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MEASURES OF INFORMATION BASED ON COMPARISON WITH
TOTAL INFORMATION AND WITH TOTAL IGNORANCE

By ERIK N. TORGERSEN

University of California, Berkeley and University of Oslo

Two measures of content of information in statistical experiments are
considered. They are both based on Le Cam’s notion of deficiency of one
experiment with respect to another.

The measures are: )

(i) The deficiency of the given experiment with respect to a totally
informative experiment.

(ii) The deficiency of a totally uninformative experiment with respect to
the given experiment. .

We shall here discuss the interpretations of such measures, establish
inequalities for them and related quantities, and study their behaviour under
replications. .

If the parameter set is finite then closed expressions for exponential rates
of convergence, as the number of replications increase, are given. In particular
the exponential rate of the minimax probability of not covering the true values
of the parameter by an r-point confidence set is expressed in terms of Hellinger
transforms. If convergence to the totally informative experiment takes place
at all, then the speed of convergence is necessary exponential. Examples are
given indicating various possibilities.

1. Introduction. In this paper we shall consider two measures of the contents of
information in statistical experiments. They are both based on Le Cam’s [14] notion of a
deficiency of one experiment with respect to another.

Let us agree, following Le Cam [14], to use the notation 8(&, &) for the deficiency of an
experiment & with respect to an experiment % This deficiency is defined for pairs (&, &)
of experiments having the same parameter set 0. §(&, &) is a function of two variables &
and Z It provides a partial answer to the question: What do we lose, in the sense of risk,
by basing ourselves on & rather than on % under the least favorable conditions for this
comparison?

The deficiency 8(&, &) is monotonically increasing in % and monotonically decreasing
in & It is also convex in each variable separately. Convexity is then defined in terms of
mixtures of experiments [30].

Deficiencies, or the related distances, may be considered as measures of contents of
information in many situations. It may be used, see Lindgvist [19], to measure the loss of
memory of the initial State X, in the tail (X;, X;+1, - -+ ) of a Markov chain (X,, X3, ---).
Swensen [22] has investigated the problem of measuring the value of a potential additional
variable in a regression model. It is also possible to construct local measures of information
based on deficiencies [24] but we shall not dwell on this here.

In order to investigate the properties of such measures it is tempting to consider, in
spite of their artificiality, distances to experiments which are either totally informative or
totally uninformative. A totally informative experiment is an experiment (Pg; 8 € ©) such
that Ps is Pg, singular when 6; # 6.. As any two totally informative experiments are
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equivalent, we shall use the symbol .Z, to denote any of them. To fix ideas we might, if we
so prefer, let .#, denote the experiment (85 8 € ®) where 8 is the one point distribution in
8. Intuitively ., is the experiment consisting of observing the underlying theory 4 itself.

A totally uninformative experiment is an experiment (Ps; § € ©) where P, does not
depend on 6. Clearly any two noninformative experiments are also equivalent and we shall
reserve the notation ./, for any of them.

Any experiment & is obviously at least as informative as .#; and at most as informative
as .

In this paper we shall consider the numbers §(#;, &) and §(8, .#,) as measures of the
content of information in an experiment & The deficiency 8(;, &) will usually be written
8:(&) while the deficiency 6(&, #,) will usually be written §,(&).

A small value of §,(&) suggests that an observation of &, provided that it is properly
used, is almost as good as knowing the unknown parameter. A large value, on the other
hand, tells us that there are decision problems such that any decision procedure is risky
for some of the underlying theories. A small value of §;(&) tells us that the chance
mechanism governing the random outcome is almost independent of the various explana-
tory theories in ©. If, on the other hand, this distance is large, then there are situations
where an observation of & is helpful.

The values of these deficiencies are often large for all experiments & under consideration.
This reflects the fact that it may be much too ambitious to compare with total information
and much too modest to compare with no information.

Having made this limitation, we shall see that these deficiencies have interesting
properties.

The contents of the paper are as follows. A few of the basic definitions and results from
the theory of comparison of experiments are summarized in Section 2. It is shown in
Section 2 that % 8(&, #,) is the minimax probability of an incorrect guess of the true value
of §. Similarly the deficiency 8(#;, &) is the minimax risk for the problem of guessing the
true value of 4, when no observations are available and the loss is measured by statistical
distance. If we restrict attention to testing problems then the corresponding deficiency
reduces to the half diameter of & for statistical distance.

The case of dichotomies, i.e., the case where § has two elements, is investigated in
Section 3. We begin by slightly completing previously known comparison criteria. In the
case of a finite sample space and one distribution being uniform, the results generalize
some of the basic inequalities from the theory of majorization.

The remainder of the paper is devoted to replicated experiments. Let & denote the
experiment obtained by combining n independent replications of & All limits, if not
otherwise stated, are taken as n — . How do these quantities behave under replications?
As is well known, it follows from the weak law of large numbers that " — .#, provided
that Py, # P, when 6, # 6, and that O is finite. If O is infinite, however, then one is tempted
to conclude that “normally” 8,(6") =, 2. There are nevertheless interesting experiments
with © infinite where 6,(&") — 0.

We shall see in Section 5 that 8,(&£")"/" converges, for any experiment &, to a constant
a(&) in [0, 1]. This implies that if §,(6") — 0 then the speed of convergence is exponential.
The rate of convergence is not determined by 8,(&) alone, since there are experiments &
such that 8,(&£) has the maximal value 2 although 8.(6™) converges rapidly to zero.

Now Chernoff [6] proved, when ® = {1, 2}, that the nth root of the minimum Bayes
probability of error converges to the minimum of the Hellinger transform. It follows that
o(&) and this minimum are the same number when &'is a dichotomy.

Because pairwise equivalence for ordered experiments imply equivalence, one might
hope that comparison with respect to .#; and .#, may, to some extent, be expressed in
terms of the dichotomies defined by restrictions to pairs. If © is infinite, then — as shown
in Section 5 — this does not hold in general. If © is finite, however, then — as is shown in
Section 4 — the approximations are readily expressed in terms of dichotomies. As in
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Section 3 we also get the exponential rate of convergence of many other functionals. (&)
does not, however, define the minimax probability of not covering the true value of § with
a r-point confidence set when r = 2. Generalizing Chernoff’s result we obtain the exponen-
tial rates of convergence of these minimax probabilities (and of the corresponding minimum
Bayes probabilities).

The paper concludes with an example showing that dramatic improvement may be
obtained by adding a single replication. This brings us close to a related topic — the
relative amount of information in additional observations. We refer the reader to Helgeland
[12], Le Cam [15], Swensen [22] and Torgersen [25] for some results in this direction.

2. Notations and basic facts. An experiment & will be defined as a family of
probability measures on a common measurable space. This measurable space and the
index set of the family are called, respectively, the sample space of & and the parameter
set of & Thus an experiment & with sample space (x, &) and parameter set © is a family
(Py; 8 € ©) of probability measures on (x, &). This experiment may be denoted by (Py; 6
€ 0) or by (x, ; Pg 0 € ©). Expositions of the theory of the comparison of experiments
may be found in Blackwell and Girshick [4], Heyer [13], Le Cam [17] and Torgersen [28].

New experiments may be derived from old ones by various devices. If O is a subset of
® and & = (Ps; § € O) is an experiment with parameter set ©, then e, denotes the
restriction (Py; 8 € @) of & to ©y. The restrictions of .#, and .#; to O, will, however,
usually be denoted by .#, and .#,, respectively.

If & = (xi, S, Ps;; 0 € ©); 1 =i = n are experiments, then ([]7%=1 (xi, #4), [#=1 Pas; 0
€ 0) is called the product of &, &, -+, & and it is denoted & X --- X &, or [[ &. If &
=& = ... = & = &then we may write &” instead of & X ... X &,. Experiments §"; n =
1, 2, - .. are called replicated experiments.

Let &= (Ps; 8 € ©) be an experiment. A random variable X will be called an observation
of & if the distribution of X under 6 is P,. Note that (X1, Xz, - - -, X,) is an observation of

&H X -+ X & if Xy, ---, X, are independent and X;; i = 1, - - -, n is an observation of &;.
If I is a probability distribution on {1, ---, 7] and &, - - -, &, are experiments with the
same parameter set, then (see [30]), the II-mixture, },1 I1;&; of &1, - - -, &, is the experiment

obtained by first observing a random index I with distribution II, and then carrying out
the experiment &;.

NoTATION. Before proceeding, we make some remarks on our use of the symbols #,
A, Y, L], A and Z. # is short for “the number of elements in”. The notations A and v are
used on several occasions for inf and sup. If, in particular, u,; ¢ € T are measures then
A and V., are, respectively, notations for inf; g, and sup, u. for the family {p; ¢ € T}
with respect to the setwise ordering of measures. If p is a measure, then || x| denotes the
total variation of u: i.e., ||| = sup{f fdu: —1 = f = 1}. We will reserve the letter A as the
notation for the set of all prior distributions with finite support. The letter ¥ will be used
as notation for “distribution of”’. Thus, for example, #»( f) is the distribution of funder P.

If & = (Py; 6 € ©) and O is finite then the distribution on the set of prior distributions
on O induced from Y4 P, by the map (dPy/d ¥, Py; 6 € 0) is called the standard measure
of & This measure characterizes & up to equivalence. We refer the reader to Le Cam [17]
for further information on these measures.

Important functionals of experiments may be defined as follows. Let ¢ be a homogenous
and measurable function on [0, o[ ® and suppose & = (Py; § € 0) is dominated by the o-
finite measure o. Then we may put ¢(&) = [ ¢(dPs; 8 € ©) = [ $(dPy/do; 6 € O) do.

If P and @ are probability measures then [ |dP — d@Q|, [ (VdP — VdQ)* and
[ VdP dQ are respectively: the statistical distance, the squared Hellinger distance, D*(P.
Q.) and the affinity y (P, @) between them.

The Hellinger transform of & = (Py; 8 € ©) may be defined as the map H, which
associates with each prior distribution ¢ having finite support the number H,(t) =



MEASURES OF INFORMATION 641

[ IydPYy. Thus v(P, ) = Hs(%, %), where & = (P, @). The Hellinger transform converts
products of experiments into products of functions i.e.:

(21) Hg’lx..vxd’,, = Hg!~ng,..., Hg".

Let & = ((x, ), (P, 8 € ©)) and F = (¥, #), (Qs; 8 € ©)) be two experiments with
the same parameter set ® and let § ~— ¢ be a nonnegative function on ©®. We shall say,
following Le Cam [14], tha'q & is e-deficient relative to  if to each finite decision space D,
every family Wy; 8 € © of loss functions on D and every risk function r obtainable in %,
there is a risk function r’ obtainable in & so that:

(2.2) r’(0) = r(0) + & supa| We(d) |; fe0®

Restricting attention to decision spaces D where #D = k we obtain the definition of e-
deficiency for k-decision problems; see [28]. If decision rules are defined as in Le Cam [14]
then e-deficiency (for k-decision problems) for all finite subsets of ® implies and is implied
by e-deficiency. If & is 0-deficient relative to % (for k-decision problems), then we shall say
that & is more informative than % (for k-decision problems) and write this & = %
(& =z F).

If £ = # and # = & then we shall say that & and & are equivalent and write this & ~
. The deficiency of the experiment & with respect to the experiment & is the greatest
lower bound of all constants ¢ = 0 such that & is e-deficient with respect to #. This number
will be denoted by §( &, #). The deficiency is not symmetric and, henceforth, not a proper
distance. A distance A for experiments is obtained by putting

(2.3) A(8, F) = max{8(&, F), 8(F, &)};

see Le Cam [14]. Similarly we may define deficiencies 8, and distances A based on k-
decision problems.

According to Le Cam’s randomization criterion, theorem 3 in [14], & = (x, &, Py; 6 €
0) is e-deficient with respect to # = (%, %, Qy; 0 € 0) if and only if there is a transition
M from the band generated by (Py; 8 € ©) to the band generated by (Qy; § € ©) so that

(2.4) | PoM — @s|| = &; 6 € ©.

If & is dominated, or more generally coherent, then M may be represented as a
conditional probability of % given & which may be regularized to a proper Markov kernel
from (x, ) to (%, #) when (%, %) is Euclidean.

If © is finite then, using the notations in [23], I" denotes the class of sub linear functions
v on R’ such that

v’y =y(—e’);0€0 and Yyy(e’) =1

Here e, for each 6, is the §th unit vector i R®, i.e., e’ = (0, ... 1, --.0). The subclass of
T" consisting of those functions in I' which are maximums of k-linear functionals will be
denoted by I';. A function y will be called superlinear if —y is sublinear. The deficiencies
are then (the sublinear function criterion) given by

(2.5) O (8, F) = supyer,, [Y(F) — v(&)].

Let us apply these results to deficiencies 8;(&) and 8.(&) for an experiment & = (x,
o, Py; 6 € ©).
The randomization criterion yields directly that.

(2.6)  8:(&) = ming sups| Ps — Q| and 8.(&) = 2 miny supy PoM({0}°),

where @ runs through all probability distributions on ./, while M runs through all
transitions from the band generated by the Py’s to the band of discrete finite measures on
0.
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It follows that 8, ( &) is the minimax risk in the estimation problem where no observations
are available and loss is measured by statistical distance. Furthermore

(2.7) Ve Supe,,6, " Pol - P02 " =6.(6) = Supe,,e, " P01 - P02 ">

where the left-hand side is 8:(.#,, &), by [23].

Similarly %68,(4#) is the minimax risk in the problem of estimating # on the basis of &
when the loss is 1 or 0 as the estimator hits or not. If & is dominated then (P,M; 8 € O) is
also dominated, so that infy P,M ({6}) = 0 when O is uncountable. Hence 8,(&) = 2 in this
case. More generally & is e-deficient with respect to .#, if and only if P,M({6}) =1 — &/
2; 8 € O for some transition M. If © is finite and each P, is atomless then, by Dvoretzky et
al’s extension [9] of Lyapunov’s theorem [20], this is equivalent to the existency of a
measurable partition Ag; € O of x such that Py(As) = 1 — &/2.

If A is a prior distribution on © with countable support then the minimum Bayes risk in
the last estimation problem will be denoted by (A | &). It is easily seen that

(2.8) bAA[&) =1—| VerePs|

and the map A ~ — b(A| &) on A defines, by Morse and Sacksteder [21], & up to
equivalence. If © is countable then each decision rule § may be represented as a random
distribution which to each x assigns the distribution §.(x) on . Suppose in addition that
each P, has density fs with respect to the measure o. Then § achieves minimum Bayes risk
if and only if, for ¢ almost all x, §.(x) is supported by {8; Asfo(x) = maxe e fo(x)}. In
particular any maximum likelihood estimator of 4 achieves minimum Bayes risk when 6 is
finite and A is uniform. It follows from straight-forward minimax theory that

(2.9) %8, (8) = Supaea b()\l &) =1 — infiexr " \ Il

The prior distribution A (with countable support) will be called least favorable if it is least
favorable in this estimation problem, i.e., if (A |&) = %8.(&).

It follows from [23] that & is e-deficient with respect to .#, for testing problems if and
only if to each subset ©, of ® there corresponds a power function 7 in & so that #(6) =
eg/20r =1 —g5/2 as § € Og or § & Oy. The sublinear function criterion (2.5) shows that

(2.10) 82( &, Mo) = sup(l — ||| YeasPs]|)

where a runs through all finite measures a on 8 with finite support and total variation =
Yolasl =1

By [23], 8:(Ms) = 8u(M,) = 2(1 — m™") where m = #0O. Hence, by the triangular
inequality for deficiencies

(2.11) 2=2/m=6.(8) + 8.(8).

One might expect that 8.( &) is small (large) when §;( &) is large (small) and conversely.
If © is finite, then this may be made precise by inequalities; see [29]. If ® is infinite,
however, then it may easily happen that 8;(£") — 2 while §,(&8") = 1 for all n.

3. Replicated dichotomies. We shall in this section assume that ® = {1, 2} i.e., that
our experiments are dichotomies. In this case deficiencies may, [23], be expressed in terms
of testing problems only. We shall need:

THEOREM 3.1. Suppose & = (P, P;) and ¥ = (Q., @2). Denote by B(a| &) and
B(a| F) the powers of the most powerful level a tests for § = 1 against § = 2 in & and
. Also denote by b(\| &) and b(\| F) the minimum Bayes risks for the same problem
for 0 — 1 loss and prior (A1, A2) in & and Z.

Then each of the following conditions are equivalent:
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@ ,B<a+%|é”)+%g,8(a|97) ;az0
(ii) [Arer + A2e2]/2 = B(A| &) — b(A, F) ;0=A=1
(i) j v(dPo/dPy) = f 7(dQ2/dQy) dQ: + 5 [¥() = Y(0)] + 2 7'(0)

for each concave function y on [0, o[ such that y(x)/x — 0 as x — .

Z[e'(D) = (6(1) — $(O)] + 5 [($(1) = $(0) — '(0)]

(iv) 2 2

= j $(dQ:/d(Q:1 + @2))d(Q1 + @) — J ¢(dPz/d(P1 + P3))d(P:1 + P3)

for any convex function ¢ on [0, 1].
(v) & is (e1, &2) deficient with respect to Z.

REMARK. If y and » are finite measures then du/dv are the Radon-Nikodym derivative
of the » continuous part of . with respect to ».

Proor. The equivalence of (i), (ii) and (v) follows from [23] while the implications (iv)
= (iii) = (ii) follows by applying (iv) and (iii) to, respectively, the functions ¢(x) =

x
"N\1=%
(iv). Suppose (ii) holds and let ¢ be convex on [0, 1]. Define convex functions ¢.; n =1, 2,
... by requiring that: ¢, (k/2n) = ¢(k/2n); k =0, 1, --., 2" and that ¢, is linear on each
interval [5-2-—1 %] =1, .--,2" Then ¢, | ¢, $4(0) | ¢'(0) and ¢, (1) 1 ¢'(1). It follows,
without loss of generality, that we may assume that the graph of ¢ consists of a finite
number of line segments. Hence we may write ¢(x) = max{a; + b;x; i =1, ---, k} where
a>ay> - >apand by < by < - -+ < by. It follows that: ¢(x) = a1 + bix + Y1 (ai+1 +
bir1x — a; — bix)*. The inequality is trivial when ¢ is linear. It suffices therefore to prove
it for functions ¢ of the form

¢(x) =A vV Bx=Bx+ A(1 — x) — min{A(1 — x), (B — A)x}

where, since the case A = B is trivial, 0 < A < B. Putting A = 1 — A/B we see then that the
inequality reduces to (ii). O

A prior distribution A may in this case be identified with the probability it assigns to
{2}. We shall therefore in this Section write b(A | &) instead of b(1 — A, A| &) and H(¢| &)
instead of H(1 — ¢, t| &) when A, ¢t € [0, 1]. The Bayes risk function A ~— b(A| &) may
then be written

) (x — 1) and y(x) = min{1 — A, Ax}. It remains therefore to show that (ii) implies

bA|&)=1—]|1=AN)P; VAP:| =|(1—=A)P1 A APs|.
Hence
0=b(A|E)=1A—=A) AN A e€[0,1].

Note that the right-hand side is (A | #;) while the left-hand side is b(A |.#,). Conversely,
any concave function fon [0, 1] such that 0 = f(A) = (1 — A) A A for A € [0, 1] is of the form
f(A) = b(\| &), where & is, up to equivalence, determined by f. A particularly interesting
aspect of this representation is the relation

b(\|sup; &) = inf, b(A| &),
which is valid for any family { &; ¢ € T'} of dichotomies. Deficiencies are easily described
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in terms of these functions. By Theorem 3.1
8(&, F) = 2 suposa=1 [B(A| &) — b\ | F)]
for any pair (&, %) of dichotomies. In particular 8;(&) = 1 — 2b(%, &); see [23].

There is a simple connection between the Hellinger transform and the Bayes risk for
dichotomies as follows.

THEOREM 3.2. [28]

1

0

BA| &)1 — NN = J x| Py A Py dx.

0

H(t| &)/(1 — t)t = f

0

As an application consider the problem of finding bounds for H(¢| &) in terms of 5(A| &).

THEOREM 3.3. For any pair (A, t) of prior distributions.
b(A| &)= (1 —N'"NH(¢| 6)
and
H(t| &) =[1—bQ| &) + AN | )] [bA| &) + (1 - MY &Y
+[BA| &) = AV &)L — b | &) — A =NYA|E)],

where b'(\| &) is any number between the left and right derivative of A ~— b(A | &) at A.
Both inequalities are, for given values of b(\| &), sharp.

PROOF. Put A = Ao, b = b(Ao| &), bo = b'(Ao| &) and suppose 0 < Ao < 1. Then b(- | %)
= b(- | &) = b(- | 2) where b(A| €) = bo[(A/Ao) A (1 —A)/(1 — Ao)] and b(A| 2) = [bo +
(A —Ao)bb1A (1 —A) AX.Hence = & = 9 so that H(t| ¥) = H(t| &) = H(t| 2). These
are the desired inequalities. 0

REMARK. The first inequality implies that
b(A| &) = (1 —A) AN) inf H(t] &),
yielding the right of the inequalities:
[y(&)/2] = 8.(&)/2 = inf.H(t]| &),

while the left inequality follows by choosing A least favorable and by phtting t="%.
Inserting A = ¢ = % we find

| Py A Py|| = y(P1, P;) = V|| Py A Pe|| | PV P2,

or equivalently
DX(Py, P;) < | P — P;|| = 2V1 + (P, P) D(Py, Py).
This proves the known fact, see Le Cam [15], that the Hellinger distance is equivalent to
the statistical distance.
Using the fact that
Aifig1 A Aofege Z (Mifi A Nafo) (81 A &2) Z (Mify A Aofo) (mag1 A pog2)

whenever A1, Az, i1, g2, f1, 2, &1 and gq are nonnegative numbers we get:
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ProrosITION 3.4. If & and % are dichotomies, then for any pair (A, p) of prior
distributions

b(A| & X F) = 2b(\| E)b(%| F) = b(N| 8)b(n| F).
In particular

8u(& X 7)/2 2 [8.(£)/212b(% | F) = [8a(&)/2][8.(F)/2].

By proposition 3.4, b(A| &™) = b(A| 8™)b(A| £7) and 8.(E™")/2 = [8u(&™)/
2][8.(&™)/2]. 1t follows that 8.(£™)", n=1,2, -+ and b(A| £")*, n =1, 2, - . - converge,
as n — o, to respectively sup,[8.(£")/2]"" and sup, b(A | £”)*/". Furthermore, since
bAA| &™) = 8.(6™)/2 = b(N]| ")/[(1 —A) A A] when A € ]0, 1], these limits are the same.
Thus

THEOREM 3.5. There is for each dichotomy &, a constant C(8&) in [0, 1] such that, for
each nondegenerate prior distribution \

limy e B(A| ™) = limy_..o [82(8™)/2]7" = supa b(A| £™) V"
= sup, [8.(67) /2] = C(&).

REMARK. It follows that C(&") = C(&);r=1, 2, -.- and that C(&) = C(%) when &
= Z. Also, by this Theorem and Proposition 3.4: C(§ X &) = C(&8)C(F) for any pair (&,
) of dichotomies. Using that 1 — §;(8) = 2b(%, &) we get

COROLLARY 3.6.
lim,_» [1 — 8:(6™) 1" = C(&).

By the remark after Theorem 3.3: [8.(6")/2]" =< inf, H(t| &). The fact that the limit
C(&) of the left-hand side equals the right-hand side is a consequence of the following
result of Chernoff [6].

THEOREM 3.7. For any dichotomy & and any nondegenerate prior distribution A

lim, .. b(\| £")/* = inf, H(t| &).

Chernoff first derives the basic convergence result for large deviations,
lim,~o P(1/n (X; + -+ + X,) = 0" = infizo Ee*¥,

which is valid for any sequences X, Xz, - .- of independent and identically distributed
variables. Then, applying this to log likelihoods, he proves Theorem 6.7.

Chernoff’s result has simple and important interpretations in terms of experiments and
it is somewhat unsatisfactory that several of the steps in the various proofs are not so
easily interpreted in terms of experiments. We shall now give a simple and “natural” proof
of this important result which is based solely on a few basic facts about statistical
experiments. The proof admits variations and is of considerable interest in itself. We shall
see in the next section (Theorem 7.2) how this idea may be used to extend Chernoff’s
result to a more general result. The main tools of the proof are compactness of A
convergence, [17], and a type of product homomorphism for experiments which we shall
describe now.

Let & = (Ps; 6 € O) be an experiment dominated by the o-finite measure p. Put f; =
dP;/dy and consider a family {¢t?: i € I} of prior distributions with finite supports and
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such that H(t"® | &) > 0, i € I. For each i € I define a probability measure @; by dQ;/du

=Ht” | &) [l f f;g). It is easily seen that the measures @, do not depend on our choice of
dominating measure. We shall denote the experiment (Q;: i € I) by (&: t?; i € I). If s is
a prior on I with finite support, then

H(s| (&t ie D) =H, st &) [[: He? | &) ™.
It follows that (&: t¥; i € I) ~ (F: tY; i € I) when & ~ £. Also, by the product rule for
Hellinger transforms
(& t%ieD) X (F:tiel)~(EX F:t9iel)
in the sense that the left side is defined if and only if the right side is defined and then
equivalence holds.
Consider now a dichotomy & = (P;, P;) ~ #, and a real number a. Put p(t) =

e “H(t| &) and po = inf; p(¢) and assume po = p(t,) where £ € 10, 1[. Then, when n is
sufficiently large, the Hellinger transform of

s\ s
é”:t;to+—) ~<é”":to;t0+—-)
(" Jn Jn

o) oo g) |

which converges, as n — o, to e **"*179/2 where % = p”(ty)/po. This limit, as a function of
t, is the Hellinger transform of the dichotomy %, = (@, @) where s, for each s, is the

Normal (s7, 1) distribution. Hence A( & to; o +% , 9] — 0 so that the laws of
n

likelihood ratios of (é" " to; to + %) converges weakly to the corresponding laws for %.
n

Thus.

i’(Ui/&e"”J’—‘p(to +—j—.> PG | e"‘"“’p&"U,‘?P’f) - LU | Q),
n

where U, = dP}/dP? and U = dQ,/d@,. Hence, since p(to + %) Pk — e ™52,
n

EP"1¢( Ufz/‘/;le —asﬁz) Uflo ~ p(')‘e”a‘OEQ(#)(es?f?/ZU)

when ¢ is bounded and continuous a.e. Lebesgue if r > 0 and continuous in 1 if 7 = 0.
Choose a number M > 1 and put ¢(x) = 1 or 0 as x € [M ™", M] or not.
Then

| P: A e Py = J (1 A e™™U,)ple " UY ™ UUS dP?
= MV~ Vrog—nato j ole™"UY MUY dP?

~ MM piEqp(e””” dQi/dQ).
Hence, since the last expectation is > 0, we get
3.1) lim inf, || P} A e P} || /= inf, e “H(¢ | &).
If & ~ M, then po = 0 so that (3.1) holds trivially. In general the function p may be forced
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to obtain its infimum in ]0, 1[ by increasing the amount of information in &by a negligible
amount. To be more precise let N be large and put ¥ = <1 —% M; +% F= (P, Py)
where —H'(0+ | #) =H'(1— | #) = . Then ¢t ~ H(t | & ¥)e “ obtains its infimum
in ]O, 1[. Hence

lim inf, || P} A e™P3 || V" zliminf, || (P1 X @1)" A e™(Pz X @)" ||
1
=inf, [e™H(¢ | &)H(| 9)]= (1 - N)po - po

as N — o. We used here that H(¢ | ¥) =(1 —%) ~ Ht|#)z=z1- %
It follows that (3.1) holds for any dichotomy (P;, Ps). a = 0 yields lim inf, (A | £™)'/"
= inf, H(t | &) while b(A | &") = H(t | &)" by Theorem 3.3. Hence b(A | £™)"/" — inf,

H(t | &) and this is Chernoff’s theorem. By Theorems 3.5 and 8.7

THEOREM 3.8.
C(&) =inf, H(t | &).

REMARK. By the remarks after Theorem 33, b(A| &) = [(1 — A) v A]C(&) and
Y[(£)/2] = 8a(6)/2 = C(8).

We shall now consider a few extensions of Theorem 3.5. Let us first consider the
asymptotic behavior of minimum Bayes risk in other decision problems. It is known, see
for example [8] or [23], that the minimum Bayes risk may often be expressed as functionals
Y(&) = [ Y(dP,, dP;) where the function v is super linear (i.e., Y(x + y) = y(x) + Y(y) and
Y(tx) = ty(x) when ¢ = 0) or R2 The function ¢ is determined by the loss function. It
follows, since the standard measure of &" converges weakly to the standard measure of
My when & # M;, that Y(E") — Y(M,) as n — o provided & # #;. By Theorem 2 in [23]:
0=Y(8) — Y(M,) = s ((g’) —— [¥(1, 0) + ¥(—1, 0) + ¢(0, 1) + ¢(0, —1)]. It follows, by replacing
& with &" and applylng Theorem 3.5 that lim sup, [V(£") — ¥(#,)]"/" = C(&).

Suppose V is not affine on [0, o[% Put ¢(x) = (1 — x, x), x € [0, 1]. Then ¢ is concave
on [0, 1] and for some xo € ]0, 1 [: ¢(x0) > (1 — x0)p(0) + x0¢ (1). Let x be the function on
[0, 1] which is linear on the intervals [0, x,] and [x,, 1] and which satisfies x(0) = ¢(0),
x(%0) = §(x0), x(1) = ¢(1). Then (&) — Y(Ma) = (&) — J(Ma) where §(x) = Y(x) — x1¥(1,
0) — x2¢(0, 1). Thus we may as well assume that ¢(0) = ¢(1) = 0 and then {(&) — ¥(4,)

=y(£) = dP; ) d(P1 + P,) = kb(A, &) where k = ¢(xo) xl + 1 p ) and A =
0 0

Ix (P, + P) 1—

1/(1 1 .
— (— + ) . Using Theorem 3.5 once more, we find the following.
Xo\Xo 1—x0

THEOREM 3.9. Ify is super linear on R? and not linear on [0, «[? then
lim, o [Y(&") — Y(Ma)]"" = C(8).
REMARK. If Y(x) = A, Y51 AgLg(£)xo where L is the loss function, then y(&) is the
minimum Bayes risk for the loss function L. If A, is attained, then the exceptional case is

the situation where, for some fty, Ls(to) = Lo(t) for § = 1, 2, and all £. In that case no
observations are needed and the decision rule x ~— ¢ is “uniformly” optimal.

In spite of the last remark there are interesting measures of information based on
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deficiencies whose exponential rates of convergence differs from C(&).

ExampLE 3.10. Fix a number a € [0, 1] and consider the smallest number 2, such
that the dichotomy (Py, P;) is (2a, 2¢2) deficient with respect to .#,. By Theorem 2.3 this
is just 1 — B(a| P1, P;) where B(a| Py, P;) is the power of the most powerful level « test
for testing “P,” against “P,”. It is shown in an unpublished paper of Stein (see [7] or [1]
for a proof) that

Ep,logﬂ
[1-B|Pt, P >e
We shall for the remaining part of this section assume that %p, (log(dP:/dP;)) is
nonlattice and that inf, H(¢| &) is obtained at £ € 10, 1[. Put 72 = C(&)'H” (t,| &) and A,
= C(&)"(277n)"% Then the expansion of Efron and Truax [11] may be written

BN[E7) ~ A7 (1 — N0 No/(1 = to)to.

The functions A ~— (A | £") and the function A ~— (1 — A)! A% are all concave on [0, 1].
It follows that the convergence is uniform in A. Maximizing with respect to A we find that
8a(£")/2 ~ AZN1 — to)"“t5 " ie., 8a(6™)/2 = b(¢°| £")(1 + 0(1)). Let p, be least favorable
in &" i.e., b(p,| ") = 8.(&")/2. Then

Anb(ptn, ™) — [(1 — pa) "ul/(1 — t)to] — 0.
Hence (1 — pn)""“u% — (1 — )" "¢& so that p, — . By a slight extension of this argument
we find that 6,(£")/2 = b(un| £)(1 + 0(1)) as n = o, if and only if u, — #. This proves

THEOREM 3.11.
(i) 8a(6™)/2= (1 — to)ot§™"

1+o0(1 asn— oo,
\/._ \/_ ( (1)

(i) % is asymptotically least favorable in the sense that 8,(")/2 = b(t|&M)(1 +
o(1)) asn— o,

(ili) More generally §,(6™)/2 = b(u.| &™) (1 + o(1)) as n — o if and only if lim, p,
= t0~

The prior £, which minimizes ¢ ~— H(t| &) is, by Theorem 3.11, asymptotically least
favorable.

Let U be the distribution on ]0, «[ with density x ~— x~* with respect to Lebesgue
measure. Note that the expansion of Efron and Truax may be written,

lim,_,. J’ [@=A) AAx]ALK.(dx) = f [(X =A) A Ax]U(dx)

where K, = Zp;(dP%/dP?). It follows that lim,_,. [ ¢$(x)A,K.(dx) = [ ¢(x) U(dx) for any
function ¢ on [0, oo[ which is a linear combination of functions x ~— (1 — A) A Ax; A € [0,
1]. It is not difficult to see that a function ¢ is a linear combination of functions x ~— (1
—A) A Ax; A €0, 1], if and only if ¢ is polygonal, ¢(0) = 0 and ¢(x) = lim,_,. ¢(x) when
x is sufficiently large. Hence, by the theory of weak convergence of measures,

THEOREM 3.12.
J¢(dP§‘/dP'{)dP’f = [f(p(x) Uto(dx)] \/___ \/__ C(&)™(1 + o(1))

as n — o for any bounded function ¢ on [0, o[ which is continuous a.e. Lebesgue and
such that sup.o | $(x)/x| < . Or equivalently
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dpP3 ) L 1+ x) 1 1
o =or—mz |d(PY + P}) =J p(x) —r— dx —= C(&)™(1 + o(1))
J’ (dP1 +apz)" TR X ot I

as n — o for any function p on [0, 1] which is continuous a.e. Lebesgue and such that
SUP1>x>0 | p(x)/x| < @ and supo<x<1 | p(x)/(1 — x)| < oo.

If ¥ is sublinear or superlinear on R? then p(x) = ¢(1 — x, x); x € [0, 1] satisfies the
requirements of the Theorem. Thus, by specializing to functions x ~— A, Y51 Ls(t) xs, we
find asymptotic expressions for minimum Bayes risk in various decision problems.

4. Replicated experiments when the parameter set is finite. How fast does the
content of information in n replicates of an experiment & increase as n 1 «? In this section
we shall investigate this question when © is finite. In view of the fact that pairwise
sufficiency implies sufficiency, it is not too surprising that; up to a first approximation, the
problem may be reduced to the same problem for dichotomies. A few crude, but for our
purposes sufficient, inequalities are collected in

ProprosITION 4.1.
(i) Suppose A(6,) > 0 and let \° be the conditional distribution on ©, given “0 € 6,.”

Then ,
A(B0)b(\°| &6,) = b(N| &).

(ii) If A is nondegenerate then

Mo, Ao

< 2
C2b(A[ &) = Yote (Ao, + >\02)b<——->\0! F YD W

&16,,6,) ) .

. 1 1
84(8) = mln{2mb<-—-, - ‘ é”), (m — 1)maxg,44, 82(& (4,,6,) )}-
m m

(iii) Suppose © has m < x elements. Then

ProoF. (i) and part of (iii) follows from the inequalities Y o, A(8)r(0) = Y A(0)r(8) =
Y r(6) which are valid for any nonnegative risk function r. (ii) follows from the inequality

X Nofo = ¥ Nofs = Y2 Loi46. Norfo, A Afo,

valid for any nonnegative numbers f;, 8 € ©. (iii) follows now from (ii) and (2.9). O

It will be assumed throughout this section that the parameter set O is finite. The fth
unit vector e’ in R® is defined by e’(§’) = 1 or 0 as §’ = 6 or 8’ + 6. We extend the
definition of the constant C(&£) in Section 3 by defining

C(&) = maxg,+¢, infoc,<: J’ dP; 'dPy,.
Thus

C(&) = maxg,+s, C(&(6,,0,))-

Consider now an experiment & = (Py; § € ©). Let ¢ be sublinear on R® and let F be a
nonempty subset of 6. Then, by sublinearity ¢ (z) = (3 zse’) = Y(Xr 20€’) + Y 5 2o9(e?).
Let S denote the standard measure of &. Then

Y(Ma) = Y(E) = Tod(e’) — J’ vdS= J [T ze9(e’) — ¥(X 20¢”)1S(d2)
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z J’ [Zr 20¥(e’) — Y(Tr 20€°)]1S(dz) = Yr(Ma) — Yr(8)

where Yr(2) = Y(3F 29€%). If in particular, F = {6;, 65} then (4,) — Y(&) = (6,0, (M)
— ¥(6,,6,) (£). Substituting £” for & and applying Theorem 3.9 we find, provided Y(6,,6,) 1S not
affine on [0, [ ®, that lim inf,[Y(#,) — Y(£™)]" = C(&(4.6,)). Suppose now that this
provision is satisfied for all two point sets {#,, 6;}. Then

lim inf,[Y(M,) — Y(E)]V" = C(&).

The provision above is obviously satisfied for any function z ~— Vv Ayz, where A is a prior
distribution on © such that Ay > 0 for all 4. Suppose A satisfies this condition. Then the
above results imply that

lim inf, b(A | )" = C(&).
By Proposition 4.1 and Theorem 3.5
lim sup, b(A| £™)"" = maxg,+4, C(&4,.6,)) = C(&).
It follows that b(A | £")/" — C(&) as n — «. Hence, by (2.9) and Proposition 4.1
C(&) = lim, b(uniform | £")"/* = lim inf,[8.(&™)/2]""
= lim sup,[8.(£")/2]"" = lim sup,[(#6) b(uniform | £*)]V"* = C(&),
so that
lim, 8.(8™)'" = C(&).
By the sublinear function criterion
lim supa[¢(#a) — $(£")]V" = lim supa[ Yo %[¥(e’) + Y(—e’)18.(8™)]7"
= lim sup, 8.(&™)Y" = C(8)

for any sublinear function ¥ on R®. Altogether we have proved the following.

THEOREM 4.2. Let & = (Py; § € ©) be an experiment with finite parameter set. Then

(i) imp_, . 8a(E™)" = C(&).

(i) lim, . b(A|&")/"=C(&)  provided Ay > 0 for all 6.

(iii) lim sup,p—«[Y(Me) — Y(EY)]V" = C(£) for any sublinear function .

(iv) lim,o[Y(A#:) — Y(£M)]V" = C(&)  for any sublinear function ¥ on R® such
that none of the maps z ~— (24, + Zy,e*); 6, + 6, are linear on [0, o[ ©.

REMARK. Using the inequalities mentioned after (2.11) it may be shown that [2 — 2/
m— §(&"]V" — C(&).

If Y(x) = V¢ Y9 Mg Us(t) xo where T is a decision space and U is the utility function, then
(iv) describes the exponential rate of convergence to Y6 Ag Vg Up(t) of maximum Bayes
utility. If the v, in the expression for  is attained and A\; > 0 when 8 € 6, then the
exceptional case is precisely the situation where for some two point set {6, 6:} no
observations are needed when it is known that § € {61, 6;}. Thus (iv) is not applicable to
expressions like || Ag Ao PF|| = || Vo (—As) P§| when #6O = 3 and, in fact, || Ag Ao P3| =[]
MG H,(t)" for any pair (A, t) of prior distributions on ©.

Although Theorem 4.2 yields the exact rate of exponential convergence in many
situations, there are situations of interest where the condition in (iv) is not satisfied.
Consider, for example, the problem of catching § with an r-point confidence set. Then the
minimax probability of not covering the true value is
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k(€) =1 —inf) | Vu Yecv Ao Ps|,

where U runs through all r-point subsets of ©. Clearly «; = §(&, #,)/2 and it is easily seen
that «, is monotonically decreasing in r.

The minimum Bayes probability of not covering 6 for the prior Ais 1 — || Vu Yocv A Po||
= || Av Y scv Ao Ps||. This minimum is achieved by the confidence set x ~— U, if and only
if the class of sets U such that Y scv Aofo(x) = Vv Yoev Aofs(x) has the probability 1 for
Za )\aPa almost all x. Here ﬂ) = dPa/d Ea Po, 6 € 6.

Let us briefly consider the asymptotic behavior of these quantities.

THEOREM 4.3. Suppose O is finite and put m = #0O. Define for each experiment and
each integerr € {1, 2, ..., m — 1} the quantity k(&) as above. Then

lim,_« k(™)™ = maxw inftGAwJ' 1w (dPg)*

where
(i) W runs through all (r + 1)-point subset of © and
(ii) Aw, for each W, is the set of all prior distributions on © which are supported by

w.
Furthermore, the nth root of the minimum Bayes probability in &" of not covering
for the prior A converges to the same limit, provided A\s > 0 for all § € ©.

REMARK. Suppose the prior distribution A assigns positive mass to each § € 6. Then
any sequence U, Us, - - - of confidence sets such that U,, for each n, is an optimal Bayes
procedure based on &”, achieves the optimal rate.

Putting m = 2 and r = 1 we see that the last statement generalizes Chernoff’s result,
Theorem 3.7. The proof of Theorem 4.3 is based on Theorem 4.4 and Proposition 4.5
below.

THEOREM 4.4. Let pg; € € O be a finite family of finite nonnegative measures on a
common measurable space. Then

Lim, o || A u§ || = supa || Ao p8 ||"/" = infren f 1o (dpe)®

REMARK. The statement of the Theorem is clearly equivalent to the following.
Let & = (Ps; 0 € O) be an experiment with finite parameter set © and let ay; § € O be
a family of nonnegative numbers. Then

lim,_.a. || Ao @3 P3[|V" = supa | Ao @3 P ||" = infoen [[s aYH (2] &).

PrOOF. As Asfo=T[of¥, fE [0, ©[°, t € A we get

e f Lo du3)" = ( f o d;d;’) .

It remains therefore to show that lim inf, || A¢ 5 ||/" = inf, [ [[sdrf. Note that both sides
of this inequality remains unchanged if each p, is replaced by its A4 us absolutely continuous
component. This reduces the problem to showing that

(4.1) lim inf | A%, e " P} ||V = inf, e *H(t| Py, - -+, Pp)

for any homogeneous experiment & = (P, ---, P,) and any a € R™ such that a; = 0. If
m = 2 then (4.1) is (3.1) in our proof of Chernoff’s result in the previous section and the
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general case may be proved quite similarly. Again we may assume that the inf is obtained
at a t° € A® and we may also assume that #(log(dP;/dP:),i=2, - - -, m| P;) is nonsingular.
By considering the Hellinger transforms it follows again that (&":¢° + s'/s/ﬁ, e 0+
s™/ Vn ) converges to an experiment ¥ = (@, - - -, @»), where (see Example 4.6) ;,1 =1,
2, ..., m, are the (m — 1)-variate multinormal distributions with means (s%, s, - -, s&)

o @ - .
Po lét—aT [ It=t<n p(t) =e (a’t)H(tI g) and Po = lnfl
a 08
o(¢). If U, = dP?/dP} and U, = dQ,/dQ, then this implies that

— . o 0 .
Epo(U¥me Vi =2, ... m) [ Uk ~ phe™ Eq¢(e"/* Ui, i =2, -+, m)

and covariance matrix o' given by 6,5 =

when ¢ is bounded and continuous a.e. If ¢(xz, - -+, xm) =1 or OOas (X2, +++, Xm) E[M7,
MT]™ " or not then we get | A; e "*P}|| = y» where v, ~ M"'-"‘2“‘)p6‘EQ,¢(e"“/2Ui, i=2 .,
m) and this yield the desired inequality. 0

.

ProPOSITION 4.5. For any experiment & = (Py, Pz, -++, Py), if 1l =r <m then
-1
m-—1 - -
ZB,_H r Kr(éa(il,iz,-”,iru)) = Kr(év) = ZBr+l Kr(éa(ix,iz,'“,iru)))
where Bryy = {(i1, »++, b)) 1 << +++ <lr1}.

Proor. We may write k(&) =supx | Av Y v AoPs||. Let y1 =y =y3= - -+ = Ym. Then
Audu ys=y1+ -+ ys, where s = m — r. The inequalities follow now immediately from
m-—1

the identity ¥ {yi: i1 <2 < -+ {1} = - )yl + m;—2 Yo + eee + :ys.D

Proor oF THEOREM 4.3. The Theorem follows by applying Proposition 4.5 to &,
taking the nth root, letting n — o and using Theorem 4.4. 0

ExaMPLE 4.6. Let P;,i=1, ..., m, be the p-variate normal distributions with means
¢ and nonsingular covariance matrix M. Then H(¢| Py, -+, Pn) = e /*? where @ =
S titj (8 — EyYMT(¢' — &). If, in particular, M is the identity matrix and £', .- -, £™ is an
orthonormal basis for R™ then
r

1
lim,_.. —log . (P%, P3, -+, Pp) = — ————.
im - og k-(P1, P3 Py) 5+ D

If the map § ~— Pyisnot 1 — 1 then C(&) =1 and §(&8", #.,) = 1 for all n. The obvious
way out is to replace the parameter set © by the set { Py; § € O}. We omit the details.

5. The general case. It follows, since deficiencies decrease by taking restrictions,
that lim inf, 8,(&")'/" = C(&) for any experiment & = (P,; § € ©) where C(&) = supg,+s,
C(&6,,6,))- Although providing a lower bound, C(&) alone does not determine the expo-
nential rate of convergence when © is infinite. We shall, nevertheless, see that 8,(&")"”
always converges as n — o to the quantity o(&) = max(C(&), 7(&)) where 7(&) = inf,
(82(&")/2)"". In order to establish this and related results we shall have to search for
estimators 8, making Pj(d, + ) small.

Suppose that an estimator § = §(X) of 6 based on one observation X of & = (x, <7, Py;
6 € ©) is available. Let X3, - - -, X, be n independent observations of X and put §; = 4(X;);
t=1,2, ... n. Restrict the search to the subset U of © consisting of those §’ whose
relative frequency %,(6’) in (61, 6, - - -, 6,,) exceed a fixed number ¢ € 10, 1]. Then pick an
estimator s, = s,(X}, - - -, X,,) within the subset of U consisting of those §’ which maximizes
the likelihood within U. Thus s, is a restricted maximum likelihood estimator.

To be more precise we may proceed as follows. Equip © with the ¢-algebra generated
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by the one-point sets and suppose § is measurable. Put gy, r = dP5/d ¥ ¢cr P§ whenever F
is a finite subset of © containing 6. Choose for each nonempty finite subset F of © a
measurable estimator tr = tr(X, -+ -, X,,) € F such that g;,,r = Veer &o,r. We may then
take s, = ty provided U % &. Put s, = 6, where 6 is a fixed element of © when U = &.
Then s, is measurable with respect to the completion of &/ " for P§ for each 6 and

PrOPOSITION 5.1. Putr=r(£) =¢ 51— £, Cy=sup{C(&.0y; 0’ + 0} and assume
0<n=¢t=Py0=80). Then ‘
P3(s. + 8) = [Po(d + 8)5]" + 0~ [mf]" +n'C5.

PrROOF. Put Fy= {0':Ps(§ = 6’) = 3}. Then
Pi(sn+0)=Pj(UL F) + P{(0 & U) + P{(0E UC Fy & s, + 0).
Now
PyUGE Fo) =% P5(UD ) =3 Pi(ha(0') =)

where }" = Y¢¢r,. Applying the inequality Py(Z = C) = infizo e ‘“E4e'” to each term we
find

PyUQCF) =Y[Po(G+0) Py =0)Vr]"sY Py@=0)Py(6=0)"r"=n""r"

!

provided n¢ = 1. Hence P3(U & F;) = " "'r" in any case. Similarly

P30 & U) = P3(ha(8) < £)) = [Po(0 + 6)'*Po(6 = 0)°r]" = [Ps(0 % 0)*r]".
Finally, by the remark to Theorem 3.8, we find
Pi(0€EUCF),s:%0)=Y0er,~0y PIOEUC Fy& s, =10’)
=Yoer,0) Pi(8o .5, Z 8or,) = Yoer,— o) | Py A P3| S #(Fo— {6})Cs=n7'C;. O
COROLLARY 5.2. Suppose &* is ¢ = (g5; 0 € ©) deficient with respect to M, and let 0
<n=§¢=1. Then &" is (yno; 0 € O) deficient with respect to M, where
%Yno = [(65/2)1_57’]["/“ + n—l[rné][n/k] + n_ICL"/k]

or=1as & =1— (e/2) or not.

REMARK. Choosing 7 = 1/n and £ = (log n) ™'/ we find that there is a sequence si, sz,
... of estimators such that

lim sup, P3($, + 0)" = (e4/2)"* v C,.
Here is the main result of this section.

THEOREM 5.3.
8.(EMY" > a(8) asn— o.
REMARK. It follows that lim inf, sups P§(s. + 0)'/" = o(&) for any sequence s,(Xi,
ceo, X,);n=1,2, .- of estimators of # and that lim, sup, P§(s,+ 6)"" = o(&) for some

sequence (s, Sz, - - -) of estimators.

ProoOF. Clearly lim inf, 8,(&")"" = o(&). It remains to show that lim sup, 8,(&™)"/"
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= C(&) v (e/2)V* when ¢ = 8,(&%) < 2. This, however, follows from the Corollary by
letting n — 0 and then £ — 0 in the inequality lim sup, vy = ((e/2)*¢r)* v (rp¥) V% v
CE)yn<é<l—¢/2.0

Applying the Theorem to &* we find easily that o(6*) = o(&)* and clearly o(&) =
o(%) when & = #.

COROLLARY 5.4. The following conditions are equivalent for an experiment & = (Py;
€ 0),

i) 8.(6™) <1 for some n;

(ii) lim, 8.(&™) = 0;

(iii) 8a(6") =cp™,n=1,2, .. for some constant ¢ > 0 and some constant p < 1;

@1iv) 8,(6") <2 for some n and infy, 44, | Pg, — Pg,| > 0.

PROOF. Suppose 8.(6") < 1. Then 7(&) = 8.(6")"" < 1 and supg,+4, 8.(87s,.6,)) < 1. The
last inequality is equivalent to infg,+4, 8.(674,6;)) > 0 or C(&)" = supg,+4, C(Efs,0.)) < 1.
Hence, as 7(€) < 1 and C(&) < 1, (&) < 1. Thus, by the Theorem, (i) = (iii). The other
implications of the Corollary are then straightforward. O

It follows that if 6" — .#, then the speed of convergence is necessarily exponential
provided & ~ ,. :

The constant 1 in (i) cannot be increased. If, for example, & = (P;, P2, Ps, ---), where
P,=P,and P, A Pi=0wheni,j=2,and §,(8") =1foralln=1,2, ...

We saw in the previous section that C(&) alone determined the rate of convergence
when O is finite. Here is an example, showing that this (i.e., C(&) = 7(&)) does not hold in
general when O is infinite.

ExXAMPLE 5.5. Suppose O = {1, 2, --.} and that the density of P, with respect to the
uniform distribution P on [0, 1] is f where f;(x) = 2 or = 0 according to whether x belongs
to one of the intervals [(k —1)/2°, (& — %)/2°[; k=1, - - -, 2% or not. Then Epfy, (X)) f3(X)*
=1, 0, F 6;, 0 <t < 1. It follows that the dichotomies &g, 4, ; 0:F 6: are all equivalent to
the simple dichotomy ((%, 0, %), (0, %, %)) and, in particular, that C(&) = %. On the other
hand it is not difficult to see that Py(B) — P(B) as § — o for any Borel set B. By the
Proposition below 8,(&") =, 2.

PROPOSITION 5.6. 8,((™) =, 2 provided either

(i) O contains an uncountable subset ©y such that (Py; 8 € ©,) is dominated, or

(ii) © contains distinct elements 8y, 6., - -- such that lim, Py, (A) exists for all A €
.

REMARK. Let p be a probability measure dominating & and put f, = dPs/dp. Then
condition (ii) is satisfied whenever O is infinite and (f;, # € ©) are uniformly integrable.
Thus 8.(&") =, 2 when the sample space of & is finite and © is infinite. In spite of this &"
converges weakly, i.e., for restrictions to finite subparameter sets, whenever § ~— P, is 1
- 1.

Proor. The sufficiency of condition (i) was noted after (2.7). We may then without
loss of generality assume that © = (1, 2, - .-} and that P,(A) — P(A) for any event A. If
M is an estimator of ¢ then P,(M = n) = P,(M = N) —» 0 as n — » and then N — oo,
Hence infy; Po(M = 6) = 0 so that 8,(&) = 2. The Proposition follows, since by the Vitali-
Hahn-Saks Theorem, P, — P’ in the same sense. [

If O is finite and 8,(&) equals its maximal value then & ~ .#; and replications do not
yield any information. In the infinite case, however, such a discouraging start does not (see
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Example 5.9) prevent information from being accumulated rapidly and with arbitrarily
small 6(&), as the number of replications increase.

How do distances and deficiencies for replicated experiments behave in general? It is
clear by Theorem 5.3 and the inequality 8,(&") — 8,(F") = 8(&", F") = §,(&") that lim
sup, 8(&", #")'/" = 6(&) and that 8(&", #™)'/" — o(&) when 6(&) > 6(F). The problem
of the asymptotic behavior of §(&", #") when o(&) < o(%) is open. Qur knowledge about
the asymptotic behaviour of A distances is more complete. It follows from the considera-
tions above that lim sup, A(&", )" = 0(&) vV o(F) and that A(&", F™)" — o(&) v
(%) when o(&) + o(F). If O is a two point set then by [26] the above holds whenever &
~ %. Thus it also holds whenever © is finite and &,4,) ~ (4,6, for 6; + .

ExaMPLE 5.7. Blackwell [2] considered the experiments & and & given by the matrices

It is easily seen that & is pairwise more informative than % and that H(¢| &) = H(t| #) for
all ¢. Consider, however, decision problems with safety bounds for the risk at § = 2. Then
a very good performance in & when 6 = 3 will easily lead to a bad performance for § = 1
and vice versa. The experiment %, on the other hand, is obviously not as bad in this
respect.

By sufficiency " and %" may be reduced respectively to

x . 0,, « , N x : 0, n
P,,,l 1 s 0 , 0 Qn,l 1, 0
1 1 1 and 1 1

P D I st o=m, 1= o

Pn,Z 2,, ) 1 2,,-1 ) 2n Q 2 2n 2n
1 1

n : ’ ’ n : _n)l__n
P,; 0 0 1 Qn,3 2 0

Let M be the randomization from {0, «, n} to {0, n} such that M(n|0) = (2°" + 27*") 7},
M(@n|«) =1and M(n|n) = 2" + 1 — 27")(2" + 2)7%. Then || P.,.M — Q.| = 2(2** +
2"~ i =1, 2, 3 so that §(&", #") = 2(2°" + 2"*!)~L

Now (1, 1/2", 1/2") is an available power function in #”". Hence, by testing criterion
[22], there is a power function 7 in &" so that

é 1 6 1
>1-— - < 4 > __
7(1) =1 3 7(2) =2n+ 3 and #(3) =

where 8§ = §(8", #"). We may therefore, by sufficiency, write

i+(—s>-rr(2)—l(a+c)+(1—-5"1_—l

1
= >__
gnt3Z o )b_zn(a+c)

1 1 § 1 8
=§<w<1)+w<3))g?[1—§+?_§]

where a, b, ¢ € [0, 1]. It follows that § = 2(22" + 2"*')~! so that 8(&", #") = 2(2*" +
27*1)~1 Hence §(&", #")/* - Y while C(&) = % and C(Z) = 1.

ExaMPLE 5.8. (Translation experiments on the integers.) For each distribution P on
the integers and each integer 6, let P, be the right #-translate of P. Consider the experiment
&p = (Py; § € O). It was shown in [25] that

8.(6") = 2(1 — ¥, ... x, Max, P(x)P(x + x2) - -+ P(x + xn)).
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It follows in particular that 8.(6") = 2(1 — P(a))” when P(a) Z P(a+ 1) = --- and Y 7-,
P(x) =1.

Furthermore it is not difficult to see that there are translation invariant maximum
likelihood estimators 6, based on &” and that any such estimator is minimax for the 0 —
1 loss estimation problem i.e., 2Py(f, + 8) =5 6.(&"). Thus 8.(&") < 2 for all n and clearly
infy, 44, | Pg, — Pg,|| > 0. Hence Py(8, # 6) = 8,(6")/2 = Cp™ for some constant C > 0 and
for some p < 1.

In spite of this there are translation experiments &r with P nondegenerate such that
two replications are not better than one in the sense of minimax risk. For example, if P(x)

=]
1-— . .. .
=p(ﬁ) ;=-.+,—-1,0,1, ... when p € [0, 1[ then X; alone is a translation invariant
maximum likelihood estimator for # based on two observations (X;, X).

One would expect that if we are able to do extremely well with two observations, then
we should be able to do at least moderately well with one observation. If © is finite then
this follows immediately from the compactness of A-convergence. If the parameter set is
infinite, however, then this is not necessarily true. We shall here satisfy ourselves with an
example of a translation experiment where we may, on the basis of two observations, guess
6 with marvelous accuracy while any estimator based on one observation is quite inaccu-
rate. To make things more concrete we may choose the constant so that the probability of
a wrong guess for a translation invariant maximum likelihood estimator based on two
observations is less than 107*® while, on the other hand, the probability of making a wrong
guess is greater than 1-107°* for some 6 for any estimator based on one observation.

ExamPLE 5.9. Let P be the uniform distribution on {1, 2, 4, - - -, 2¥7'}. Then, by the
example in Section 2 in [25],

aa(g’;’)/2 =P;(9n =+= 0) = (N _I)N_ny n= ]-) 2) M

where 6,(X;, -+, X,) =min n’ {(X; — 1, X;— 2, X, — 4, --+, X; — 2N~} Tt follows that
limy_« 8,(8%) =1lorOasn=1orn=2.

If only one observation X is available, then 6 is located in the N-point set {1 — X1, 2
— Xy, --+, 2" = X;}. If, however, another observation X is available and X, X;, (this
has probability 1 — 1/N), then 6 is completely known. Thus we see that the phenomenon
is related to the uniqueness of dyadic expansions.

This example may be sharpened by exhibiting a family &.; ¢ > 0 of experiments,
necessarily not translation experiments on the integers, such that the deficiency 8.(&.) =.
2 while 8,(£7) = ¢" ' for all e > 0 when n = 2.
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