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SOME CLASSES OF OPTIMALITY CRITERIA AND OPTIMAL
DESIGNS FOR COMPLETE TWO-WAY LAYOUTS

By N. GAFFKE
RWTH Aachen, West-Germany

For a given class of linear models in standard form an optimal experi-
mental design is to be chosen for estimating some linear functions of the
unknown parameters. An optimality criterion is defined to be a real function
of the covariance matrices of the Gauss-Markov estimators. Conditions which
are imposed on the criteria are monotonicity, quasiconvexity or quasiconcav-
ity, and invariance or order-invariance. A characterization of the D-criterion
by order-invariance is included which strengthens a result of P. Whittle. In
the main part of the paper optimal designs for the usual two-way layouts in
ANOVA are computed for large classes of optimality criteria. Some related
optimization problems are solved with the technique of majorization of vectors
in the sense of Schur.

1. Introduction. Let A be a set of experimental designs for linear models
(1) EY,=Xqa, Cov Ys=d’l,,

where Y, is the n-dimensional vector of (real) observations, X, is a known n X k matrix,
a € R” is a vector of unknown parameters, 6> > 0 is known or unknown and I, is the n X
n identity matrix. Let K be a given s X k matrix of rank s, and assume that Ka is estimable
under each d € A, i.e,, for each d € A there exists a matrix U, with K = U;X,. Then for
the BLUE Kaq

@) Vi=0"*Cov Kds = K(X7X.) K",

where A” and A~ denote respectively the transpose and a generalized inverse of A. Let ¥
be a real function on the set Z, of all positive definite s X s matrices. A design d* € A is
called ¥-optimal in A for estimating Ka if

(3) ‘I’(Vd') = mindeA ‘I’(Vd)

V¥ is called an optimality criterion. It is sometimes convenient to consider the inverses of
Va. Trivially (3) can be written as ®(V3') = minges ®(V7'), where throughout this paper
® denotes the function ®(A4) = ¥(A™"), A € £ (for a given ¥). Two optimality criteria ¥
and ¥’ are called equivalent if they represent the same order-relation on 2, the order-
relation < represented by ¥ being defined by A <I B iff ¥(A) < ¥(B), A, B € ..

2. Classes of optimality criteria.

A. Monotonicity. For nonnegative definite s X s matrices A and B we write A < B if
B — A is nonnegative definite. An optimality criterion is called increasing if A < B, A # B,
A, B € # imply ¥(A) < ¥(B), and strictly increasing, if always ¥(A4) < ¥(B). Since for A,
B € #, the relations A = B and B™' = A™' are equivalent, ¥ is (strictly) increasing iff ® is
(strictly) decreasing. If ¥ is an orthogonal invariant criterion

(4) ¥(A4) = f(A(A), -+, AJA)), A€ 7,
where A;(A) are the eigenvalues of A, and f is a symmetric function on (0, ©)°, then ¥ is
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(strictly) increasing iff f is (strictly) increasing with respect to the componentwise partial
ordering on (0, ©)° (see e.g. Marshall and Olkin (1979, page 475)).

B. Convexity. An optimality criterion ¥ is called quasiconves, if for all A, B € 2,
A% B,and a € (0, 1)

(5) Y(aA + (1 — a)B) = max(¥(A), ¥(B)),

and V¥ is called strictly quasiconvex if there is always strict inequality in (5). ¥ is called
(strictly) quasiconcave if —W¥ is (strictly) quasiconvex. From the well-known inequality

@A+ (1 —-a)B) '=ad™'+ (1 - B}, A BEZ, aE(0,1)

it follows that for an increasing criterion ¥ quasiconvexity of ¥ implies quasiconvexity of
®, but the converse is not true. For a ¥ in (4) quasiconvexity of ¥ is equivalent with
quasiconvexity of f, which can be seen as in Kiefer (1974, page 862).

C. Invariance. Let G be a group of nonsingular s X s matrices with respect to matrix
multiplication. We say that an optimality criterion ¥ is G-order-invariant if ¥(4) < ¥(B)
always implies W(LALT) < ¥(LBLT) for all A, B € #,, L € G. This means that ¥-
optimality of a design d* for estimating Ka always implies ¥-optimality of d* for
estimating LKa, L € G (see equation (2), (3) of Section 1). For a compact group G there
is no difference between G-order-invariance and G-invariance:

LEMMA 1. Let G be a compact group of nonsingular s X s matrices. If ¥ is measurable

and G-order-invariant, then ¥ is G-invariant.

Proor. First replace ¥ by an equivalent criterion ¥’ which is bounded (and measur-
able). Let u be the right, normalized Haar measure on G (cf. Halmos (1961, Chapter XI)).
Then defining

¥(A) = f W(LAL") du(L), AEZ,
G

we obtain an equivalent criterion ¥” which is G-invariant. Hence ¥ must be G-invari-
ant. 0

Order invariance with respect to the largest group %, of all nonsingular s X s matrices
characterizes the D-criterion (or its converse). The following theorem strengthens a result
of Whittle (1973, Theorem 2).

THEOREM 1. If ¥ # const. is measurable and Zs-order-invariant, then either ¥ or
—WV is equivalent to the D-criterion.

Proor. Considering the subgroup of all orthogonal matrices, Lemma 1 shows that ¥

is of type (4). Furthermore f is such that

©) flxr, «oo,x0) < f(y1, oo, 7)) = flzixg, -« -, 26x) < f(ziy1, « -+, 25)s)

for all x, y, z € (0, «)*.
Let x, y € (0, )° be given with [[i-; x; = [[i-1 y:. Putting
:8!=:81 Hlf;ll xfy;*}l’ 2=1=s5,

B1 > 0 arbitrary, we have Bixi = B.w) Y-, 1 =1 < s, where 7(i) = { + 1 (mod s). Hence
f(Brxi, «-v, Boxs) = f(Biys, -+ -, Bsys), and by (6) f(x) = f(y). So f(x) = g([[i=1 %) for
some real function g on (0, »), and ¥(A) = g(det A), A € .. Clearly g is measurable. It
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remains to show that g is either strictly increasing or strictly decreasing. The function A(r)
=g(e"), r € R, is such that

(7) h(r) < h(t) = h(r+u) < h(t+u) forall r,t,u€ R.

Consider the sets S. = {r€ R : A(r) > h(0)} and Sc = {r € R : h(r) < h(0)}. It can easily
be seen from (7) that S. + S. C S., Q9.S- C S, and S< = —S. (Q. = set of all positive
rationals). S. must have positive Lebesgue-measure, because otherwise A(r) = k(0) a.e.
and by (7) A would be a constant. A(S-) > 0 implies that the interior of S- D S. + S. is
nonempty (cf. Hewitt and Stromberg (1975, page 144, Exercise (10.44))). This implies S-
= (0, ) or S. = (—o, 0), from which the assertion follows. 0

3. Optimal designs. We consider the usual two-way layout in ANOVA
EY;, = ay, l=syv=nj 1=i=su l1l=sj =y,

where the a;; are unknown mean effects (cf. Scheffé (1959, pages 106 ff.)). The observations
Y, are assumed to be uncorrelated with equal variance ¢* > 0. The u X v matrix of the
nonnegative integers n;; is called an experimental design. Writing the model in the form
(1) of Section 1, one obtains

(8) X?z:Xd = diag(nlh Nigy o0y nuv)~

Let K be an s X wv matrix, and suppose that one wishes to estimate Ka, where a =
(an, a2, +++, @)’ € R*. Assume that

9) K has orthonormal rows and KK has equal diagonal elements.

Then (9) is satisfied, for example, when K is given by an orthonormal basis of the main
effects or of the interactions (for definitions see Scheffé (1959, page 93, equation (4.19))).
As can easily be seen, Ka is estimable under d = (n;;) iff d is complete, ie, n,;, € N =
{1,2, -..} for all i, j. So for a given integer n = uv let

A=Apn={d=(ny)n;EN,1<sisul=sj=suv Y Yj~1ny=n}.
By 1(xm) we denote the r X m matrix all elements of which are one.

THEOREM 2. Let K satisfy (9), let ¥ be an increasing, orthogonal invariant criterion,
and let ® be quasiconvex. If n is divisible by uv, then the equireplicate design d* =
(n/uv)luxy is Y-optimal in A for estimating Ka.

Proor. The theorem is a consequence of Proposition 1’ in Kiefer (1975), applied on
the matrices V;', d € A, where V, is defined by (2). For checking the assumptions of this
proposition the inequality

Vils KXTX.KT (with equality for d = d*)
is useful (cf. Gaffke and Krafft (1977) and also Kiefer (1978). [

We turn to the special case of estimating the main effects a;(a) =@, —a@-- of the
first factor. A representation according to (9) leads to
(10) Vo= UCFUT and Vit=UC,UT,

where U is a given (u — 1) X u matrix with orthonormal rows and orthogonal to 1.1, and
(11) Ca= Hy — (tr Ha) "'HalwuswHa

where H,; denotes the u X u diagonal matrix with the harmonic means hs =
0™ T ni')7'in the diagonal. For the Moore-Penrose inverse of Cq

1
(12) Ci=EHE,  where E,=I ——1lux.
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Clearly for d € A the matrices C, (and Cj) are elements of the set %, of all nonnegative
definite u X u matrices with zero row sums and rank u — 1. For a given optimality criterion
¥ on £, let ¥ (B) = W(UBU"), B € A.,, and similarly & (B). Trivially by (10) a design
d* € A is Y-optimal iff it minimizes ¥ (CY) (= & (Cy)) over d € A, which we will call now
¥ -optimality (for estlmatlng the main effects of factor 1). The conditions on ¥ and ® of
Section 2 carry over to ¥ and @ in an obvious way. Theorem 2 can now be strengthened
slightly. By I1, we denote the group of all # X u permutation matrices.

THEOREM 2'. Let ¥ be increasing and Il,-invariant, and let ® be quasiconvex. If n
is divisible by uv, then the equlrepltcate design d* is ¥ optzmal in A (for estimating the
main effects), and it is the unique ¥ -optimal design in A, if ¥ is strictly i increasing.

The proof is an application of Proposition 1 of Kiefer (1975). 0O

For the “nonregular” case where n is not divisible by uv we can use the concept of
majorization and weak majorization of vectors, cf. e.g. Marshall and Olkin (1979). Recall
that for x, y € R*

(13) x <y iff x is an element of the convex hull of {Qy: @ € m:},
(14) x <,y iff there exists a2z € R* such thatx <z < y.

The proofs of the following simple lemmas are omitted.

LEMMA 2. Let x € R* have integer components. Choose an x* € R* with integer
components such that Y%, x¥ =Yk, xiand|x} — x}| =1 for all i,j. Then x* < x.

LEMMA 3. For given positive real numbers ¢, y with ¢ < ky let

M., ={(x€ER0O=xi=y,1<si<kIL x=c}
The set of extreme points of M., is equal to
{(xEM. , 0<x <y for at most one i€ {1, ---, k}}.

Hence for ¢, y € N all extreme points of M.,, have integer components.

Now we define

A=A, ={d*=0mF EA: |nf—nkl=1,

(nf—nf|=<1, forall L,h=1,.--v,u jk=1...,0},
where n;. = Y-, nyj,
A = Ao = {d' = (n};) €A: there exists an ig € {1, -+ -, u} with [n{,; — ni,| <1
forallj, k=1, --., v, for each fixed i # iy the nj;,j =1, .- -, v, are equal, and

|ni— nhi| = 1forall i i, h# i},
and for the “semiregular” case that n is divisible by v let

A** = A¥r, = {d** = (n}*) € A: for each fixed i the nj*, j=1, - .., v, are equal,
and |n2* —ni¥|<1foralli, A=1, ---, u}.

In the following theorem “Jr -optimality” always means \i'-optimality inA=A2An.

THEOREM 3. Let ¥ be increasing and Il,-invariant, and u = 3.
(a) Let¥ be quasiconvex. Then every d* € A* is ¥ -optimal. If ¥ is strictly quasiconvex,
then A* quals the set of all - optlmal designs.
(b) Let ¥ be quasiconcave and d be quasmonvex
(a) Then there exists a d’ € A’ which is ¥. optimal. If ¥ is strictly quasiconcave,
then A’ contains the set of all ¥-optimal designs.



DESIGNS FOR TWO-WAY LAYOUTS 897

(B) Let n be divisible by v. Then every d** € AA** is W-optimal. If ¥ is strictly
quasiconcave, then A** equals the set of all Y-optimal designs.

Proor. It has been shown in Gaffke and Krafft (1979, Theorem 1 and Remark (i1)),
that the set

A=Apn={d=(n,) EA:|n;—ny|<1 forall i=1,---,u, jk=1---,0}

is a complete set in the following sense. For each d, € A\ﬁ there exists ad € § such that
Ci = Cj and Cj # Cj, and hence ¥(Cj) = ¥(C7 )with strict inequality if ¥ is strictly
increasing (what is satisfied if ¥ is strictly quasiconvex or strictly quasiconcave). Let Ay

= (Aq1, +++, hay) for d € A be the diagonal of H;' (see equation (12)). Writing the totals n,.
aspv+qi,p. €N, q € {0,1, ---, v}, we have

(15) hai = R pi,q) = v (v —g)pi' + vTqi(pi + D7

So we are concerned with an optimization problem over the set of integer vectors p =
(p1, -+, p.) and g = (g1, -+, q.) satisfying

(16) VYL Pt Yl gi=n, pP.EN, q€{01, .-, 0}.

Note that for given n,. the p,; and g; are not always unique, because ¢; = v is admitted. This
will simplify some computations below.

(a) Assume that ¥ is quasiconvex. Let d € A\A* be given. We prove that one can find
a d* € A* such that Aq- <, hqand Ay # QA4 for all @ € I1,. Then it follows from (14) and
(12) that

Ci-=T0agRCiQ"  forsome agp=0

with Y ag = 1, and C}- # QCiQ" for all @ € I1,. Hence WCy) = WMCY) with strict
inequality, if ¢ is strictly quasiconvex. Since ¥{Cj-) is constant on A*, the assertion will
follow. We may assume that p; < p» < ... < p,, and if p; = p;+, then ¢; < g;+;. Then by
(15) As = hs = - .- = h,. We distinguish three cases:

(1) Pu—PpP1= 0; (11) Pu—DP1= 1; (lll) DPu—p1 = 2.
Case (i). Choosing by Lemma 2 a ¢* < g we obtain a d* € A* with A 4- < A 4.
Case (ii). Letp, = --- =pp,=Band pp1=---=p,=B+1,me {1, --.,u—1}. Then
forre {1, .-, u}:
B —@WBB+1)'Tig  for r=m,
St hipng) =1 mB'+ (r—m(B+D" = BB+ 1NTE g
—WB+DB+2) "' Yeme1 g for r>m.

By increasing g, ---, g» and decreasing gm+1, ---, g. one obtains a § withY'L, ¢ =
Yi<1 gi and either §1 = «++ = gm =V OF Gues = +++ = Gu = 0, and Yi=1 Au(ps §) <
Z,Ll hi(pi, qi), 1 =r =< u. Hence hg = h(p, q) <uh(p, q) =ha, and (i) can be applied on
d.

Case (iii). Choose p, = p1 + 1, p. = p. — 1, and keep the other p; and the g, fixed. One
easily verifies that in R?:

(}:L_l(ﬁl, (11), Eu(ﬁu_y Qu)) <w (51(171, QI), }:L_u(puy QH))~

Clearly this implies A(p, q) <. hA(p, q) in R". Proceeding in this way one obtains a
dy € A which satisfies (i) or (il) and ~q, <. A a.

(b) Assume that ¥ is quasiconcave and ® is quasiconvex. Letd € A\ A’ be given. Since
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by (15) and (12) the function J(CY) is (strictly) quasiconcave with respect to g for fixed p,
we can find by Lemma 3 a d € A with g: = 0 except for at most one i = iy, and @(C}) =
¥ (C? ) (with strict inequality if ¥ is strictly quasiconcave). By (16) qi, = n — v int(n/v).
The matrix function (E,H 'E,)" is strictly concave with respect to H (cf. Marshall and
Olkin (1979, page 469, E.7.h.)), and hence by (11), (12) &(Cy) is a (strictly) quasiconvex
and symmetric function of the diagonal Ay = (ha1, - - -, hau) of Hy. Observing that ha = p:
if g; = 0, the assertion follows from Lemma 2 (applied on the p;, i # &, for «), and on all p;
for 8. O

REMARK. Of course, part (ba) of the theorem is rather unsatisfactory. For the D-
criterion the set of D-optimal designs is given by

Ap=AN{d=(n;) EA|nij—nu|=1 forall i,h=1, ..., u, L k=1 .- v},

of. Gaffke and Krafft (1979, Theorem 2). But for a general ¥ (which satisfies the
assumptions of part (b), a proof using weak majorization as above fails, because Y i=; A
attains its maximum exactly at those unbalanced designs with n;; = 1 for i # i, (if v | n).
However, no example is known to the author where d € Ap are not ¥-optimal.
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