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Consider the problem of sequentially testing a null hypothesis vs an
alternative hypothesis when the risk function is a linear combination of
probability of error in the terminal decision and expected sample size (i.e.,
constant cost per observation.) Assume that the parameter space is the union
of null and alternative, the parameter space is convex, the intersection of null
and alternative is empty, and the common boundary of the closures of null
and alternative is nonempty and compact. Assume further that observations
are drawn from a p-dimensional exponential family with an open p-dimen-
sional parameter space. Sufficient conditions for Bayes tests to have bounded
stopping times are given.

1. Introduction and summary. Consider the problem of sequentially testing a null
hypothesis vs an alternative hypothesis when the risk function is a linear combination of
probability of error in the terminal decision and expected sample size (i.e., constant cost
for each observation). Assume that the parameter space is the union of null and alternative,
the parameter space is convex, the intersection of null and alternative is the empty set,
and the common boundary of the closures of null and alternative is nonempty and compact.
Assume further that observations are drawn from a p-dimensional exponential family with
an open p-dimensional parameter space. Sufficient conditions for Bayes tests to have
bounded stopping times are given. The main conditions are as follows: For p = 1, the
supports of the prior probability measures, conditioned on the null and alternative spaces,
both contain the common boundary. For p > 1, the supports of the prior probability
measures, conditioned on the null and alternative spaces, both contain some neighborhood
of the common boundary intersected with their respective spaces. Extensions in various
directions are given. Most importantly, the results hold for a variety of loss functions.

Knowledge that a Bayes procedure has a bounded stopping time is important. In
addition to being a desirable property of a sequential test, it is needed to compute a Bayes
procedure explicitly. Only in such cases can the backward recursion method be used
exactly. Another advantage is that bounded stopping time implies, for many models, that
the risk functions (under null and alternative) of Bayes tests are continuous. The funda-
mental lemmas developed in Section 2 will be used in a subsequent paper to establish
continuity of risks for Bayes tests in a slightly different setting. See Berk, Brown, and
Cohen (1981). This latter result will relate and add to some complete class results in
Brown, Cohen, and Strawderman (1980). The main result of this paper will also be applied
to demonstrate that certain weight function sequential tests are inadmissible. See Brown
and Cohen (1981). The results of the paper are of great importance in increasing our
understanding of sequential testing.
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There are some previous discussions in the literature of sequential hypothesis testing
where it has been possible to conclude that certain Bayes tests have a bounded stopping
time. Sobel (1952) and Schwarz (1962) study priors whose support is the entire one
dimensional parameter space. However in their formulations there exists an indifference
zone. Parameters in the indifference zone are part of the model even though the loss due
to any terminal decision is zero if the parameter is in the indifference zone. In our model
there is no indifference zone. The property of a bounded stopping time for a Bayes test is
relatively easy to prove when there is an indifference zone. Roughly the argument is as
follows: Suppose the support of the prior is the entire parameter space. Then in the setting
of observations drawn from a one dimensional exponential family it can be shown that the
posterior distribution, given the sample through stage n, will become highly concentrated
as n — oo, regardless of the actual sample value observed. There are three possibilities.
The posterior is highly concentrated in the null space, in the alternative space, or near the
boundary of the two. In the first two cases a wrong terminal decision has low a posteriori
probability and hence the contribution to the posterior risk due to making a wrong terminal
decision is less than the cost of another observation. Hence the Bayes procedure stops. In
the third case the posterior probability of making a wrong terminal decision may be high,
but because of the loss structure (indifference zone with zero loss), the posterior risk is
small. It thus risks less to stop and make any terminal decision, than it costs to continue
sampling.

With constant loss for a wrong terminal decision, which we assume, the preceding
argument fails in the third case. A different type of argument is required. The argument
for this case is based on Lemmas 2.1 and 2.2. These lemmas involve looking many steps
ahead, rather than just one as in Sobel (1952) and Schwarz (1962). These lemmas show
that in this third case even if sampling were to continue for a long time the situation would
not be likely to improve much. With high probability, the new posterior will be nearly as
uninformative as the old one, concerning whether the null or alternative is true. Hence the
posterior risk due to wrong terminal decision will still (with high probability) remain
almost as large. It pays to stop immediately rather than sample for such a long time for a
relatively small expected reduction in terminal risk.

The question of bounded stopping times for Bayes tests with our loss structure has
been studied by Ray (1965). He studies some continuous and discrete one dimensional
exponential family distributions. He gives a sufficient condition in terms of the prior
distribution for a Bayes test to have a bounded stopping time. His most usable condition
is for one sided tests. However, his condition usually is extremely difficult to verify. Ray
also develops formulas for explicit bounds on the stopping time. The formulas are difficult
to use except in some very special cases. The conditions here apply to a very large class of
priors and require no other verification.

Extensions in several directions are possible. First the exponential family assumption in
the one dimensional case can be replaced by requiring that the observations are indepen-
dent and identically distributed and that the Bayes tests are based on a sequence of
sufficient statistics whose distributions is monotone likelihood ratio. This then would yield
a result for the uniform distribution with unknown scale parameter. (See the end of Section
3.)

The requirement that the parameter space is convex can be altered. (See Remark 3.1.)
The results can be developed for more general loss functions. Generalizations of the 0-1
loss due to terminal decision and generalization of the constant cost of observations are
discussed at the end of Section 3. For the one dimensional model, the assumption that the
intersection of null and alternative be the empty set can be relaxed provided the condition
on the prior is the one given for p > 1. (See Remark 3.2.) Also a result for testing the
noncentrality parameter of a chi-square random variable is given in Remark 3.3.

Definitions and the fundamental lemmas are in Section 2. The theorem is given in
Section 3 and extensions are given at the end of Section 3.
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2. Definitions, Preliminaries, and Main Lemmas. The elements of the problem
are as follows: O is the parameter space with typical element #. The null space is ®; C ©
and the alternative space is @, C ©. Assume 0, 0,, 0, are measurable subsets of Euclidean
space R”. In this paper we assume © = 0, U ©; and ©, n O, = ¢, the null set. (See Remark
3.2 where ©; N O, need not be a null set.) The closures of ©;, ®;, and ® are denoted
respectively by ©;, ©,, and ©. The action space ./ consists of pairs (r, 7) where n is the
value of the stopping time, N, and 7 is 1 or 2, depending on whether ©, is accepted or
rejected. The loss function, denoted by L(6, (n, 7)) = cn if § € ©, and L4, (n, 7)) =
cn + 1if § € ©.. Here ¢ > 0 represents the cost of each individual observation.

The observation available to the statistician at stage j is an observation on a random
variable X; whose realization is denoted by x;. We let x = (x1, x2, - - -) denote the sequence
of realized observations and x; = (xi, xs, ---, x;). The corresponding random variables
(measurable mappings) are denoted by X and X respectively. The sample space of Xj is
denoted by #,. Throughout, the affix j is omitted when j = 1. We assume that there is a
o-finite measure p which dominates the family { Py(-), # € ©} of probability measures for
X in the following sense: For each j = 1, 2, ..., over the o-field generated by Xj, the
measure P, is dominated by p. Write fy; = dPy/du relative to this o-field. When j = 1, write
for = fo. When 0 is not closed we will assume that the family, { Py, § € ©}, can be extended
to a family, { Py, § € (© U Q) = A}, where & = ®, n O, and that the families of densities
fo;, 8 € A, exist and have certain properties (essentially continuity properties) to be
specified later. We assume the observations are independent and identically distributed.

A prior probability measure on ©, denoted by I'(-), will be represented by a mixture
expressed as mI'1(-) + 7.I's(-). Here, if T is a random variable with distribution I', then
a1 is the probability that 7' € ©, and T, represents the conditional distribution of T, given
T € O,; similarly for I';. A prior may be represented as (7, I'1(-), T'2(+)).

A decision function 8 may be expressed as a set of nonnegative functions 8;(x;) = 0,
(i=0,1,2j=1,2, --.) defined for all x; € &, such thatY%, §;(x,;) = 1. The quantities
8;(x;), i = 0, 1, 2, represent respectively, the probability of taking another observation,
accepting H,, and accepting H, when j observations have been taken and X, = x; is
observed.

The risk function is E¢L (6, 8) and the expected risk is EL (6, §). A Bayes procedure
minimizes EL(6, §). For our study a Bayes procedure always exists; see Le Cam (1955).
The Bayes procedure with respect to the prior I" will be denoted by 8r and its stopping
time, by Nr.

Now recall & = ® n ©,. For the problems treated here we will assume that £, the
common boundary of the null and alternative spaces is nonempty, compact, and has typical
element w. Let M (g, ) be an e-neighborhood of 6, defined as the set of all ¢ € ® such that
|6 — t]] <e for any 8 € ©. (|| - || is Euclidean norm). For any set A C ©, let M(e, A) =
UgealM (¢, 0) be the e-neighborhood of the set A.

Define the support of a probability measure I'(-), as is usual, by supp I' = n {C:T'(C)
=1, C closed}. Further for i = 1, 2, let

(21) gin(xn) = J’ ﬁ)n(xn)rt(dg)/li'”l J fﬂn(xn)rl(do) + 772f fan(xn)I‘2(d0):|
9, 0, 0,

so that 7, gi.(X,) represents the conditional probability that # € ©;, given X, = X,,. Finally
let the measure P be the mixture of P, when T is the mixing distribution. We are now
prepared to prove the main lemmas. Note in the statements of these lemmas that the
requirements on the densities are minimal and even these requirements are not always
needed. For ease of presentation we omit some subscripts when no confusion will arise.

LEMMA 2.1.  Suppose X, X,, -+ - are independent and identically distributed. Assume
that for almost every fixed x € %, the density fy(x) is continuous in 6 at § = w for each w
€ Q. Assume also that sup; 4 fy(x) < o for almost all x € %. Then for every positive
constant 0 < £ < 1, there exists an € > 0 such that, if for some w € €,
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(2.2) I'iM(e, w) N ©,) >1 —¢, i=1,2
then
(2.3) Py(ni(l — &) < mga(X),i=1,2) >1-¢, 0 M(e, w).

Hence for the given ¢ and any positive integer k, there is an €, > 0 so that if (2.2) holds
with € = e,

(2.4) P(r(1—¢§) >mg;(X)),i=1,2, forevery j=k)= (1 - k&)1 —e).

Proor. Due to the continuity and boundedness assumptions, for each w €  there is
an €(w) > 0, a set E(w) C %, and a §(w) > 0 such that the following conditions are all
satisfied: P,(E(w)) > 1 — 3 £/4; for all x € E(w),f.(x) > 8(w) and supgena fo(x) < 1/8(w);
inf{[fo(x)/f.(x)]; x € E(w), § € M(e(w), w) N A} > 1 — §/4; and sup{[ fo(x)/f.(x)]; x € E (w),
g€ M(e(w), w) N A} <1+ £/4. It follows that for § € M (e(w), w)

Py(E(w)) = fo(x)u (dx)

E(w)

(2.5) =(1-§/4) fo(x)p (dx)

E
=(1-¢/4)P(E(w)>(1-§).

Also, letting A, = ©; U Q,

inf{fi(x)/fo(x) : A € M(e(w), w) N A1, 0 € M(e(w), w) N Az}

(2.6)
>(1-¢/4)/(1+¢/4) >1-¢/2,

for every x € E(w). Note,

K(w) = sup{i(x)/fo(x): A E A2, § € M(e(w), w) N A, x € E(w)}

2.7)
= [1/8()])/[8(w) (1 — £/4)] < co.

Now, £ C U,cq M(e(w)/2, w). Since § is compact, there is a finite subcover, say
(M (e(w;)/2, w;),j = 1,2, --+, J} such that @ C UL, M(e(w;)/2, w;). Choose ¢ >0 and €
< min, <=, {e(w;)/2}. Then for every w € §, there is an w; such that M(€, w) C M (e(w;),
w;). Let K = max;=;</K(w;) and choose € such that 0 < e < €, (1 — §/2)(1 — ¢ >
(1—-2£/3), Ke/(1 —€) <&/3.

Suppose I':(M(e, w) N ©;) > 1 — ¢, i = 1, 2. Then for some j, M (¢, w) C M(e(w;), w;) =
M; and T:(M; n ©;) > 1 — €. It then follows from (2.1), (2.6), and (2.7) that for every x €
E = E(wj),

[gn(x)/gm(x)]=f ﬂ(x)Fl(dg)/f fo(x)I'2(d8)
0, 0,

fo(x)T'2(d8)

LA-M
= T\ (df M,
(2.8) >L/ne‘ fo(x)T(d )/ [Lngzﬁ)(x)Fz(dO)(l+j ”

fo(x)T2(d8)

M;no,

= (1-¢/2)(1 - ¢/[1 + Ke/(1 —€)]

=(1-2§/3)/(1+§/3) =1 - 9.
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The €(w) determined to satisfy (2.6) and (2.7) can be chosen to satisfy (2.6) and (2.7) with
the indices 1 and 2 interchanged. Hence interchanging the indices 1 and 2 in (2.8) implies
also that gui(x)/g11(x) = (1 — §) for every x € E = E (w;). Using the fact that = g11(x) +
mega1(x) = 1, it is easily seen that (2.8), and (2.8) with indices 1 and 2 interchanged, imply
(2.3). We may repeat the above argument with f;, replacing f, and conclude that for each
k = 1, there is an €, so that (2.2) implies (2.3), provided € is replaced by €, in both
expressions. Without loss of generality, we may assume €; = €, = ..+ = ¢,. Since P is the
mixture of Py when I' is the mixing distribution, (2.2) holding with € = €, implies (2.4)
holds as well by applying one of De Morgan’s Laws.

REMARK 2.1. Equation (2.4) of Lemma 2.1 can still be proved if the assumptions on
fo(x) are weakened to the requirement that f;(X,) — f.(X)) in P,-probability as § — w, for
each w € Q. Furthermore independence of X,, X, --. can be relaxed provided the
continuity and boundedness assumptions hold for f;;. Independence is needed in the
succeeding lemma where Lemma 2.1 is applied.

REMARK 2.2. In Lemma 2.1 the integer £ should be thought of as a number of
prospective future observations. The lemma says that given % and &, there exists an €, such
that if a prior concentrates most of its mass around some boundary point w € Q (ie.,
T':{(M(ex, w) N ©;) > 1 —¢,) then the random variables measuring the posterior probabilities
of lying in ©; in the future (anytime during the next % observations) will both be close to
their respective prior probabilities. In other words, if the prior concentrates heavily near
the boundary, then the data will not easily be able to discriminate between null and
alternative at anytime during the next % steps. This fact will be used in the next lemma.
There the idea is that if the posterior distributions concentrate their mass around a point
in the boundary, then improvement in the posterior loss due to terminal decision for the
next k future observations is expected to be so small that it is better to stop now rather
than incur additional loss due to cost of these future observations.

Now let 7,(X,) = min;—:» (m:8:(X,)), let U,(x,) denote the minimum conditional risk
given sampling stops at stage n after x, has been observed. That is U,(x,) = cn + 7.(X,).
Also let V,(x,) denote the minimal conditional expected risk given x, and that sampling
continues at least to stage (n + 1). (V,(x,) can be expressed mathematically in a recursive
way. (See Brown, Cohen, and Strawderman (1980), pages 383-385 where V, is called f,.x.)
Further, let I'i(- | x,,), = 1, 2 denote the conditional (posterior) probability measures on
0, given X, and that § € ©,.

LEMMA 2.2.  Assume the conditions of Lemma 2.1 hold. Let T = mT'y + mI's be a prior
probability measure. Let k = 1/2¢, 0 < £ < 2¢/(k + 1), and € > 0 be smaller than e in
Lemma 2.1 and also small enough so that

(2.9) e<2c— (k+ 1)
Suppose X, = x, has been observed and for some w €
(2.10) TiM(e, w) N 61X, =x,) >1—F, 1=1,2.

Then &y stops at time n.

Proor. First note that the independence of X, X», - - . implies that a restatement of
(2.4) is

P(migin(x2)(1 — §) < mgij(X)), 1 =1, 2;
(2.11)
m+)=j=sr+kRX.=x,)=(1-kE(1 —e).

The definition of 7,(x,) and (2.11) in turn imply
(212) P(rX) > 1 = Hmxa); (n+ D == (n+ k)X, =%x,) = (1 — kE)(1 —e).
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Now assume X, has been observed. Let N’ denote the stopping time of the best
procedure which continues at least to stage (n + 1) after observing x,,. Let A = P(N' =
n+k+1|X,=x,). Then

Va(xn) Z cn + ¢ + ckA + E(rn-(Xy') - Livanshin | Xn = X,)
(2.13)
=cn+c+ (1 —kEN =€)t (x,)(1 — &)1 —A) + ckA,

by virtue of (2.12). Recall that ck = % > 7,(x,)(1 — £). Hence the right hand side of (2.13)
is minimized as a function of A = 0 by the choice A = 0, and

VaXn) = en + ¢+ (1 = RE(A — €)(1 = §)7a(Xxn)
(2.14) Zcn+ ¢+ (1 —(k + 1)§ — €)7a(X,)
> cn + 1a(Xn) = Un(Xn),

by (2.9) since 7, = %. The inequality in (2.14) implies the validity of the lemma. O

3. Exponential family. In this section we assume that the observations are inde-
pendent and identically distributed from an exponential family. The random vector X €
R?”. Here the sequence {X,}, X, =Y 1 X;/n, is sufficient, transitive, and for X,, its family
of probability distributions Py,(x), gives rise to densities of the form

(3.1) Fon(x) = @400,

with respect to some measure u,. Note that in this section x will represent the realization
x, of the sufficient statistic and will be used as the argument of all functions in Section 2
whose argument there was x,,. The parameter space © is assumed to be a convex subset of
the natural parameter space @ = {#:e%” = [’ du,(x) < ©}. We assume @ is open. The
expectation of X,,,

(3.2) B=EX,=b(6)

exists finitely for all § € ©. Let B denote the expectation parameter space. The mapping
b of 4 to B is a 1-1 continuous map. Hence we may reformulate the original problem of
testing ©, vs @, in terms of B; vs B, where B, and B, are the images of ©, and ©,. We let
D be the image of Q; D is also compact. Note that a prior distribution defined on ©
determines uniquely a prior distribution on B. (In some cases we may prefer anyway, to
test a hypothesis concerning B8 and so we may consider placing the prior distribution
directly on B or even B if we wish.) We will utilize the representation of the density in
(3.1) given in Efron (1978), page 366, namely

3.3) /?ﬁ"(x) = fxn(x)e—"”x'/“,
where f., indicates the density of X, when 8 = x, and
3.4) Iz, B) = (v(x) = v(B))x ~[Y(w(x) — $@w(BN],

where v is 57'. Note that I(x, 8) = (8. — 8)x —[¥(6.)— ¥ (8)] =1 (x, §) where 6, = v(x),
8 = v(B), and as such is equal to the Kullback-Leibler distance I*(8., 8). (See Efron (1978),
pages 364 and 366; our I*(f,, ) corresponds to Efron’s I(ai, a2).) Furthermore, I*(6., ),
defined as the right-hand side of (3.4) is a convex function of 8 for fixed §,. We utilize a
simple result of Kallenberg (1978) page 40, which states that if C is a compact subset of
O, then there exist positive constants A, A, Aa, A4 depending only on C, such that for
every 0., 60 € C(0. # 6)

(3.6) Ar=sllx—Bl/116: — 0= Az,
(3.7) Ay =T*(0., 0)/]|6. — 0]> < A,.
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Note (3.6) and (3.7) imply that there exist positive constants A5, As so that
(3.8) As < I(x, B)/llx — BII* = As.

We choose a compact C C © so that H, the image of C under the expectation map b,
contains M (e, D) where € is chosen as in Lemma 2.2. Since D is compact there will be no
difficulty in determining C and H for the proof in the theorem to follow.

It will be convenient in the theorem to follow to let I, the prior distribution, be defined
directly on B instead of on ©. In fact let I"' denote the prior measure on © induced by I'.
We list two conditions in connection with prior distributions. We say the prior distribution
I" satisfies condition I if the common boundary D is in the supports of I';, i = 1, 2. The
prior satisfies condition II if the supports of I';, { = 1, 2 contain B; n M(p, D) for some
p > 0. Clearly condition I is equivalent to € lying in the supports of I';, i = 1, 2, and
condition II is equivalent to the supports of I'; containing ©; n M («, ), for some a > 0,
where a is related to p.

THEOREM 3.1. Let the family of densities be given as in (3.3). For p = 1, let I" satisfy
condition 1, while for p > 1, let T satisfy condition 11. Then there exists m < o such that
the Bayes test satisfies Nr < m, with probability one [ Py}, for all § € ©, m independent
of 6.

PRrOOF. (Since the proof of the theorem is formidable it may prove helpful to the
reader to work with the special cases of multivariate and univariate normality with
unknown means and covariance identity.)

We may assume 0 < 7 < 1. Let 8y € D, let € satisfy the hypotheses of Lemma 2.2, and
let M; = M (e, Bo) N B;. Then

(3.9) [(M|X,=x) = J ﬁm(x)ﬂ(dﬂ)/[j fan(x)Ti(dB) +j ﬁ?n(x)ri(dﬂ):}»
M, M, B~M,

where x represents a point in the p-dimensional sample space of X,,. Use (3.3) in (3.9) and
rewrite so that (3.9) becomes

(3.10) 1 / [1 + { J e M =AT(dB) / f e =8 I‘i(dm}].
B,—M, M,

Since D is contained in the support of I';, the curly bracketed term in (3.10) is bounded
above by

(311) {F,(M((S, BO) n Bi)}—le-—n(infl(x,,B):/?EB,—M,)/e—n{supl(x,ﬁ):ﬁeM(&,/!o))’
for any §, 0 < 8 < e. Note for the numerator of (3.11) that for x € M($, Bo)
(3.12) es|B-Boll=IB—xl+x—Boll=lIB— x|+,

so that || 8 — x|| = € — 8. For the denominator if x € M(§, Bo), || x — B = 28. Using (3.8)
with H = M (e, D), and noting that § can be chosen so that As(e — 8)* > A4(28), it follows
that for all x € M (8, Bo), there exists n(fB,) sufficiently large so that if n = n(f), (3.9) >
(1 —¢) fori=1,2and (2.10) holds. We wish to select n so as not to depend on y. Therefore
fix v, 0 < y < § and consider {M (8, 8): 8 € D)}. This is an open cover of M (y, D). This
latter set is compact, which implies there exists a finite subcover M(§, 8;),j=1,2, -+, J.
Let n, = max n(g;), and note that for n = n, and all x € M(y, D), (3.9) > (1 — ¢) and (2.10)
holds. Consequently, by Lemma 2.2, 8 stops whenever n = n; and x € M(y, D).

Next we show that an integer m, can be chosen so that for all n = m,, 7.(x) < cifx €
M(y, D)™ where ~ denotes complement in B. If such an m, is found, by choosing m = max
(n;, mi) the theorem will be proved. Recognize by the definition of 7,(x) = min;<;<»
(m:8in(x)), that 7,(x) < c if magon(x) < c Or M2g2,(x) > 1 — ¢. Since m282,(x) can be written
as
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PRREIE

(58 = (B8 = o' (xB

Fic. 1 FiG. 2

(3.13) 1 / [1+(m/m){ f e M=A T(dB) / J’ e*"“"*’“l‘z(dﬂ)H,
B, B,

the theorem will be proved if we show that the curly bracketed expression in (3.13) tends
to zero or to o as n — o uniformly for x € M(y, D)~. Our plan is as follows: Partition
M(y, D)~ into two sets, namely B, — M(y, D) and B; — M(y, D). For x € B, — M(y, D),
find m. sufficiently large so that the curly bracketed expression of (3.13) is arbitrarily close
to zero for n = m,. For x € B; — M(y, D), find m; sufficiently large so that the curly
bracketed expression of (3.13) is arbitrarily large for n = m;. Then choose m; =
max(ms, m3). The argument for x € B; — M (y, D) would be completely analagous to the
argument for x € B, — M(y, D). Hence we argue only the case where x € B, — M(y, D).

To summarize, the proof will be complete if we can show that the curly bracketed
expression of (3.13) tends to zero uniformly for x € B, — M(y, D).

Let T" satisfy condition I and let y" = min(y, p) where p is described in condition II. The
set D is compact, hence the set D»(y'/2) = aM(y’/2, D) n B, is compact. (Here, 3 denotes
boundary and so D.(y’/2) can also be written as {8:8 € B,, |8 — D|| = y'/2}.) From
continuity and convexity properties of I and compactness of D, and D it follows that there
exists 71 > 0 and € > 0 such that 8’ € Di(y'/2), B € M(B’, 1), 81 € (B, U D), implies

(3.14) LB, B) — I(B, B) >e>0.

Obviously, n = y’/2. Since the map &:® — B is continuous and D.(y’/2) is compact there
exists an « > 0 such that 5(8") € Dy(y'/2) and || § — 8’ || < « implies || b(8) — b(8')|| = 7.
Now, define 8*(x) € B, by

(3.15) I(x, B*) = infgep, I(x, B).

(When (3.15) does not uniquely define 8*, then any choice for 8*(x) satisfying (3.15) is
okay.) Recall that © is convex, I*(v(x), §) = I(x, b(f)) is convex in §, and the expectation
map b, is continuous and 1-1. These facts imply that for x € B, 8*(x) lies in D. For x €
M(y’, D) define E(x) to be the point closest to 8*(x) which lies in the intersection of
Dy(y’/2) and the line joining x to B* (x). Formally, E(x) =f.(x) where [{,(x) = B*(x) +
a(x — B*(x)) and a, = inf{a:ﬁa(x) € M(y’, D) — M(y'/2, D)}. Figure 1 illustrates x, 8%,
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B, etc., and Figure 2 illustrates the corresponding points v(x), w*(x) = v(B*(x)), f(x) =
v(S(x)), etc. (These figures are drawn for the case where  is a differentiable manifold or
curve, in which case the (outward) normal to @ at «* is in the direction of x — 8*. See
Efron (1978) page 365).

Let T(x,a) = {6: 0 € ©, 0 € M(A(x), o), (8 — §)'(x — ) > 0}. Again, see Figure 2. Note
for later use that b(T(x, ¢)) T M(y’, D) since n < y’/2. Hence T'(x, «) C supp I'z. Also note
that T'(x, «) contains the interior of a ball of radius a/2. Call this ball S,(8). (We treat the
case where D. is a connected set. When D, is finite the argument throughout is much
easier. When D, is not connected and not finite the argument just requires repetitions.)
Note that S,(f) converges pointwise to S,(6q) if 16— 4| — 0. Hence there is a constant ¢
> 0 such that

(3.16) DT (x, ) > &> 0,

for all x & M(y’. D). To prove (3.16) note that infier - 02T (x, @) = infiep, Ta(S.(0)).
Express '2(S.(f)) as the integral of the indicator function of the open set S.(0) and use
Fatou’s lemma to conclude that T»(S.(8)) is a lower semicontinuous function of §. The
inequality in (3.16) then follows since ), is compact and ['2(S,(6)) > 0 for all § € D, by
condition II.

We are now ready to proceed to show that the curly bracketed expression of (3.13)
tends to zero uniformly for x € B, — M (y, D). Let § € T'(x, ). Applying (3.4) yields

I, B%) = 1(x, B) = (0 —w™)x — (O) — (™)

(3.17) == w)B— WO — ) + ¢ — ) (x—f)
=18, B*) ~ 1B, B) + 0 — &™) (x = f).

Now, (x = f8) = ||x = (B — B*)/| B — B*|| = C(B — B*), where C = 1. Hence
(318) (- =-B=0-0@-P+ G- x=F=Cl-w"f -p"),
because of the above and the definition of T'(x, «). Next, ,
(3.19) - w0 B = B") =G~ ®@) - bw*)>0
since b(f) = ¢’(#) and ¥ is a positive, convex function. Thus

I, B*) = I(x, B) = 1B, B*) — I[(B, B) + (8 — w*)(x = f)
(3.20)
=18, %) -1, B)>e>0,

by (3.14).
Return to the curly bracketed expression in (3.13):

{f e*"”"/“l‘:(dﬁ)/J‘ e—nl(x,/f)r\Z(dB)}

B B,

= e—nlm/f"/Jy e_"“'r‘l“Fz(dB)
b(T (x,0))

—1
<J’ e“nll(x./“"""/)'"Irz(d‘g))
bIT i x,a))
-1
(J’ e’ I’z(ﬂ”)
b{T (x,a))

=e (T T(x, &) ' =& Te™—0

1

(3.21)

IA
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uniformly as n — o for all x & M(y’, D). This is the desired result for p > 1.

If p = 1, we need consider the case where one of the priors, say I';, puts positive mass
on a boundary point, say ', where 8’ € B;. For simplicity of exposition we treat the one
sided hypothesis testing problem, although all the cases can be argued similarly but with
more detail. Thus we assume x € M (y, 8)", x € B, and B: = (B’, =). In this case the
reciprocal of the bracketed expression in (3.13) is bounded above by

(322) K J e~nl(x.ll)1'\2(d,8)/e-nl(x,[;"b.
B,

We may choose ¢{ sufficiently small so that for any given arbitrarily small ¢, (3.22) can be
written as

B+ oo
K[J e~nl(x,[f)r\2(dﬁ) + J e—nI(x,[f)FZ(dB)/e-nI(x,ﬁ')

B B+¢
(3.23) < K(B, 8 + 9 + e—n[[(x,ﬁ’+§l—1(x.ﬁ’)]}
= K{p+ e""[l(x,/f'+§)—l(x,/i'b]}'

By properly choosing { and n, using the properties of I as a function of 8 for fixed x and as
a function of x, the expression on the right-hand side of (3.23) can be chosen as close to
zero as desired, uniformly in x, for x € B,. The remainder of the argument is as in the case
p>1 10

ReEmARK 3.1. The requirement that © is convex can be replaced by the following
weaker condition: If x € M (y, D) then the line joining v(x) and w* must line in ©.

REMARK 3.2. When p = 1 and ©; n 0, # J condition II and the other conditions of
Theorem 3.1 imply bounded stopping time for the Bayes test. This case is of interest since
in Brown, Cohen, and Strawderman (1980) a complete class characterization for testing
O, vs 0, is given in terms of Bayes procedures or procedures closely related to Bayes
procedures for testing 0, vs 0.

REMARK 3.3. For testing the noncentrality parameter of a noncentral chi-square
distribution condition II again yields that the Bayes test has bounded stopping time. This
follows from the fact that the theorem works for the multivariate normal distribution with
unknown mean and known covariance matrix, which without loss of generality is chosen
to be the identity matrix. Spherically symmetric priors yield tests based on a chi-square
random variable so that spherically symmetric priors satisfying condition II yield the
desired result.

We conclude this section with discussion, extensions, and generalizations. If p = 1,
Theorem 3.1 can be proved for a class of distributions more general than the exponential
family: Observations need be independent and identically distributed and there must be a
sequence {7} of one dimensional sufficient statistics whose distribution has monotone
likelihood ratio. Such a class includes the exponential family as well as the uniform
distribution with unknown scale parameter. The proof for this class of distributions is a
probabalistic proof that is completely different than the proof of Theorem 3.1. Since the
case of the uniform distribution with unknown scale parameter can be verified by directly
referring to the fundamental lemmas and since there are not many other interesting
distributions in this class we will not give a detailed proof. The proof does, of course, refer
to the fundamental lemmas and the bracketed expressions in (3.10) and (3.13) are then
studied. Both of these expressions, regarded as random variables, are martingales. The
martingale convergence theorem and monotonicity properties of the ratios are then used
to show that (3.10) and (3.13) have the desired limiting values.



844 R. H. BERK, L. D. BROWN AND ARTHUR COHEN

Theorem 3.1 is quite general in the sense that it immediately identifies a large class of
prior distributions for which the Bayes tests has a bounded stopping time. The result
applies to the multivariate exponential family provided other conditions on the null and
alternative spaces are satisfied. Discrete and continuous distributions are permitted.

The result can be obtained for more general loss functions. Let W (6, 7) represent the
loss due to terminal decision. Then with our present loss function W(g, r) = 0 whenever
(BEB,7=1)and (BE By, 7=2); W(B,7) =1if (BE By, 7=2) and (B € By, 7 = 1). First
we give

COROLLARY 3.1. Assume all the conditions of Lemmas 2.1, 2.2, and Theorem 3.1 are
true. Let the loss function be as before except that now W(B,7) =w, >0if (BE By, 7=
2) and W(B, 1) = ws > 0 if (B € B,, 7 = 1). Then the conclusion of Theorem 3.1 is true.

Proor. Without loss of generality assume w; = w.. In Lemma 2.2 choose 2 = w,/c,
0< ¢<c/wi(k+1),and 0 < e < (¢c/wy) — (k + 1)& The proof of Lemmas 2.1, 2.2, and
Theorem 3.1 can be repeated. [

Now let p = 1 and consider the one sided testing problem. That is, B, = (-, 8*],
B; = (B*, ). Let W(B,7) =0if (BE B, 7=1)or (BE By, 7=2). If (BE€ By, 7=2),
W(B, 7) = w(B) = 0 while if (8 € By, 7= 1), W(B, 7} = wo(B) = 0. Assume for i = 1, 2

(3.24) w;(B) continuous, w;(B*) =0, wi(B) >0 exceptat B =p*

Consider

(3.25) J' wi(ﬁ)ﬂn(x)n(dl?)/[mj foen()T1(dB) + mf ﬁn(x)Fz(dB)],
B, B, B,

@ B*+e

(3.26) f wa( B) fon(x)Ta(dpB) / j fun(x)T2(dB),
B*+e *

and
e ) b

(3.27) j wi(B) fpn(2)T1(dB) / J' fan(x)T (dB),
. e

where € is any positive number.

COROLLARY 3.2. Assume the model for Theorem 3.1 holds for p = 1 except now the
loss function satisfies (3.24). Assume T" satisfies condition 11. Assume (3.25) is finite for
all x and n. Furthermore assume that for any given € > 0 there exists a positive number
vy such that for all x such that x € (B*, B* + v) lim,_. (3.26) = 0 and for all x €
(B*, B* — v) lim,_.. (3.27) = 0. Then the Bayes test has bounded stopping time.

REMARK 3.4. The conditions in the statement of the corollary pertaining to (3.25),
(3.26), and (3.27) are very easy to check and are not very restrictive. They hold when
wi(B) are bounded; when [p w:(B)Ti(dB) < =; and in many cases when neither of these
two more restrictive conditions hold. The verification of (3.26) and (3.27) would involve an
argument similar to that used in the beginning of the proof of Theorem 3.1. (see the curly
bracketed expression in (3.10)). The w,(8) would have to tend to infinity very fast if
conditions (3.26) and (3.27) are to be violated. Note that a linear loss satisfies (3.24).

ProoF oF COROLLARY 3.2. The proof involves showing that for all x, 7.(x) < ¢ for all
n sufficiently large. This is accomplished, first by showing that 7,(x) tends to zero uniformly
for x € (B* + v, ©) and uniformly for x € (=, * — y). These two facts are proven as they
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were in Theorem 3.1 except that now (3.24) and condition II are needed. For x € (8* — v,
B* + y) we argue as follows:
By definition

(3.28)
Ta(X) = MiNi<ize {f wi(ﬁ)f[iu(x)ri(d,g)/[ﬂl f fon (01 (dB) + sz ﬁfn(x)FZ(dﬁ)}}-
B B, B,

(Note that 7.(x) is now defined differently from how it was before.) Split up the range of
integration for the numerator in (3.28) into two pieces ((8*, B8* + ¢€), (B* + ¢, =)) for B,),
use conditions (3.24), (3.25), and (3.26) and the result regarding 7,(x) < ¢ for n sufficiently
large follows. 0

Next replace (3.24) by

wi(B) continuous, limg_.z+ wi(B) = w >0 wi (B)>A>0,
(3.29)
Supges, wl(ﬁ)ﬁin(x) < for all x.

COROLLARY 3.3. Assume the model for Theorem 2.1 holds for p = 1 except now the
loss function satisfies (3.29). Assume (3.25) is bounded for all x and n. Then the Bayes
test has bounded stopping time.

Proor. The analogue of Lemma 2.1 is needed and can be produced with condition
(3.29). The analogue of Lemma 2.2 is needed and can be produced when (3.25) is bounded
for all x and n. The arguments of Theorem 3.1 can then be used with minor alterations. 0

COROLLARY 3.4. Assume the model of Theorem 3.1 except now let the cost of the jth
observation be c; > 0. Assume c¢; > ¢ > 0. Then the conclusion of Theorem 3.1 holds.

Proor. The only changes required are in Lemma 2.2 where %, £, and € are now chosen
sothat k=% ¢, 0<é<2¢/(k+1)and0<e<2c—(k+ 1)¢& O
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