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ASYMPTOTIC INFERENCE FOR EIGENVECTORS

By Davip E. TYLER

Old Dominion University

Asymptotic procedures are given for testing certain hypotheses concern-
ing eigenvectors and for constructing confidence regions for eigenvectors.
These asymptotic procedures are derived under fairly general conditions on
the estimates of the matrix whose eigenvectors are of interest. Applications of
the general results to principal components analysis and canonical variate
analysis are given.

1. Introduction and summary. Let M be a p X p matrix which is symmetric in the
metric of the positive definite symmetric matrix I', i.e., I'M is symmetric. Let the
eigenvalues of M be represented by A; = A, ... = A,. Also, let M, be a sequence of
estimates of M such that a, (M, — M) converges in distribution to a multivariate normal
distribution, where a, is an increasing sequence of real numbers, and let A be a p X r
matrix with rank(4) = r.

In this paper, under the assumption that A;—; # A; and Ai+m-1 # Ai+m, the following two
null hypotheses are considered. For r =< m, we consider

(1.1) Hy: the columns of A lie in the subspace generated by the set of eigenvectors
of M associated with the roots Ai, Aiv1, ..., Aixm—1.

For r = m, we consider

(1.2) H¢: the eigenvectors of M associated with the roots A;, Ai+1, ..., Aivm-1 lie
in the subspace generated by the columns of A.

The assumption on the eigenvalues is to be interpreted as A;+m—1 # Aivm When { = 1, and
A1 #A;wheni+m—1=p.

Under fairly general condition on M,, a consistent asymptotic chi-square test of H, is
given. This test is based upon the asymptotic normality of the “orthogonal” projection of
the columns of A onto the subspace generated by the eigenvectors of M, associated with
the ith to (i + m — 1)th roots of M,.. For H§, an asymptotic chi-square test is constructed
by relating this hypothesis to a hypothesis of the form given in (1.1).

An asymptotic confidence region for the subspace generated by the eigenvectors of M
associated with the roots A;, Ai+1, . . ., Ai+m—1 is then given. This confidence region is based
upon the asymptotic chi-square test of H, for the special case when r = m.

Anderson (1963) gives an asymptotic chi-square test of H, for the special case m = 1
and when M, is the sample covariance matrix from a multivariate normal sample with
population covariance matrix M. This paper is thus a generalization of Anderson’s results.

James (1977) gives exact tests for a hypothesis similar to (1.1) when M, is the sample
covariance matrix from a multivariate normal sample with population covariance matrix
M. James considers the hypothesis that the columns of A generate an invariant subspace
of M. His hypothesis does not state with which eigenvalues of M the invariant space is
associated, whereas the hypothesis considered in this paper does. The approach used by
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James uses special properties of the sample covariance matrix from a normal sample and
does not readily generalize to other matrices.

For other related works on the distributional and inferential theory for eigenvectors,
the reader is referred to Anderson (1951), Mallows (1961), Chambers (1967), Hirakawa
(19764, 1976b), Izenman (1976) and Sugiura (1976).

Applications of the general results in this paper are illustrated through the following
two examples: the principal component vectors for the covariance matrix of an elliptical
distribution, and the canonical vectors associated with two random vectors which jointly
have an elliptical distribution.

2. Preliminaries. Spectral Theory. LetSbe a g X g real matrix which is symmetric
in the metric of a real positive definite symmetric matrix 7. In order to establish notation
and vocabulary, the spectral theory for S is briefly reviewed below. A more detailed review
can be found in Kato (1966) or Nerring (1970).

If Sx = Ax for some x # 0, then A is an eigenvalue of S and x is an eigenvector of S
associated with A. All eigenvalues of S are real. The spectral set of S, denoted ¥ is the set
of all eigenvalues of S.

The eigenspace of S associated with A is V(A) = {x € R?| Sx = Ax}, where R is the set
of all g-dimensional real vectors. The dimension of V(A) is the multiplicity of A, say m(A).
If A and p are two distinct eigenvalues of S, then V(A) and V(u) are orthogonal subspaces
in the metric of T. That is, if x € V(A) and y € V(u), then x'Ty = 0.

Since S is symmetric in the metric of T, we have the decomposition, R? = Y e+ V(A).
The eigenprojection of S associated with A, denoted P(]), is the projection operator onto
V(M) with respect to this decomposition of R?. The spectral decomposition of S'is S =
YaesAP(A). If v is any subset of the spectral set & then the total eigenprojection for S
associated with the eigenvalues in v is defined to be Y e, P(A). For any set of vectors {x;}
in V(A\) such that x;Tx, = §,,, where §;, denotes the Kronecker delta, P(A) has the
representation P(A) = Y74 xx/T. Thus, P()\) is symmetric in the metric of T.

The eigenvalues and eigenprojections of “symmetric” matrices have the following
important continuity property.

LEMMA 2.1. Let S, be a ¢ X g matrix symmetric in the metric of T, and with
eigenvalues \1(Sr) = A2(Sk) = -+ - = A\g(Sk). Let P;,(Sy) represent the total eigenprojection
for Sy associated with \;j(Sy), ..., A (Sk) for t =j. If Sy —> S as k — =, then

(1) Ai(Sk) = A(S), and

(i) P;.(Sk) = P;.(S) provided A;—1(S) # \;(S) and A(S) # A+1(S).

Generalized Inverses and Quadratic Forms. A generalized inverse of S is any S~ such
that SS™S = S. The Moore-Penrose generalized inverse of S, denoted by S™, can be
represented by S* = YicsaxoA'P(A). In this section, some basic results concerning
generalized inverses and quadratic forms involving generalized inverses are presented.

LEMMA 2.2. Let S, be a ¢ X q random matrix symmetric in the metric of T, where T,
is random. If S, — S in probability with rank(S) = s and Prob[rank(S,) = s] — 1, then
Sy — S* in probability.

Proor. Let P,(S,) be the eigenprojection of S, associated with its zero eigenvalue. It
then follows from Lemma 2.1.3ii) that S; = {[S, + P.(S,)]"' — Ps(S.)} = {[S + P.(S)]!
— P,(S)} = S" in probability.

For a ¢ X k matrix C, let .#(C) represent the manifold of C, that is
(2.1) M(C) = {v E R|v = Cw for some w € R*}.
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LEMMA 2.3. Let S be a positive semidefinite symmetric matrix of order ¢ X q, x €
M(S), and B a q X k matrix with rank(B) = k, then

(i) xX’B(B’SB)”B’x is invariant with respect to the choice of the generalized inverse
for B’SB.

(i) x’B(B’SB)™B’x = xX'S™x with equality if k = q.

(iii) x¥’'S™x = (x'x)%(x’Sx)~.

Proor. For B = I, part (i) follows since x = Sy for some y, and so x'S™x = y'SS™Sy =
y'Sy for any generalized inverse. For general B, part (i) follows by noting that B'x €
M (B’SB).

For part (ii), note that S**B(B’SB)"B’S'* is idempotent, where S'/? = Y,c ,A'?P(A),
and thus x’B(B’SB)™B’x = y'SB(B'SB)"B'Sy < y’'Sy = x'S™x.

To prove part (iii), the Cauchy-Schwarz inequality can be used to obtain (x'x)? =
[x'S3(S*)?x] = x'Sx x'S*x = x'Sx x'S"x.

Let x%(8) represent a chi-square distribution on % degrees of freedom and with
noncentrality parameter 8. That is, if X ~ Normal(g, Irx:) then X'X ~ x%(u'p). The next
lemma concerning asymptotic chi-square variables is given by Moore (1977).

LEmMMA 24. If X, —4 Normal(n, Ex) with rank(Ex) = v, and if B, — B in probability
where B is any generalized inverse of Xx, then

() X, B.X,—ax: forp=0, and

(i) X.B.X,—ax2(w I% n) provided p € #(Ix).

Kronecker Products and the “vec” Transformation. For random matrices, it is
convenient to introduce the following notation. If B is a b X ¢ matrix, then vec(B) is the
transformation of B into a b¢-dimensional vector in the following fashion. Let B =
[b; b, - -b,] where b; is the jth column of B, then

b,
b,
2.2) vec(B) =

b,
If Bisa b X t matrix and C is a ¢ X u matrix, then the Kronecker product of B and C
is the bc X tu partitioned matrix BQ C =[6:Cl,j=1,2,...,band k=1,2,..., ¢t with

J varying over rows of matrices and % varying over columns of matrices.
An important property relating the “vec” transformation and the Kronecker product is

(2.3) vec(BCD) = (D' ® B)vec(C),

where the dimensions of the matrices B, C, and D are such that the multiplications are
properly defined. Other properties of the “vec” transformation and the Kronecker product
can be found in Neudecker (1968).

The commutation matrix or permuted identity matrix is the ab X ab matrix I, =
S, Y% E;®E};, where E;;is an a X b matrix with a one in the (i, j) position and zeroes
elsewhere. The commutation matrix has been extensively investigated recently by Magnus
and Neudecker (1979). Two important properties of the commutation matrix are

(2.4) Lo vec(B) = vec(B’),
and
(2.5) Iapy (C® D) = (D® C)c,a,

where Bisb X a,CisbX d,and Dis a X c.
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Finally, the following two lemmas are needed. The first lemma is a special case of the
theorem given by Okamoto (1973).

LEmMMa 2.5. If B is a ki X ks random matrix such that vec(B) ~ Normal(0, S) with
rank(S) = k, k., then rank(B) = min(k,, k2) almost surely.

LeEmMA 2.6. If B, and B are k; X ky; random matrices such that rank(B) = b almost
surely, Prob[rank(B,) = b] — 1 and B, —4 B, then Prob[rank(B,) = 4] — 1.

Proor. By Lemma 2.1(i), it follows that A, (B B.) —a Ay (B’B) which is almost surely
nonzero. The lemma follows since rank(B,) = rank(B, B,).

3. Assumptions. In order to form an asymptotic test for (1.1), a sequence of esti-
mators M, for M are needed which satisfies the following assumptions. The implications
of Assumption 3.1(iii) are to be discussed in Section 8.

ASSUMPTION 3.1.

(i) M, is symmetric in the metric of I',, a positive definite symmetric matrix, with T',
— I in probability.

(i) a.(M, — M) —4 N where a, is an increasing sequence of positive numbers such
that a, — « as n — o, and vec(N) is multivariate normal, mean zero, and covariance
matrix X.

(iii) For B which is p X p, ¥ vec(I'B) = 0 implies M(B + B’) = 0.

It is also necessary to have a sequence of estimators ¥, for ¥ which satisfies the
following properties.

ASSUMPTION 3.2

(i) £, is symmetric and positive semidefinite.

(i) £, — X in probability.

(iii) Let &, = {¥. vec(I'»B) = 0 implies M, (B + B’) = 0} then Prob(Q,) — 1.

It is to be understood that the asymptotic procedures given in this paper are only
defined on the intersection of 2, with

(3.1) C,= {&-1 “ A and Nomo1 # Xi+m},

where A, = X, = ... = 7\,, are the eigenvalues of M,. It is irrelevant to the asymptotic
properties of the procedures what action is taken otherwise, since by the continuity of the
eigenvalues of “‘symmetric” matrices, that is Lemma 2.1 (i), Prob(C,) — 1.

4. Asymptotic Distribution of the Eigenprojection. Letw = {A\;,Aix1,...,Aixm-1}
and let w = {}A\,», Nty oo e, }A\Hm-l}. Also, for A an eigenvalue of M, let P, represent the
eigenprojection of M associated with A. For A an eigenvalue of M,, let P, represent the
eigenprojection of M, associated with A. For convenience, define Py = Yic. Py and P, =
eruﬁpx. P, represents the total eigenprojection of M associated with the eigenvalues of M
in w, and P, represents the total eigenprojection of M, associated with the eigenvalues of
M, in 0.

The null hypothesis (1.1) can thus be rephrased as
(41) HQIP()A =A

where A is p X r with rank(A) = r = m.

A natural statistic to consider in testing H, is the difference between A and its
“orthogonal” projection onto the eigenspace of M, associated with the eigenvalues in w,
that is (A — P,A). In obtaining the asymptotic distribution of this statistic, the Taylor
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series expansion of P, about P, is to be used. This expansion is given in the following
lemma. The lemma is a simplified version of more general results given in Chapter 2 of
Kato (1966). A proof of this simplified version can be found in Appendix B of the author’s
dissertation.

LEMMA 4.1. Let do=min{Ai—1 — Ai, Aiem—1— Aiem }, and di = (\; — Nisxr—1). Also define
the norm || B|| = [max eigenvalue ('"'B'TB)]"*. If | M, — M|| < d,/2, then

By = Py — Shew [PA(M, — M)(M — NI)* + (M — A)*(M,, — M)P,] + E,,,
where |E,|| = (1 + di/dy)(2 || M, —~ M||/dy)*(1 — 2| M, — M||/dy)™".

THEOREM 4.1. If PoA = A, then vec[a, (I — Py)A] =, Normal[0, £o(A)], with To(A)
= (A’ ® I)C\,E,Cu(A ®I) and where Ci = Srcw Y A — p)"'P, ® P

Proor. Lemma 4.1 immediately yields the following limiting normal distribution
(4.2) a,(Po— Py) =>4 Ny = =Yoo [PAN(M = NI)* + (M — N\I)*NP,].

Thus, under Hy, a.(A — PyA) = a.(I — Ps)A —4 — NoA, which has a multivariate normal
distribution with zero mean. The form of the covariance matrix follows by noting that

vec[=NoA] = (A’ ® ) Yrew [((M' = AD* ® Py + PL® (M — AI)* Jvec(N)
= —(A’®I)C,vec(N).

An estimate of ¥ ,(A) which is consistent under H, is obtained by defining

(4.3) £64)=A®NC. 2.0 (AR,
where Cio=Yrew Yuge A — w7 'P, @ P;.

THEOREM 4.2. £,(A) — T o(PoA) in probability.

Proor. Since £, — ¥ in probability by Assumption 3.2(ii), it only needs to be shown
that

(4.4) C.— C. in probability.

To show this, note that C, and C,, are symmetric in the metric of ', ® I';' and T ® '™
respectively, and that C,. = [M, P, ® (I — Py) — P, ® M,(I — P})]" and C, =
[MP,® (I — P;) — Py® M'(I — Pj)]". Statement (4.4) then follows by Lemma 2.2, since
rank(C.) = m(p — m) = rank(C..).

5. An Asymptotic Chi-square Test. In this section, an asymptotic chi-square test
for H, is given based upon the asymptotic normality of a,(I — Py)A. Before introducing
the test statistic, the following theorem and corollary are needed.

THEOREM 5.1. Ifrank[PoA] = r, then
(l) M [Xo(A)] =4 [Ir)(r ® (I - Po)] and
(i1) rank[Xo(A)] =r(p — m).

Proor. The proof consists of determining the null space of £,(A). For G which is
p X r, [vec('G)] X (A)vec('G) = [vec(I'B)]" £ vec(I'B), where B = Yicw Yugu
(A = w)"'P,GA’Pj}. So by Assumption 3.1(iii), £,(A)vec(I'G) = 0 implies M(B + B’) = 0,
which implies P,G = 0 for u & w.
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The last implication is justified by the following contrapositive argument. Suppose p
¢ wand P,G # 0. .

Case I: 0 & w. M(B + B')P, = {Trewh — p) 'PA}AG'P;, # 0, since rank[{ ThewA-
A= 'PYAl=r.

Case 1I: 0 € w. P,M(B + B’) = uP,GA'{Trew(X — p)7'P3} # 0.

The converse, that is P,G = 0 for all p € w implies ¥ o(A)vec(I'G) = 0, is obviously true.
Thus, the null space of ¥¢(A) is n = {vec(I'G)|(I — P;)G = 0}, and the theorem
immediately follows.

COROLLARY 5.1. If rank(P,A) =r, then
(@) M (£0(A)] = M [Lx, ® (I = Py)],

(ii) rank[Xo(A)] =r(p — m), and

(i) vec[(I — Po)A] € #[Eo(A)].

The test statistic is now introduced. Define
(5.1) T.(A) = a2{vec[(I — Pp)A]}'[E o(A)] vec[(I — Py)A].

The value of T.(A) does not depend upon the choice of the generalized inverse for ﬁo(A),
at least asymptotically. Another property of the statistic T,,(A) is that asymptotically it is
invariant under post-multiplication of A by a nonsingular matrix. This property is impor-
tant since the hypothesis H, is invariant under postmultiplication of A by a nonsingular
matrix. More specifically,

THEOREM 5.2.

(1) On the set {rank(ﬁoA) = r}, T.(A) is invariant under different choices of a
generalized inverse for £,(A). :

(ii) On the set {rank(lsoA) =r}, T.(A) = T.(AB) for any nonsingular matrix B.

(ii1) Whether or not H, is true, Prob{rank(poA) =r}— 1.

Proor.

(1) By corollary 5.1(iii), this result is obtained by application of Lemma 2.3(i) to T,(A).

(ii) This result follows immediately from part (i) by noting that vec[(I — Py)AB] =
(B’ ® I)vec[(I — Py)A), and that (B’ ® I)[£o(AB)]™(B ® I) is a generalized inverse of
Xo(A).

(iii) Case I rank(PoA) = r. Since PobA — PyA in probability, and rank(PyA) < r, the )
theorem follows from Lemma 2.6.

Case II: rank(PyA) = ro < r. Let C be a nonsingular matrix such that AC = [A; A.] and
where PyA; = A, and PyA; = 0. The order of A, and A, are p X ro and p X (r — ro)
respectively. Also, let A, = [A, A3] where A; has order p X (m — ry) and chosen such that
PyA; = Ayand A'TA; = 0.

Since r = rank(PyA) = rank(A,TPyA) = rank[A, [P, A, a,A,T'PyA;], and [A, TP A,
a, A, TPAs] =4 [A,TA; A,TNoA,], where N, is defined in (4.2), the theorem then
follows from Lemma 2.6 provided it is shown that

(5.2) rank[A TA; A\ TNyA,] =r almost surely.

To show this, note that vec(A . I'NoA;) ~ Normal(0, ¥ ), where £, = C, X C, with C,
= Yicw Yugw A — 1) ' P,A; ®TPA, . If Gis an m X (r — ro) matrix, then vec(G)'E ,vec(G)
= vec(I'B)'E ,vec(I'B), where B = Thew Yagw (A — ) 'PAA,GALP,. 1t is then easy to
verify that if G # 0, then M(B + B’) # 0. So, by Assumption 3.1(iii), X , is nonsingular.

Since ¥, is nonsingular, rank[A,T'NoA;] = r — ro almost surely by Lemma 2.5, and
A, T'NyA, is almost surely linearly independent of A, T'A; = [I, 0]'. Statement (5.2) follows
by noting that rank[A,T'A,] = ro. The proof is thus complete.

By the previous theorem, T,(A) is unique on the set { rank(ﬁoA) = r}, and the Moore-
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Penrose inverse for }fo(A) can thus be used on this set. In addition, if M, is symmetric,
then T,.(A) has the representation

(5.3) T, (A) = a2[vec(A))[£o(4)] vec(A)

on the set {rank(lsoA) = r}. This statement is justified by noting that forAa symmetric
matrix B, Bx = 0 if and only if B*x = 0. It is easy to verify that fo(A)vec(PoA) =0.
The asymptotic distribution of T,(A) is given in the next theorem.

THEOREM 5.3.

(i) If PoA = A, then To(A) —a Xip-m.

(i) If A, = A + a;'B with PobA = A and PoB = 0, then Tw(A,) =4 X2p-m[8(A, B))],
where 8(A, B) = vec(B)'[X0(A)] vec(B).

(iii) If PyA # A, then for any fixed x, Prob[T,(A) > x] — 1.

Proor. (i) By Lemma 2.2, Theorems 4.2 and 5.1(ii), and Corollary 5.1(ii), it follows
that [Z'J\O(A)]+ — [X0(A)]" in probability. The theorem is then obtained by application of
Lemma 2.4(i) and Theorem 4.1.

(ii) By Theorem 4.1, vec[a.(I — Py)A,] —4 Normal[vec(B), (A)]. Also, by expanding
$0(A,) and applying (4.4) it follows that fo(A,,) =%£(A) + 0p(a;'*) for any € > 0. So, by
Theorem 4.2, £(A,) — Eo(A) in probability and by Theorem 5.1(i), vec(B) € .4 [Eo(A)].
The result thus follows from Liemma 2.4(ii).

(ili) By Corollary 5.2(iii) and Lemma 2.3(iii), it follows that T.(A) = ai(chc.)*-
[cl.fo(A)c,,]‘l, where ¢, = vec[({ — 150)A]. The theorem follows since ¢, — vec[ (I — Py)A]
in probability, which is nonzero.

In summary, consider the following test for H,.
Reject H, if either
(5.4) (i) rank(PoA) <r, or
(i) rank(PoA) = r and Tw(A) > X’p-m.a

where xiais the (1 — a) percentile of a x} distribution. By Theorems 5.2 and 5.3, this test
is a well-defined consistent asymptotic « level test for Hy. Its local power function is given
by Theorem 5.3(ii) and it is invariant under the transformation A — AB for any nonsingular
matrix B.

By theorem 5.2(ii), it is irrelevant to the asymptotic properties of a test of H, what
action is taken on the set {rank(poA) < r}. However, rejecting H, for this case enables the
rejection region to be “continuous” in the sense given in the following theorem. This
property is important when using the test defined by (5.4) for constructing confidence
regions for the range of Py, as is done in Section 6.

THEOREM 54. If (A} is any sequence such that rank(PyA,) = r, Ax — A, and
rank(P,A) < r, then T,(Ay) — », as k — .

ProoF. Let ro = rank(ﬁoA), and let B be an r X (r — ro) matrix with rank(B) =r —-
ro and such that PoAB = 0. By Corollary 5.1(iii), we can apply Lemmas 2.3(ii) and 2.3(iii)
to obtain

(5.5) Ta(Ax) = To(AeB) = a; (biby)*[b} $ o(AB)bi ],

where b, = vec[(] — Py)AxB]. As k — », £0(AxB) — 0 and by — vec(AB), which is
nonzero. Thus, the right-hand side of (5.5) goes to infinity.

REMARK 1. If the assumption A;—; # A; or the assumption A;i -1 # A;+ . is false, then
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the asymptotic chi-square test given by (5.4) is not generally valid. If the assumptions on
the eigenvalues are true, then by Lemma 4.1, the “sample” size n necessary to insure that
the asymptotic chi-square test is a “good” approximation is in general inversely related to
the quantity min(A;—; — A;, Aixm—1 — Aism). In addition, if A;_; is “close” to A;, one may not
wish to study the eigenspace associated with A, separately from the eigenspace associated
with A;. So, in practice, before determining which eigenspaces are of interest, a study of the
eigenvalues is necessary.

REMARK 2. Let v = {A;,j € I'}, where I is some index set. Under the assumption A; 5
A for all j € I and & & I, consider the hypothesis

H,: the columns of A lie in the subspace generated by the eigenvectors of M

(5:6)  associated with (A, j € I},

where A is p X r with rank(A) = r = m = rank(} e, P»). This hypothesis can be tested by
using the test given by (5.4) provided w is replaced by v and @ is replaced by & = {A;,
JEI}.

REMARK 3. For r = m, the hypothesis H§ given by (1.2) can be tested by using the
following approach. Let B be p X (p — r) with rank(B) = p — r and such that A’B = 0. The
hypothesis (1.2) can then be rephrased as

H¢: the columns of B lie in the subspace generated by the eigenvectors of

6D M’ associated with the eigenvalues Ay, Aq, ..., Aict, Aivmy - -+, Ap.

Note that if M is symmetric in the metric of I', then M’ is symmetric in the metric of I'™".
It is easy to verify that if the conditions on M, I", M,, I',, ¥ and ¥, given by Assumptions
3.1 and 3.2 are satisfied, then the conditions are satisfied when M, I, M,,, T, £ and X, are
replaced by M', ™", M}, T}, var(N’) = I, ;) £ I, and I, ) I I ) respectively. So, by
Remark 2, the results of this section apply to testing the hypothesis (5.7).

Note that if r = m, then the hypothesis (1.1) and (1.2) are equivalent. For this case, the
test given by (5.4) when applied to the hypothesis (1.1) is the same as the test for (1.2)
suggested in this remark.

6. Asymptotic confidence regions. The test of H, given by (5.4) yields the following
asymptotic (1 — a) confidence region for the range of Py,

(6.1) {M (A)|Aisp X m,rank(A) =m, and T.(A) < xhp-m).4}-

One “undesirable” aspect of this confidence region is that T,(A) involves a generalized
inverse of ﬁo(A), which must be recalculated for each A. However, this problem can be
alleviated and the confidence region can be given a simpler representation.

To make the simplification, let

(6.2) Xn=[%iXix1 ++» Xivm—1],

where {%;} is defined such that M,%;, = A\;%;, and X/I",%, = §,,. By noting that P, =
X, X1, it can then be easily verified that

$o(4) = (AT, X, ® 1) £4(X) (XiT,A ® I).
So, by Theorem 5.2(ii), if rank(ISOA) = m, then

To(A) = T,[AXT2A) 7] = ar{vec[AX/:T,A) " — X1} $o(X,) *vec[AX,T,4) " — X,].

Thus, (6.1) can be rewritten as

6.3) {4 (A)| X, ToA=1 and ai[vec(A — Xn)]'f o(Xn)tvec(A — X,,) < xEp-m.c}s
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For the special case m = 1, (6.3) reduces to

(6.4) {ca|x/T,a=1 and di(a—%)A}(a—%)<xi1s),
where A= (%0 M, - M) IE[%® (M, - NI

If M, and M are symmetric, (6.3) and (6.4) respectively reduce to
(6.5) (M (A)|X,A =1 and ai[vec(A)) Eo(Xn) [vec(A)] < Xip-m.c},
and
(6.6) {ca|k/a=1, and ala'Afa<xi A},
where An=[%® M, - ND* IR [%® (M, — AD)*].

7. Applications.

7.1. Principal Components Analysis. One of the most common uses of eigenvectors
in statistics is in the principal components analysis of a covariance matrix. For this case,
let M, be the sample covariance matrix from a sample of size n from an elliptical
distribution with nonsingular covariance matrix M. That is, M, = (1/n) ¥, (Y, — Y)
(Y, — Y)’, where Y,, Ys, ..., Y, are independent and identically distributed as Y, where
Y has density function of the form f(y) = c¢| M| "?g[(y — w)’M'(y — p)] for some
constant ¢ and nonnegative function g. Also, assume that g is defined such that the fourth
moments of Y exist.

It is well-known that v (M, — M) —4 N, where N is multivariate normal, mean zero,
and with covariances given by

(7.1) Cov(nij, nks) = mum;y + miymue + k(Mimy » + mam; > + mi,mjy),

where k is a “kurtosis” parameter defined such that 3k is the kurtosis of any marginal
distribution of Y. (For example, see Muirhead and Waternaux (1980).) If Y is multivariate
normal, then x = 0.

If £ represents the covariance matrix of vec(lV), then (7.1) can be reexpressed as

(7.2) F=Q+x)T+ 1, ) MO M) + k vec(M)[vec(M)]'.
Let k be some consistent estimate of k, and let £, = (1 + &) + [,,) (M, ® M,) +
K vec(M,)[vec(M,)].

It can be verified that Assumptions 3.1 and 3.2 are satisfied, and so the results of this
paper apply to this example. In particular,

(7.3) To(A) = (1 + 6) Thew Dugu BA/A — )’ A'PLA® P,.
On the set {rank(ﬁoA) =r},
(7.4) To(A) = n(1 + §) Tuga p 'Trace{A'P, A[A'X.D.(WX,A]"},
where X, is defined in (6.2) and D,(p) is an m X m diagonal matrix with entries
N/Aj—wij=ii+1,...,i+m~— 1 Forr=m,by Theorem 5.2 (ii), A can be normalized
such that A’X,, = I and (7.4) can be expressed as
(7.5) T.(A) = n(1 + K)Trace[A’'M ,'AA, + A’M,AA;' — 2A4’A)
where A, is an m X m diagonal matrix with entries Ao RNt oy Nt
Under the additional assumption A; = Ay = «++ = Ajm-1, (7.4) is asymptotically

equivalent to the statistic

(7.6) t(A) = n(1 + K)Trace[NA'M;'A + N\ 'A’M, A — 24'A),
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where A = m™ Y2771 X, and A is normalized so that A’PyA = I. Statement (7.6) is not
valid if the assumption A; = A;s1 = - -+ = Ajym-1 does not hold.

For r = m = 1 and Y multivariate normal, T,(A) is asymptotically equivalent under H,
to the chi-square statistics given by Anderson (1963). Anderson shows that

(7.7) n[Ra'M;'a+ A 'a'M,a — 2] —a x21,

when A; is distinct, Ma = A\;a and with a normalized so that a’a = 1.

7.2 Canonical Analysis. Another common use of eigenvectors in statistics is in canonical
analysis. Let C, represent the sample covariance matrix for a sample of size n from a (p
+ q) random vector with an elliptical distribution, nonsingular covariance matrix C, and
finite fourth moments. For this case, M, = C7/C €3 Cy and M = Ci'C12C5 Car,

where
_ Cu Ce _|Cn Cre
Cn= |:C21 022] and €= I:Cm 022]'

In this example, ' = C;; and T, = C.. )
By expanding M, in a Taylor series about C and defining N} such that Jn(é i — Ci)
—4 N}, we obtain vn(M, — M) —, N where

(78) N =CiNKCHCy + CiiC1oC: Nti— CiINHCT C12C5 Cor — C1i C12C% N%C3 Con.
The random matrix N is multivariate normal with mean zero. The covariance matrix for
vec(N) is obtained from (7.8) by using the form of the covariance matrix for the limiting

normal distribution of Vec[\/;l—(c,, — C)] given in (7.2). The covariance matrix for vec(V)
is thus

T=0+x{II-M)QT"'M' +TM-M)QRI' (I - 2M)

(7.9)
+Ipp[I-M)® M - M + (M —-M?»)® (I-M)]}.

Let £ be a consistent estimate of «, and let ¥ , have the same form as ¥ with T',,, M,,, and
£ replacing I', M and k respectively. For Ci; # 0, it can be verified that Assumptions 3.1
and 3.2 are satisfied, and so the results of this paper apply to this example. In particular,

(7.10) T o(A) = (1 + k) Trew Yugw (1 = AN+ A — 2u0) /(A — w?ATPA\A®T'P,.
On the set rank(P,A) = r, we have the representation
(7.11) T.(A) = n(l +K) ¥ ,en Trace{A'T,P,A[AT,X,D, (WX T, A"},
where D,(p) is an m X m diagonal matrix with entries
A=A+ X =208/ N, —w? Jj=ii+1,...,i+m—1
In particular, for m = 1 and N 0, (7.11) becomes
(712)  Tu(a) = n(1 + RaTu(M, — X (1 — 2K)M, + KT T'a/[(1 — R)@Tnx )?).

For the special case rank(M) =i — 1 < p, (7.11) is asymptotically equivalent under H,
to

(7.13) tn(A) = n(1 + &) Trace[A’C ,C 3 C n AN A (C 1y — CCHCa)AT .

If the elliptical distribution Y’ = (Y] Y3) is multivariate normal and we choose k& = 0, then
(7.13) is the Lawley-Hotelling trace statistic for testing independence between A’Y, and
Y.

8. Relaxation of Assumptions. The results of Section 4 do not depend upon
Assumptions 3.1 (iii) and 3.2 (iii). However, the results of Section 5 do. If these two
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assumptions do not hold, then for the case r = m the quadratic form
(8.1) t(A) = a2{vec[(I — Po)AI}[£0(A)] ved (I — Py)A)]

has the following limiting distribution.

THEOREM 8.1. Let v(A) = rank[Eo(A)].

(i) If PoA = A and Prob{rank[£,(A)] = v(A)} — 1, then t.(A) —ax’a .

Gi) If A, = A + a;'B with PLA = A, Po,B = 0, vec(B) € M[Z,(A)], and
Prob {rank[£,(A,)] = v(A)} — 1, then t.(A,) —a x%a[8(A, B)], where 8(A, B) =
[vec(B)]Xo(A)* vec(B).

Proor. The proof for this theorem is analogous to the proof for Theorem 5.3(i) and
5.3(i1). The results follow from Theorems 4.1 and 4.2 by applying Lemmas 2.2 and 2.4.

In using ¢.(A) as a test statistic for Hy, it is important to note the following shortcomings.
In general, the value of v(A) may depend upon the hypothesized value of A, and the
property Prob {rank[f o(A)] = v(A)} — 1 may hold for some hypothesized value of A, and
may not hold for others. The definition of ¢,(A) is dependent on the use of the Moore-
Penrose generalized inverse, and the invariance property t.,(A) = t,(AB) for any non-
singular B may not hold. Finally, the consistency of the test statistic, that is Prob[¢.(A)
> x] — 1 for all x whenever P;A # A, does not necessarily hold in general.

If Assumptions 3.1(iii) and 3.2(iii) do not hold, then the above conditions must be
investigated for the specific problem. In such cases, a general chi-square test may not be
desirable. Other tests could be constructed using Theorem 4.1 and the specific form of
To(A).

As an aid in understanding Assumption 3.1(iii), consider the case when I = T, = I and
M is nonsingular. Assumption 3.1(iii) states that if ¥ vec(B) = 0, then B + B’ = 0. This is
equivalent to stating that the covariance matrix of the p(p + 1)/2 diagonal and upper
triangular entries of N must be nonsingular. An important example when this condition
does not hold is when M, and M are the sample and population correlation matrices
respectively.
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