj+4y OF Cn1 = Cn3 = +++ = Cpp-1 aNd Cp2 = Cp4 = +++ = Cpn From Lemma 2.1,
Cnj2i = Cni + Cna = Cnyzy fOX €Very i, OF Cnj2; = 2/n and g(k/2V) = k/2", 0 < k < 2", Since
g is monotone, g(x) = x,0=x =< 1.0
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